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Abstract

We present a novel real-time computer vision-based sys-
tem for facilitating interactions between a single human and
a multi-robot system: a user first selects an individual robot
from a group of robots, by simply looking at it, and then
commands the selected robot with a motion-based gesture.
Robots estimate which robot the user is looking at by per-
forming a distributed leader election based on the “score”
of the detected frontal face.

1 Introduction

Selecting and commanding individual robots in a multi-
robot system can be a challenge: interactions typically
occur over a conventional human-computer interface (e.g.
[19]), or specialized remote control (e.g. [26]). Humans,
however, can easily select and command one another in
large groups using only eye contact and gestures. Can simi-
lar non-verbal communication channels be used for human-
robot interactions?

In this work, we describe a novel human-robot interface
designed to use face engagement as a method for select-
ing a particular robot from a group of robots. Face detec-
tion is performed by each robot; the resulting score of the
detected face is used in a distributed leader election algo-
rithm to guarantee a single robot is selected. Once selected,
motion-based gestures are used to assign tasks to the robot.
In our demonstration, robots are commanded to drive to one
of two predefined locations. An example of a typical inter-
action is shown in Fig 1; a video demonstration, from which
these images originate, can be seen in [4].

The system presented in this paper, which uses face en-
gagement to select a particular robot from a multi-robot sys-
tem, is the first of its kind.

2 Background

Before two or more people can enter into a focused inter-
action, they must somehow mutually signal their cognitive
focus and readiness. Eye contact and eye gaze play an im-
portant role in initiating and regulating communication be-
tween people [14]. Throughout this work, we will use the
term face engagement, as coined by Goffman, to describe
the process in which people use eye contact, gaze and facial
gestures to interact with or engage each other [9].

The role of eye contact plays such an important role in
the development of humans that the ability to detect eye
contact is present at birth [8]. We therefore believe that face
engagement could be an effective non-verbal communica-
tion channel for human-robot interactions.

2.1 Gaze as an input device

There is a large literature on gaze tracking techniques;
Morimoto and Mimica provide an in-depth survey [22]. Ap-
plications of gaze trackers can be found in fields ranging
from psychology to marketing to computing science; many
interesting examples are given in the survey provided by
Duchowski [5].

In addition to tracking participants’ gazes for subsequent
analysis in usability studies, the human-computer interac-
tion (HCI) community has studied using eye gaze tracking
devices as hands-free real-time input devices (e.g. [11, 30]).

2.2 Gaze and interactive robots

Researchers argue that anthropomorphizing robots, and
therefore exploiting human familiarity, will lead to more
natural human-robot interactions; however too much an-
thropomorphization may lead to unrealistic prior expecta-
tions [6].

In an experiment by Mutlu et al., gaze is used to regu-
late conversations between Robovie, a humanoid robot with



(a) A user selects an individual robot by look-
ing at it, and assigns it a task by waving his
hand.

(b) A user-centric region is identified; a
learned classifier uses optical flow from the re-
gion to discriminate between gestures

(c) Robots travel to one of two zones as com-
manded by the user; colours are only used to
illustrate different zones – robots use fiducial
markers for localization

Figure 1. An example of selecting and commanding an individual robot from a group of robots.

two controllable eyes1, and two human participants. Their
study showed that a) participants who made eye contact
with Robovie liked the robot significantly more than those
who were never acknowledged by Robovie’s gaze, and b)
gaze was an effective tool for yielding speaking turns and
reinforcing conversation roles [23].

Besides yielding speaking roles and regulating conver-
sation, gaze can also be used to establish joint attention be-
tween a speaker and addressee. The experiments of compu-
tation linguists Staudte and Crocker showed that people’s
cognitive response times increased when a robot used both
gaze and speech to refer to objects presented on a table;
however, when the robot was programmed to gaze incor-
rectly (at an irrelavant object), response times were signifi-
cantly slower than when only speech was used [31]. Similar
work by Mutlu et al. showed that participants were capable
of picking up nonverbal leakage, that is, seemingly unin-
tentional cues containing information, in a guessing game
between a single human and Robovie [24].

