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Abstract—We propose a modification of a well-known ant-
inspired trail-following algorithm to reduce congestion in
multi-robot systems. Our method results in robots moving in
multiple lanes towards their goal location. Our algorithm is
inspired by the idea of building multiple-lane highways to
mitigate traffic congestion in traffic engineering. We consider
the resource transportation task where autonomous robots
repeatedly transport goods between a food source and a nest in
an initially unknown environment. To evaluate our algorithm,
we perform simulation experiments in several environments
with and without obstacles. Compared with the baseline SO-
LOST algorithm, we find that our modified method increases
the system throughput by up to 3.9 times by supporting a
larger productive robot population.

I. INTRODUCTION

In swarm robotics, a large number of simple robots is used
to perform a task instead of relying only on a single complex
robot. This has a lot of potential in many applications. For
example, a multi-robot system can be utilized in the resource
transportation task where simple robots repeatedly transport
resources between two or more locations in a warehouse.
Previous work proposes different approaches for this task
in the context of mutli-robot systems. In [1], the authors
propose a ant-trail algorithm called LOST, where robots
lay logical waypoints, called crumbs, towards their goal
locations and broadcast them. These waypoints are virtual
pheromones that imitate the way real ants behave in their
environments. The waypoints result in trails between a food
source and a home location. These trails are optimized
online, leading consequently to a near-optimal single trail.
The LOST method is designed to be practical for real
robots under certain constraints. In [2], the authors show
that with large population of robots, this single trail becomes
congested and physical interferences between robots can
damage the system performance. As a result, the authors
propose the Spread-Out LOST (SO-LOST) algorithm which
results in having two spatially-separated trails; one goes
from the home location to the source and the other goes
in the opposite direction. Moreover, in [3] the authors study
the effect of changing the field of view (FOV) of the robots
in the original LOST algorithm on the system performance,

They conclude that by limiting the FOV, robots tend to
construct different trails in the environment which increases
the overall system performance. In this paper, we present a
method to establish multiple lanes/trails in order to better
distribute the robots in the environment, reduce the density
of the trails and the amount of inter-robot interference, and
thereby increase the system throughput in large populations.
The contribution is to show how SO-LOST and related al-
gorithms can be scaled up to larger, more dense populations
than previously possible.

II. RELATED WORK

Several previous authors have investigated the use of
spatial patterns of pheromones in multi-robot systems. Some
of them proposed using physical forms of pheromones while
others made use of logical ones. In [4], Khaliq and Saffiotti
used RFID tags to guide a team of ePuck robots through
their navigation in an apartment. Similar use of RFID tags
as pheromones was proposed in [5] and [6]. In addition,
Mayet et al. [7] used phosphorescent to mimic the foraging
behavior of the ants. Furthermore, some earlier work like [8]
and [9], used chemical substances as pheromones to mark
the world. The problem with all these approaches is that they
are difficult to use in practical robot systems, despite their
incredible success in real ants. A more promising approach
is to implement purely informational virtual pheromones.
For example, Hoff et al. [10] utilized bidirectional com-
munication between robots to exchange relative position
information and hence implement virtual pheromones. They
proposed two algorithms for the foraging task. The first
was a gradient-based algorithm which is suitable when the
food source is near the initial locations of the robots. The
second one was a sweeper algorithm at which robots sweep
the environment searching for far away food sources. They
also presented a switching algorithm between these two
algorithms along with a random walk behavior according
to the environment. The problem with all these algorithms
is that some of the robots are supposed to remain stationary
at some point and they act as landmarks or waypoints for
other robots (which they call walkers). This prevents the



system from achieving its maximum possible throughput.
The idea of using bidirectional communication to implement
virtual pheromones was also presented earlier in [11] and
more recently in [12].

The effect of spatial interference between robots on the
overall system performance in multi-robot systems was stud-
ied in [13]. This paper showed that while the system’s overall
performance increases by adding more robots, the individual
robot’s performance decreases. One way to solve the spatial
interference problem is by enforcing physical separation
between robots. In the context of the resource transportation
task, some work proposes using task partitioning between
robots. This is done by assigning a robot or some robots to
a specific area in the working environment. The role of the
robots is to pick the resources from and drop them into the
working area of another robot. The assignment of robots to
different working areas can be done in a static or dynamic
fashion [14], [15], [16]. The problem with these approaches
is that the trajectory length to perform the task increases
with the numbers of robots. This consequently prevents the
system from reaching its optimal performance. Scheidler et
al. [17] proposed congestion control strategies to resolve
conflicts between robots. However, the proposed methods
require modifications either in the environment itself or in
the behavior of the agents.

