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Abstract— We present a novel method for detecting waving
humans at long ranges in outdoor environments, using a
consumer video camera on a mobile ground-based robot.
The proposed algorithm analyzes the average pixel intensity
of motion-containing regions in an image stream, identifying
those regions which show a strong periodic signal in the
frequency range of human waving gestures. The system achieves
robustness to sporadic false positives such as waving trees,
flags and walking pedestrians by using a filter to reject non-
stationary and transient detections. In real-world experiments
we determine the effective detection range of our algorithm and
show that a robot equipped with a low-resolution consumer
camera is able to approach a single waving human from a
starting position up to 35 meters away when the person is
roughly 20 pixels high, even in the presence of human and
non-human periodic distractors such as foliage.

I. INTRODUCTION

Consider the following situation: you are standing on a
hill looking down into a crowd of people around a hundred
meters away, attempting to find a friend. You are too far away
to see any faces, and you don’t know what color clothing she
is wearing today. As you scan the scene, suddenly a repetitive
motion catches your eye: you see your friend in the middle
of the crowd, waving at you with both arms.

In a cluttered scene like the one described above, even the
human visual system can fail to locate target objects until
presented with a hint in the form of a color or a salient
motion. In scenes that already contain a lot of motion, a
repetitive action like a waving gesture can serve as a crucial
clue to help direct the attention of the seeker. The person
who wants to be found is injecting an unusual salient signal
into the visual field of the seeker.

We are interested in methods for robots to cooperate with
humans in large-scale outdoor environments. A useful com-
ponent is to able to identify and approach humans over long
distances where people can be as small as 20 pixels high,
and against moving and cluttered backgrounds (see Figs. 1,
2). We demonstrate a human-robot interaction (HRI) system
that uses consumer camera hardware to detect periodically
oscillating image regions and identify candidate humans
from long distances, after which the robot approaches the
target for close-range interaction. Detections are based on
periodic variation in pixel intensity over time, so we need
make no assumptions about skin or clothing color, the texture
of the background, or the precise scale of the human.

The main contribution of this paper is a long-range
periodic gesture detection algorithm that reliably identifies
periodic motions using a low-resolution camera in which

Fig. 1: View of a 20-pixel tall waving human at 35 meters,
which was successfully detected and approached to within 3
meters by the system described in this paper.

the human is roughly 20 pixels high. The HRI system in
this paper is the first to our knowledge that can locate and
approach uninstrumented gesturing humans composed of so
few pixels in indoor and outdoor environments, using only
monocular camera sensing.

II. RELATED WORK

Existing vision-based systems for uninstrumented HRI
with low-resolution cameras require humans to be located
less than ten meters from the robot to ensure they are
composed of enough pixels to be identifiable. This is usually
due to the use of face detection [1], [2], [3], skin detection
[4], or model-based methods that require identification of
particular body parts [5]. Action recognition methods [6]
have been developed that operate at relatively long ranges
(with humans as small as 30 pixels in height) but these
assume a cropped figure-centric bounding box, which is
difficult to extract when the human targets are very small or
in front of a cluttered background. Discrimination between
24 distinct gestures has been accomplished using frame-to-
frame difference images [7] but once again the performance
of this method degrades when the humans in the image
are very small and dominated by noise. Optical flow-based
techniques ([8], [9]) that rely on sparse features also tend to
be unreliable for gestures at very long ranges, and computing
real-time dense optical flow is not feasible on our robot due
to limited computational resources.



The detection of periodic signals in image data has been
under investigation for more than twenty years in the com-
puter vision community, and a rich collection of approaches
have been proposed. Some methods ([10], [11], [12]) track
specific points or objects as they move through image space.
Image alignment-based methods assume a figure-centric
stabilized bounding box, and compute the self-similarity
[13] or match points between periods of the oscillatory
motion [14]. [15] makes use of aligned bounding boxes to
compute a fast Fourier transform (FFT) of the pixels in the
image over time, and fits the resulting frequency spectra to
periodicity templates to discriminate oscillating pixels. We
have experienced artificial periodicity due to small errors in
feature tracking and image alignment methods at long ranges,
so we are interested in investigating other approaches.