Kuno et al. present a museum tour-guide that only re-
sponds when directly looked at [16]. Rather than truly per-
forming gaze detection, their “eye-contact” detector, or per-
haps what should be referred to as a “face engagement” de-
tector relies on the detection of frontal faces. A telephoto
lens is used to capture a high quality image; the robot then
estimates if the user is looking at it by detecting if the nos-
trils are centered between the eyes. A similar method is
used by Yonezawa et al. which detects the positions of a
user’s pupils before responding to voice commands [35].

Literature on eye gaze or face engagement aware human-
robot interfaces is limited. While some of the robots dis-
cussed here only respond when looked at, it is not absolutely
clear how precise their gaze tracking system is or how well
it would fare in multi robot situations.

1Robovie was developed by Ishiguro et al. at ATR [10]

2.3 Robot selection and task delegation

There is little work on human-robot interfaces for multi-
robot systems. Examples can be broken up into two general
cases:

2.3.1 World-embodied interactions

World-embodied interactions occur directly between the
human and robot, through either physical or sensor-
mediated interfaces. These interfaces allow the user to walk
freely among the robots, and does not require any form
of robot localization. Examples include work by Payton
that uses an omnidirectional IR LED to broadcast messages
to all robots, and a narrow, directional IR LED to select
and command individual robots [26], work by Naghsh et
al. present a similar system designed for firefighters, but
does not discuss selecting individual robots [25], and work
by Zhao et al. which proposes the user interacts with the
environment by leaving fiducial-based “notes” (for exam-
ple, “vacuum the floor” or “mop the floor”) for the robots at
work site locations [36].

2.3.2 Traditional human-computer interfaces

Rather than interacting directly with robots, a traditional
human-computer interface is used to represent the spatial
configuration of the robots and allow the user to remotely
interact with the robots. Examples of human-robot inter-
actions which occur through a traditional interface include
work by McLurkin et al. that presents a overhead-view
of the swarm in a traditional point and click GUI named
“SwarmCraft” [19], and work by Kato that displays an over-
head live video feed of the system on an interactive multi-
touch computer table, which users can control the robots’
paths by drawing a vector field over top of the world [13].



2.4 Gesture-based robot interaction

There is a vast computer vision literature on the gesture
recognition domain: Mitra and Acharya [21] provide a sur-
vey. Several gesture-based robot interfaces exist; we do not
attempt to provide an exhaustive survey, but rather mention
some interesting examples. Systems may use static gestures
– where the user holds a certain pose or configuration – or
dynamic gestures – where the user performs a combination
of actions.

Waldheer at al. use both static and motion-based gestures
to control a trash-collecting robot [33]. Loper et al. demon-
strate a indoor/outdoor person-following robot that uses an
active depth sensing camera to recognize static gestures
[17]. Earlier work by Kortenkamp et al. presents a mo-
bile robot that uses an active vision system to recognize
static gestures by building a skeleton model of the human
operator; a vector of the human’s arm is used to direct the
robot to a particular point [15]. Perzanowski et al. present
a multimodal speech and gesture-based interface; an active
vision system is used to interpret pointing gestures as direc-
tional vectors, and to measure distance between the user’s
two hands [28]. In a subsequent paper, Perzanowski et
al. discuss the idea of using gaze for directing an utterance
at a particular robot; however instead they choose to use a
unique name to verbally select a robot [27].

All gesture-based systems discussed so far are designed
to work with a single robot, with exception of the work
of Perzanowski et al.; however, there are no examples of
gesture-based interfaces designed for multi-robot systems
which rely solely on non-verbal communication. In this pa-
per, we present such a system: a user first selects an indi-
vidual robot with face engagement, then uses motion-based
gestures to command it. Our novel system allows a user
to interact with multiple robots in a shared environment by
only using visual cues.