III. LOST AND SO-LOST ALGORITHMS REVIEW

In this section we present a brief review of the LOST and
SO-LOST algorithms since our proposed method is based on
them. To facilitate the presentation, we consider the resource
transportation task between a single source and a single sink.
In such a scenario, a robot performs two subtasks: picking
resources from the food source and dropping them back
when it reaches the home location. In the LOST algorithm,
these subtasks are referred to as Events. The goal of the
LOST algorithm is to find trails between the source and
the home locations. Each robot can recognize each event
when it reaches it. The algorithm combines an event and
its position at this moment according to the robots local
coordinate system in a tuple called Place.

In LOST, robots lay logical waypoints called crumbs
imitating pheromones laid by ants in real world. A Crumb
is a data structure that consists of the place P to which it
refers, a localization space position L, a distance estimate d
between L and P and finally a time t referring to the creation
time of this crumb. The set of crumbs that refer to the same
Place is called a trail. Each robot has a temporary local trail
which is empty at the beginning. Then, the robot inserts
a new crumb to it every fixed time period. This process
continues until the robot reaches its goal (either the home
or food location). At this moment, the robot broadcasts its
temporary trail to all the robots including itself and then
deletes the temporary trail. In addition, the robot switches its

sub-task and repeats the above process with a new, initially
empty, temporary trail.

Each robot maintains a set of crumbs associated with
each unique Place mentioned in all received trail messages.
When a broadcast from another robot is received, each robot
adds the received crumbs to its local set for that Place.
LOST algorithm does not assume a global coordinate frame
reference between all the robots, so received crumbs are
mapped into each robot’s local coordinate system before
adding them to its local trail. This is done by comparing the
coordinates of the common places between all the robots
(e.g. the food or home locations) and calculating a unique
transformation between the local frames of each robot and
other robots. The trails are periodically scanned and crumbs
that are older than a threshold are deleted. This imitates the
evaporation of real pheromones in real ant trails, and allows
the trails to dynamically adapt to the environment.

Based on the above, a robot going to the home location
searches the environment within its field of view for all the
crumbs that refer to the same location. From those crumbs,
the robot chooses the nearest one to the goal location. The
output of the algorithm for the robot at this step is (i) the
distance that it should travel to reach the chosen crumb and
(ii) the heading towards it, that is the angle between the
robot’s current position and the chosen crumb position. By
using the set of crumbs in this way, over time a distinct
‘trail’ of distance-ordered crumbs emerges between a pair
of Places. For efficiency a heap data structure can be used
to store the set of crumbs ordered by distance-to-Place.

Although the LOST algorithm shows good performance
with a moderate population of robots, this is not always the
case with larger robot populations as all robots are attracted
to a single best known trail. As the population increases,
this can lead to very high robot density and thus increases
the probability of spatial interference between robots. This
undesirable interference can greatly decrease the overall
system performance.

The Spread-Out LOST (SO-LOST) algorithm tackles this
problem by ensuring that the trail going to the home location
avoids the other trail going to the food source. To achieve
this, the Place in any crumb is redefined to refer to the goal
location instead of the last visited place (as it is in LOST).
The process of laying and following crumbs in SO-LOST
is similar to the original process in LOST, but with simple
modifications. In the trail following process, the robot in
SO-LOST does not only head towards the nearest crumb to
the goal location, but it also takes into account the position
of crumbs heading to a different goal. If the chosen crumb is
close enough to another crumb from the latter category, the
robot changes its heading direction slightly to the left. By
doing so, robots move in two separate trails; one from home
to food and one in the other direction. In [2] the authors
show that the system throughput using SO-LOST, in terms
of the number of transported goods between the home and



food locations, improves by up to three times more than the
LOST algorithm in dense robot populations in constrained
environments. However, with large enough populations, the
trails will surely saturate. One trail in each direction may
not be the best way to distribute robots.