A pedestrian detection algorithm for infrared and color
sensors has been proposed [16] that identifies human gaits
using a periodicity metric called a periodogram [17], which
is a quantitative measure of the degree to which a signal
is periodic, based on the strength of the signal response
at different frequencies. Periodic signal analysis has also
been applied to long-range surveillance video [18] to identify
walking pedestrians by analyzing the periodograms of blob
trajectories, and by looking for an in-phase relationship be-
tween blob size and position. Segmentation-based techniques
that rely on distinctive blobs become unreliable at long
ranges, and currently a robot is more likely to include a
visual camera than an infrared sensor due to relative cost.

Offline approaches have been developed to identify mul-
tiple periodic motions in video sequences by whole-video
frequency and phase spectrum analysis [19], and to de-
tect two-dimensional perspectives of oscillations in three-
dimensional space using principles of affine invariance [20].
Affine invariance has the advantage of handling moving
cameras, but these are not real-time methods.

Periodic signals in camera streams were exploited on the
Aqua underwater robot to track and follow the oscillatory
kicking motion of human divers at close range [21]. The FFT
is performed on a time series of average pixel intensities in
regions of the image, and significant peaks in the desired
frequency are identified. A similar approach is described
in [22] in which a support vector machine is trained to
discriminate between gestures on the basis of frequency
and phase spectra in an aggressively downsampled image.
Our previous work [23] uses image stabilization, feature
clustering under the assumption of an approximately planar
environment, and FFT to detect stationary waving gestures
on-board a UAV in flight.

We propose a real-time monocular vision method based
on the Aqua robot system [21] combined with the periodicity
metric from [12], which scores moving regions proportional
to the relative strength of the fundamental frequency and its
harmonics compared to the rest of the spectrum. This paper
contributes a vision system that improves the maximum
range of the state of the art for detecting waving human
gestures by analyzing intensity changes for periodicity in
very small regions of the image, and uses a flexible clustering

Fig. 2: Two examples of waving humans approximately 20
pixels tall whose gestures were successfully detected.

algorithm to identify waving gestures in challenging non-
planar environments using only low-resolution consumer
camera equipment.

III. PERIODIC MOTION

The proposed algorithm for detection of periodic image
regions can be described in three stages: A) constructing a
time series of average pixel intensity on a per-region basis,
B) identification of periodic signals in the desired frequency
range for human waving, and C) clustering periodic regions
into large-scale bounding boxes for output. This section
describes each stage in detail.

A. Intensity Time Series

To construct a set of time series buffers to check for
periodicity, we divide the image into a set of regions of
interest and compute the average grayscale intensity of the
pixels in each region over time. Since we are interested in
detecting people on the order of 20 pixels in height (see Fig.
2), we use regions 10 pixels on a side, which we overlap
by half along each axis. Using smaller regions increases the
range of the detector by allowing it to detect smaller motions,
but also increases the computational demand due to greater
region count.

Our system requires that the robot be stationary in order
for these image regions to remain in place as time goes
on. We are currently investigating methods for ego-motion
cancellation to detect gestures from flying vehicles [23]
that assumes most features are roughly co-planar for the
homography calculation, but this assumption does not hold in
general for ground vehicles. Assuming the robot is stationary
simplifies data association between frames: in future work we
will remove this constraint.

A weighted average grayscale intensity of the pixels in
each region is computed using a Gaussian kernel centered on
the middle of the region. This non-uniform weighting reduces
edge effects between regions, and ensures that a pixel that
only moves inside one region still produces variation in its
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Fig. 3: Intensity signal extracted from a periodic waving ges-
ture and frequency spectrum with DC component removed.
Green frequency components indicate the fundamental fre-
quency and its harmonics (Fiw), while red indicates the
components halfway between (Fiw+w/2). The periodicity PF

of this signal is 0.61.

box’s average intensity. We use a symmetric Gaussian kernel
with σ = 5.

These weighted averages are stored in a circular buffer
with a 2 second time horizon for each region: a typical series
is shown in Fig. 3a. The length of the temporal window
should be chosen to include at least two periods of the
gesture in order for the periodicity to be clearly present in
the frequency spectrum. Increasing the length of this window
increases robustness to false positives, but slows the response
time of the detector.