3 Robot selection

Before assigning a task to an individual robot, the human
operator must first somehow designate a particular robot of
interest as the selected robot he or she will be addressing.
We will refer to this as the robot selection problem: how
does a user interact with a particular robot within a group of
robots without accidentally selecting or issuing commands
to multiple robots.

The difficulty of the robot selection problem depends on
the particular human-robot interface of the system. For ex-
ample, interfaces that have physical buttons or touch screens
located on each robot are immune to the problem since there
is no disambiguation when the user issues a command to
the robot. In this case a private communication channel ex-
ists between the human and each robot since the user must

Figure 2. We suggest using face engagement
is much more natural than a unique identifier

physically approach and touch each robot. However, sys-
tems that do not have a private communication channel for
each robot and rely on broadcasting commands through a
shared medium are susceptible to the robot selection prob-
lem. These media include audio, infrared, radio and vision.
Most systems assign a unique name or identifier which can
be used to specify which robot the message is intended
for. The Internet, for example, uses IP addresses to de-
liver a message over a shared medium to a particular com-
puter; however, while IP addresses are easy for computer-
to-computer communication, long unique identifiers are not
appropriate for HRI as suggested by Fig 2. Assigning
names to each robot (akin to the idea of hostnames) would
provide a more usable interface; however users would still
have to learn each robot’s name.

Our approach to the robot selection problem is focused
on maintaining face to face communication between a hu-
man and an individual robot. Face engagement serves as the
means for designating that robot (the one the user is looking
at) as the selected robot. However, since face engagement
occurs in a shared communication channel between the user
and all robots within line of sight, the robots must collec-
tively agree upon a single robot designation to ensure only
one robot will ever respond to the user at any given time.

The human operator should be able to select and interact
with a robot at different distances; however, implementing
eye gaze on a mobile robot for use at larger distances can be
a costly endeavour since the use of a telephoto lens or high
resolution camera must be used to capture a high quality
image of the human’s eyes [34]. Our system, on the other
hand, use face detection rather than estimating eye gaze;
this allows us to use smaller (and cheaper) cameras without
zooming capabilities. Our system assumes only a single hu-
man will be interacting with the system at any given time;
however, this single human will be simultaneously visible to
multiple robots. Our system is designed to work at distances
varying from 1 to 4 meters. The challenging aspect of our
proposed solution to the robot selection problem is disam-



(a) front - score: 34 (b) 45 degree - score: 19 (c) side - score: 1

Figure 3. Candidate rectangles detected by the OpenCV Haar classifier cascade for frontal faces. The
number of candidate rectangles are used to indicate how likely the face is a frontal face.

biguating which robot is currently being looked at through
means of a distributed leader election algorithm based on
the score of the detected face.

3.1 Face detection

The first phase of robot selection involves face detection.
Each robot is equipped with a Lenovo ThinkPad R61 7744
laptop with an Intel Core 2 Duo 2.2GHz dual-core processor
and 2GB of memory; we use the built in 640x480 resolu-
tion video-camera to capture images. Given an image such
as the one presented in Fig 3(a), we are interested in locat-
ing a rectangular region in the image that contains a face.
Furthermore, we want to extract a corresponding score in-
dicating how likely is it that a frontal face has been detected.

Faces are detected with the Viola-Jones method [32]. We
use an implementation provided by the OpenCV software
library [2].

3.2 Face score

The face detector is trained on frontal faces only2. There-
fore, the best matches occur when the detected face is look-
ing directly at the camera. Since the face detector is insen-
sitive to small changes in scale or position, multiple sub-
windows are often clustered around faces. We use the num-
ber of neighbouring sub-windows in each cluster as a score
to assess the quality of the detected face3. The score, how-
ever, does not necessarily indicate how frontal the face is.
An obscured frontal face, for example, may receive a lower
score than a visible and well lit non-frontal face. How-
ever, if the same face is captured simultaneously by mul-
tiple cameras (and thus under the same lighting conditions),

2We use the pretrained frontal face Haar classifier supplied with
OpenCV

3The Viola-Jones classifier score could also be used; however, the
OpenCV implementation makes it difficult to retrieve, and using multiple
detections is arguably more robust.

then the scores can be used to detect the most frontal face.
This observation is a novel contribution of this work.