IV. PROPOSED METHOD

The insight of our proposed method is that instead of
having only two trails like the case in the SO-LOST al-
gorithm [2], we let the robots construct multiple trails to
the same Place. The outcome of our method is having two
trails/lanes going from the home to the source and another
two going in the opposite direction. Our hypothesis is that
using this method, the density of the resultant trails will be
reduced. These lanes may be parallel, or may be separated
by obstacles. Multiple lanes will increase the overall system
performance as when a new lane is added to a congested
road in a crowded city.

In the spirit of LOST, the method is very simple: we
add one more item to the crumb data structure, which is
the lane number lc. The lane number refers to the lane
at which the robot moves. When a robot lays its first
crumb in the environment, it chooses either lane 1 or lane
2 with probability 50%. For the subsequent crumbs, the
robot assigns them the same lane number chosen for its first
crumb. A robot only follows the crumbs that have both the
same place (goal) and lane number. For example, a robot
going to the home location in lane 1 only follows the crumbs
heading to the same goal and having lane number equals 1,
while avoiding other crumbs which we call canti. Therefore,
in our case there may be more than one canti which the
robot wants to avoid. For each one of those, the robot checks
whether the crumb is in the left or the right of its current
position within a distance threshold. If the crumb is in the
left (right), then the robot moves its target position slightly
to the right (left). It also ensures that the new position does
not lie inside an obstacle. This is done by calculating a shift
vector for each nearby crumb just like the case in SO-LOST.
The sum of all those vectors constitutes the final motion
vector that the robot uses in its next move.

We think that our proposed method can lead to several
advantages. It can potentially reduce congestion and hence
increase the system’s throughput in dense robot populations.
This is true because the method effectively distributes the
robots in the environment and hence reduces the probability
of spatial interference.

One interesting observation about our method is that it
imitates real ants not only by using the notion of pheromones
but also in the way real ants handle congestion. The latter
behavior was studied by Couzin and Franks [18], and they
conclude that real army ants tend to form lanes while trans-
porting resources in order to minimize traffic congestion.

(a) SO-LOST

(b) Our Algorithm

Figure 1: The resulting trails in the empty environment using
SO-LOST and our algorithm.

V. EVALUATION

A. Simulation Setup

In order to evaluate our approach, we use the Stage robot
simulator [19]. Our simulated robots are Stage’s Pioneer
3DX and SICK LMS200 laser rangefinder models. We run
our experiments in three different environments. The first
is an empty one (Fig. 1). The second is what we call the
dots environment (Fig. 2) where the black dots represent
obstacles. The third is the cave environment (Fig. 3). The
three environments have the same size of 35x35m. The
food source in these environments is the blue square and
the home is the red square. Our performance metric is the
total number of transported resources between the home and
food locations after a period of time. We study how the
performance changes with the number of robots. To this
end, in each environment we run our experiment 10 times



(a) SO-LOST

(b) Our Algorithm

Figure 2: The resulting trails in the dots environment using
SO-LOST and our algorithm.

for every population size. Each experiment takes two hours.
At the beginning of each experiment, robots start moving
from the same randomly chosen positions without knowing
the position of the home or the food.

B. Results

Fig. 4 shows the results of our approach. We compare
the results of the original SO-LOST [2] with our modified
multi-lane method. The empty environment is used to ex-
amine how the method distributes robots in the absence
of obstacles, where only inter-robot interference affects
navigation performance. The dots environment is used to
test how our method deals with obstacles. In addition, the
cave environment tests our algorithm in limited spaces that
contain obstacles. The curves in Fig. 4 represent the mean
values of all the experiments and the vertical bars show the
standard deviation for each population size.

(a) SO-LOST

(b) Our Algorithm

Figure 3: The resulting trails in the cave environment using
SO-LOST and our algorithm.

We found the performance of our algorithm is similar to
SO-LOST for small population sizes (10 and 20 robots). The
reason for this is that the new lanes added in our method
are longer than the two trails formed using the SO-LOST
algorithm. Moreover, congestion does not usually occur with
smaller number of robots and hence it does not challenge
the SO-LOST or show the merits of our approach.

Starting from 30-robot population size, our algorithm out-
performs the SO-LOST in all three environments. Compared
with SO-LOST, our algorithm improves the overall system
performance by up to 3.9 times in the empty and dots
environments.