B. Evaluating Periodicity

A periodic signal is composed of a signal oscillating at
a fundamental frequency plus its harmonics. In this appli-
cation, periodic signals are embedded in noisy time series
data, so the system must discriminate time series that contain
sufficiently strong periodic signals from those that do not, on
the basis of the frequency spectrum of the signal (see Fig.
3b). To make this distinction we use a metric proposed in
[12] in which the periodicity PF of a signal with power
spectrum F and highest amplitude frequency w is given by:

PF =

∑
i

Fiw −
∑
i

Fiw+w/2∑
i

Fiw +
∑
i

Fiw+w/2
(1)

This quantity is a normalized difference between the
sum of the power spectrum values at the highest amplitude
frequency and harmonics, and the sum of the values at the
frequencies halfway between. This yields a score indicating
the relative strength of the frequency w and harmonics
compared to the rest of the spectrum. Signals with PF near 1
are highly periodic, and PF values close to 0 describe signals
with little to no regular oscillation.

We consider a signal to represent a potential gesture if
PF > 0.45 and w is between 1Hz and 3Hz, as humans
tend to wave at approximately this rate. In addition, we only
consider signals with fundamental amplitude Fw > 30, to
avoid false positives due to minor lighting fluctuations and
compression artifacts. These criteria define the sensitivity of

Fig. 4: Periodic regions in white and cluster bounding box
in green, produced by the algorithm described in this paper.

the system to noisy periodic signals, and the frequency range
of the target gesture.

We evaluate the periodicity of each time series buffer
every N frames, which can be chosen based on available
processing power. We choose N = 15 on our system for
an operating frequency of 2Hz. With more computational
power the algorithm can be run at a faster rate, which
helps eliminate false positives caused by transient apparent
periodicity. We filter the output, requiring a hit-to-miss rate
of at least 3 : 1 in a region over a 2 second time window
before accepting it as a potential stationary waving human.
Increasing the length of this window or the required hit-to-
miss rate improves robustness to transient periodicity, but
slows the response time of the detector.

C. Clustering

Given a collection of 10×10-pixel regions flagged as
positive for periodic motion, the system forms large-scale
bounding boxes (see Fig. 4) to identify multiple sources of
motion if present. We use the scikit-learn implementation
[24] of the DBSCAN algorithm [25] which clusters unla-
beled data by forming connected subgraphs and makes no
assumptions about the number of clusters.

DBSCAN requires two parameters: the maximum distance
ε between connected data points and the minimum size δ of
a cluster. Any detections more than ε pixels away from a
connected group of at least δ other detections are considered
outliers and do not affect the output of the detector. We use
ε = 45 pixels and δ = 3, chosen to form sensible clusters at
both short and long ranges.

IV. ROBOT BEHAVIOR

A detector that only functions while the robot is stationary
presents a challenge for defining behavior. We cannot simply
servo to the detection, as camera movement can produce
apparent periodicity in non-periodic scenes. The position of
the stationary detection along the horizontal axis of the image
is sufficient to drive our robot accurately in the direction of
the target, but how far the robot should travel is not obvious.



The goal of the system is simply to get within range of
more discriminative sensors such as face, torso, or human
detectors, so the robot drives in the direction of the target
for a distance of 10 meters, at which point the robot stops
and makes another stationary scan to correct for angle error
during detection and approach.

If multiple periodic clusters are detected, we choose a
potential human to approach based on whether the gesture
persists: walking pedestrians, vehicle traffic, waving flags
and trees can all cause apparent periodicity, but intentional
waving motion from a human tends to persist while false
positives tend to come and go. Our robot behavior waits until
exactly one detection is reported before approaching. This
also helps at close range, where the two hands of the human
can temporarily be clustered as separate periodic motions.

V. EXPERIMENTS

We evaluate the proposed system using a Husky A200
ground-based robot built by Clearpath Robotics. Excluding
emergency-stop behavior, the only active sensor for these
experiments is a consumer 640×480 resolution monocular
Kinect camera mounted on the front of the robot, providing
color video at 30 frames per second. The robot includes an
onboard computer with 8GB of RAM and a dual-core Intel
Core i5 2.4GHz (2012 laptop-class) processor.

Fig. 5 shows an aerial view of the experimental setting:
an outdoor area on Simon Fraser University campus with
frequent natural pedestrian and vehicle traffic, waving trees
and flags in view (at location F in the image). We perform
two sets of experiments: a distance investigation in which
detection rates are recorded at different ranges between the
robot and four subjects in three locations; and an approach
investigation in which the robot attempts to approach to
within 3 meters, using the same subjects and locations as
the first scenario. Both experiments were repeated against
two different backgrounds, shown in Fig. 6, and all trials
were performed using the same values for all parameters:
the values reported in this paper.