Fig 3 provides an example of three different images of a
person looking in three different directions. A frontal face is
captured in the first image (Fig 3(a)) which has the highest
score; as the person looks away from the camera the score
decreases. In the extreme case where only a profile of the
face is captured, the face is barely detected.

3.3 Leader election

The second phase of our solution to the robot selection
problem is to perform a distributed leader election algo-
rithm; this ensures only a single robot will ever be desig-
nated as the selected robot. The election determines which
robot is most likely being looked at “head-on” by the user,
as estimated by the highest detected face score.

Since the user might be visible to multiple robots, it is
crucial that only a single robot ever respond to the user at
any given time. This in effect requires some form of mutual
exclusion among the robots, which are hereafter referred
to as nodes. To solve this problem we use a variation of
the ring-based election algorithm first described by Chang
and Roberts [3]. Each node is assigned a unique IP ad-
dress, hereafter referred to as UID, and is located in a vir-
tual ring comprised of all other nodes. Each node creates
tuple (UID, score) and forwards it to its neighbour. When
a tuple is received at a node it either:

1. recognizes itself as the elected node if the received tu-
ple contains its own UID,

2. passes the unmodified tuple to the next node if the con-
tained score is greater than its own, or

3. replaces the contents of the tuple with its own score
and UID if the contained score is less than or equal to
its own.



Even though our network is totally ordered, and could
break any ties by comparing the UIDs, we choose to replace
tuples with equal scores, therefore resulting in no elected
robot. We do this to force the user to move closer to the in-
tended robot, thus selecting the robot the user really wanted
rather than arbitrarily breaking the tie.

4 Gesture recognition

Once a robot has been selected by the user (thus winning
the election), it can then be commanded by the user with
motion-based gestures. Our classifier uses motion cues to
discriminate between different gestures. Examples of the
set of gestures used to command the robots are shown in
Fig 4.

A detailed description of our classifier, with experimen-
tal results, is presented in [1]. Our algorithm is summarized:

1. Motion features are first calculated by computing the
optical flow for each frame. The optical flow vector
field F is then split into four non-negative channels
Fx+ , Fx− , Fy+ , Fy− representing the half-wave rec-
tified horizontal and vertical components of the flow;
this process is similar to Efros et al. [7]. These chan-
nels are first box-filtered, to reduce sensitivity to small
translations, then aggregated over a temporal history
of the last k frames, for some k which is large enough
to capture all frames from a gesture period4.

2. Face detection is used to create a normalized, user-
centric view; motion features within this user-centric
rectangle are cropped and resized to 30× 40; all chan-
nels are then flattened into a single vector v.

3. The aforementioned motion features describe the
user’s entire motion. Given the labelled training data,
we have a multi-class classification problem. Using the
multi-class boosting algorithm AdaBoost.MH [29], we
learn a discriminative classifier that only uses a subset
of the motion feature vector v.

A schematic summary of the leader election and motion-
based gesture recognition algorithms is provided in Fig 5.

5 The robots

We use three modified iRobot Create robots, pictured in
Fig 1(a), which feature six IR range sensors, five colour-
ful RGB LEDs, and a single-board Gumstix computer with

4In practice, we set k to be the FPS of our capture data, i.e., the number
of frames required to capture one second of history.
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Figure 5. Flowchart of the leader election and
motion-based gesture recognition process

an 802.11 wireless network adapter. The modified Cre-
ates, hereafter referred to as Chatterbox robots, were de-
signed and built by the Autonomy Lab at SFU5. A laptop is
mounted to each robot for video capture and processing as
discussed in section 3.1.