To stress test our method, we perform experiments with
even larger population sizes (e.g., 150, 200 and 250 robots).
We notice that the system throughput using our method
starts decreasing after 100 and 120 population sizes in the
empty and dots environments, respectively. Using the SO-



0 10 20 30 40 50 60 70 80 90 100 120 150 200 250

Population Size

0

500

1000

1500

2000

2500

3000

3500

#
R

e
s
o

u
rc

e
s
 T

ra
n

s
p

o
rt

e
d

The Empty Environement

SO-LOST

Our Method

(a)

0 10 20 30 40 50 60 70 80 90 100 120 150 200 250

Population Size

0

500

1000

1500

2000

2500

3000

3500

#
R

e
s
o

u
rc

e
s
 T

ra
n

s
p

o
rt

e
d

The Dots Environement

SO-LOST

Our Method

(b)

0 10 20 30 40 50 60 70 80 90 100 120 150 200 250

Population Size

200

400

600

800

1000

1200

1400

1600

1800

2000

#
R

e
s
o

u
rc

e
s
 T

ra
n

s
p

o
rt

e
d

The Cave Environement

SO-LOST

Our Method

(c)

Figure 4: The results of our algorithm compared with the SO-LOST in 3 different environments.

LOST, a similar decrease occurs but with smaller numbers
of robots, i.e., after 80 and 70 robots in the empty and the
dots environments, respectively. A similar trend occurs in

the cave environment where the curve of our method stops
fluctuating and decreases gradually after 120 robots. This
decrease occurs after 80 robots using the SO-LOST. More-



over, even in these very large population sizes (greater than
120 robots), our method maintains its out-performance and
increases the system throughput by up to 133%, 144% and
93% in the empty, dots and cave environments, respectively,
compared to the SO-LOST algorithm.

In addition, we notice that the cave environment is the
most challenging one for both SO-LOST and our algorithm.
This is because it contains larger obstacles and has smaller
area for the robots to move. This makes it more difficult
for our algorithm because it needs more space to form the
lanes. Despite that, our results demonstrate that except for
the case of having 10 robots, our algorithm is better than the
SO-LOST and it achieves up to 93% increase in the system
performance.

We perform hypothesis testing using a T-test to verify
that the results of both the SO-LOST and our algorithm
are significantly different for each population size. The test
shows that for all population sizes, the results of the two
algorithms are significantly different (P <<0.05). The only
exception cases are highlighted in Fig. 4 using ellipses
around them. Notice that these cases occur only in small
population sizes.

VI. DISCUSSION

The core idea of our algorithm is that the poor effects of
traffic congestion in LOST-type methods can be addressed
by better distribution of the robots through the workspace.
We take an approach that is sympathetic to LOST by using
the notion of lanes from traffic engineering. One of the
advantages of our method is that it indirectly addresses
the problem of congestion at target locations (i.e. food and
home locations). In our method, there are multiple possible
entrances to the target instead of only one entrance per
direction in the SO-LOST.

We notice that in limited spaces like the case in the
cave environment, intersections between different lanes in
our method may often occur. However, our algorithm shows
improvement in these cases compared with SO-LOST. We
observe that in these challenging cases, our algorithm re-
tains the ability of LOST to adapt to regions of high
interference, and effectively tends to form wider lanes than
usual. Moreover, the intersections occur only between lanes
going towards the same goal. These two reasons can justify
why our algorithm outperforms the SO-LOST even in these
difficult scenarios.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of spatial
interference between robots in dense robot populations. We
proposed a simple but effective modification of an ant-trail
algorithm to use multiple lanes, as utilized in human traffic
engineering and large ant populations. Each robot sticks to
its lane, and thus avoids spatial interference with robots
in other lanes. To test the method’s effectiveness at the

canonical resource transportation task, we performed several
simulation experiments using our algorithm in environments
with and without obstacles. Our robots were able to transport
up to 3.9 times more resources compared to the baseline
single-lane method.

Our results in this paper showed that our algorithm
performs much better with large number of robots. In future
work, we are interested also in studying the correlation
between the size of the environment and the overall system
performance. We also demonstrated that by adding one more
heuristic (i.e. the lane number) to the crumb data structure
the system performance increased significantly. This opens
the door to think of more heuristics that can improve the
overall performance. Finally, we examined the use of exactly
two lanes, yet the method generalizes without modification
to any number of lanes. An obvious but possibly very useful
extension is to let the system itself dynamically discover an
ideal number of lanes based on the current congestion in the
environment.
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