Fig. 5: Outdoor experimental setting on SFU campus. Num-
bers indicate the locations of waving subjects during ex-
periments, R indicates the initial position of the robot at
35 meters from the subject, and F indicates the location of
periodically waving flags.

(a) locations 1, 2, 3

(b) locations 4, 5, 6

Fig. 6: Images from the robot camera with two different
backgrounds tested in experiments. The human subjects are
barely discernable in the center-left of the images.

Importantly, the human subjects and locations were chosen
arbitrarily without testing the detector against these sub-
ject/background combinations, to avoid biasing test results.
In both distance and approach tests, the human subject
performs a two-arm waving gesture as shown in Fig. 4.

A. Distance Experiments

In order to test the effective range of our detector on a
640x480-pixel camera against varying backgrounds, we test
whether the system can detect a human waving at distances
of 25, 30, 35, 40, and 45 meters. With our camera at these
distances, a human is approximately 31, 26, 22, 19, and 17
pixels tall. We evaluate the system at each distance using a
stationary camera with four different people standing in three
different locations for a total of 12 trials against each of the
two background environments. We consider a trial successful
as soon as the detector reports a bounding box containing the
gesturing human. If the system does not detect the gesture
within 60 seconds, the trial is considered a failure. Results
are reported in Table I.



Locations 1,2,3 Locations 4,5,6
Distance Success Time Rate Success Time Rate

25m 12/12 8.3s 100% 11/12 15.2s 92%
30m 12/12 9.5s 100% 11/12 14.5s 92%
35m 11/12 11.9s 92% 9/12 17.3s 75%
40m 10/12 11.7s 83% 9/12 18.0s 75%
45m 9/12 15.9s 75% 4/12 24.8s 42%

TABLE I: Results of evaluating the maximum range of the
detector against two different background environments.

To analyze the statistical significance of the distance re-
sults, we compare against an imaginary detector that chooses
a pixel uniformly at random as the center of the detection,
and we consider it a successful detection if the chosen pixel
is inside the target bounding box. For an SxS-pixel bounding
box in a 640x480-pixel image, the probability of success per
frame is the ratio of the area of the box to the area of the
image.

If we imagine that we match our real trials by running
this random detector once every N = 15 frames of the video
sequences from the distance experiments, the probability that
the random detector would successfully identify the waving
human over a 60 second window in one of these trials is
given by the complement of the probability of not finding
the human:

ptrial = 1− (1− S2

640 ∗ 480
)120 (2)

We test the significance of our results against the binomial
distribution using n = 12 and p = ptrial for the size of the
human at each distance. We reject with 99% confidence the
null hypothesis that our detector is no better than random in
every case, except for the 45 meter case with success rate of
4/12, for which we can only say with 85% confidence that
our system is better than the imaginary random detector.

B. Approach Experiments

Given an estimate of the success rate of the detector at
different ranges, we choose a distance for approach experi-
ments that is likely to find the person but also demonstrate
the value of the system in approaching from long range.
Our approach experiments are performed with the robot
starting 35 meters from the subject, facing toward the middle
location in each setting. The robot scans for waving gestures
and drives towards the first detection for 10 meters before
beginning another scan.

We define an approach as successful once the robot drives
to within 3 meters and the person is fully visible in the
camera image. The scan-approach behavior continues until
the robot stops in front of an obstacle, which will be the
human target if the approach succeeds. If the robot does not
arrive within 180 seconds, the trial is considered a failure.
Results are reported in Table II.

In addition to the waving subject, both environments
contained natural and artificial distractors and frequent oc-
clusions of the target. Lighting conditions varied gradually
throughout the duration of trials in both environments as

Location 1 2 3 4 5 6
Subject 1 X X X X 7 X
Subject 2 X X X X X 7
Subject 3 X X X X 7 X
Subject 4 X X X X X 7

Success rate: 100% 66.6%
Overall rate: 83.3%

TABLE II: Results of evaluating the ability of the robot to
approach the subject to within 3 meters against different
background environments, starting at 35 meters distance.

blue skies transitioned to clouds. For locations 1, 2 and 3,
we planted two stationary humans and four moving humans
instructed to wander around the area at varying distances
to the robot, often occluding the subject. Also visible in this
environment: intermittent bus traffic, waving tree foliage and
flags blowing in the wind (2 to 7 kilometers per hour).

For locations 4, 5 and 6, the waving subject was located
on the opposite side of a busy pedestrian walkway against
a background of parked cars. Most of the distractors in this
environment were natural, non-informed human pedestrians
who occluded the subject at short intervals, typically between
one and five seconds. At times when natural pedestrian traffic
was thin, we injected informed humans into the walkway
to maintain a roughly consistent occlusion and distraction
rate for all trials. In addition to human distractors, this
environment contained occasional vehicle traffic and trees
moving in the wind, at similar wind speeds as the first set.

See the demonstration video for robot camera views during
the experiments: https://youtu.be/5XmkmdKJ1jY.
The detection task at the larger distances is challenging even
for humans.

VI. DISCUSSION

The distance evaluation shows that our system works
consistently for smaller pixel sizes than any known real-
time method for locating waving humans. It also indicates the
effect of contrast to background, and the effect of occlusions
and distractors (both natural and human), as the maximum
range drops noticeably in locations 4, 5 and 6, and the
average time increased considerably over the first environ-
ment. This is due both to the challenging background and
occlusions of the subject by passing pedestrians, requiring
more samples to identify the periodic gesture.

Light and shadow is also a factor, as locations 5 and 6
were partly in shadow which reduced the contrast of the
human against the background and resulted in the failure
of the approach involving subject 2, who was standing in
shadow in front of a dark blue car wearing a blue jacket. This
rendered the subject essentially invisible in both grayscale
and color images, so the robot did not move at all during
this trial.

Shadows can benefit the detector under the right circum-
stances, as we observed during periods of bright sunlight
where the shadow (oscillating along with its human source)
exaggerated the size of the apparent periodic motion and



caused it to be detected at greater ranges than would have
been possible by the human’s appearance alone.

Several failures were due to the conversion of images from
color to grayscale. In the approach failures involving subjects
1, 3, and 4, several pedestrians wearing different colored
clothing walked by at a roughly constant interval, which can
appear periodic in grayscale and caused the robot to drive
in the wrong direction. Due to the many-to-one mapping of
the grayscale manifold, colors which are visibly distinct in
color space are often compressed down to the same or similar
grayscale values, as in the case of the red plaid worn by the
subject on the right in Fig. 2 against the brown of the tree.
This can result in subjects becoming effectively invisible in
grayscale even when they are clearly visible in color images,
and can make aperiodic color sequences appear periodic in
grayscale.

One approach to reducing this effect involves running
periodicity checks on all three color channels, detecting
regions as positive for periodic motion if any of the channels
are moving periodically. Such a system should also reject
regions containing color channels with aperiodic but non-
stationary signals in any of their color channels. This in-
creased sensitivity can expose the system to false positives
which would not have been detected in grayscale however,
so we leave this extension for future work.

VII. CONCLUSIONS AND FUTURE WORK

We propose and demonstrate a vision system for long-
range HRI: the first system to our knowledge that can locate
and approach uninstrumented humans as small as 20 pixels
tall, using only a low-resolution consumer camera. Once the
robot has approached to close range, traditional interaction
techniques become feasible.

Our previous work on long-range HRI investigated video
stabilization techniques to allow periodic gestures to be
identified from moving cameras [23]. This enables detection
during traversal for smoother behavior, and permits the use
of this method on aerial vehicles where remaining stationary
is rarely an option. The method assumes features are located
on a plane approximately parallel to the image plane, but a
similar method may be suitable for ground robots with appro-
priate modification. As mentioned in the discussion section,
methods for analyzing periodicity without compressing the
color space to grayscale may reduce false negatives caused
by the many-to-one mapping to the grayscale manifold.

Other potential improvements include the use of machine
learning as shown in [22] to distinguish robustly between
human gestures and natural periodicity such as rustling
foliage and flags blowing in the wind. Although in practice
the approach behavior of our robot mitigates false positives
through investigation at close range, discriminating these
from afar may help prevent the robot from leaving the area
to investigate obvious distractors.
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