5.1 Demonstration task

To demonstrate our system, we perform a robot naviga-
tion task. Three robots and a human operator are located in
a 7x10 meter room clear of static obstacles. Robots navigate
around the user and each other using the nearness diagram
obstacle avoidance algorithm [20]. The robots: 1) first ap-
proach the user, who is located at a predefined location, 2)
wait to be selected by the user. Once a robot has been se-
lected by the user, it begins to glow random colours; the
selected robot then 3) receive a command, and 4) travel to a
predefined zone which corresponds to the issued command.

Robots either travel to the red zone or a green zone which
corresponds to the received gesture: wave-left or wave-right
respectively. Upon reaching the two meter wide circular
zone, each robot then return to the user to await a further

5See http://autonomy.cs.sfu.ca/robots.html for more
information.



(a) wave-left (b) wave-right (c) idle

Figure 4. Example frames from our robot-command dataset used for training

Green 
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Red 
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(user waits here)

Figure 6. Robots wait at the instruction zone
until they are selected and commanded to
drive to either the red or green zone. Fiducial
markers are placed on the walls near each
zone.

command. Three unique ARtoolKit fiducial markers [12]
provide global robot localization. An overview of the zones
and room layout is shown in Fig 6.

6 Discussion

We have tested our system with 7 participants who were
not involved with the development of the system. A sin-
gle participant interacted with the robots at any given time.
Each participant was instructed to:

1. first select a robot by looking at it, then, once the robot
starts to glow;

2. direct the robot to one of two zones: a green zone, by
waving your right hand, or a red zone, by waving your
left hand.

Each participant was asked to command two robots to
the same zone, and the third to the other zone. Once the
robots reached their goal zone, they returned to the user.
Participants were then encouraged to assign new tasks to
returning robots as they saw fit. Some participants waited

for all three robots to return before assigning tasks, where
as others decided to immediately assign new tasks as each
robot arrived.

Throughout the demonstration, a total number of 77
tasks were assigned to the robots. The next two sections
are an informal description and discussion of the perfor-
mance of the human-robot interface and is split up between
robot selection, and task designation. A comprehensive user
study will be the subject of future work.

6.1 Robot selection

Our leader election algorithm performed as intended:
only a single robot ever responded, by glowing, at a given
time. In some cases no robots were elected due to equal
face scores resulting in a tie. In these cases, we encour-
aged participants to reposition themselves to break the tie.
Ties occurred when two robots awaiting instructions were
located very close to each other; however, once the user
approached a particular robot, the angle at which the user
had to turn his or her head increased, resulting in a single
robot seeing a full frontal face. In some cases, rather than
re-engage one of the two side by side robots, users appeared
to be discouraged by a tie and simply tried to select a third
robot which they did not originally intend to select.

The face detector implementation provided with
OpenCV worked well provided the faces were not too far
away from the camera. In our demonstration, the user was
at most 4 meters away from the camera and was in a well
lit environment. Even with the camera pointing upwards to-
wards the overhead lights, the system was still able to detect
faces.

To provide visual feedback, the selected robot would
glow with randomly alternating colours. Unfortunately the
laptop partly covered the LED which made it hard to see
for taller participants. We tried using the laptop’s screen as
a giant “LED” to provide feedback, but users reported that
it was not as satisfying as the glowing LEDs.

Initially, two of the seven participants were unsure which
robot was selected and issued commands before any robot
had started to glow. However, after we encouraged them to



move closer to the robot (and into its video-frame), these
two participants were able to command the robots. In other
cases, the robots were too close to both the wall and the
user, ultimately forcing the user’s back up against the wall.
These localization-related problems forced the participants
to squat down in order to be in the robot’s field of view.

6.2 Task designation

Participants then assigned tasks to the selected robot with
a motion-based hand gesture. We explicitly demonstrated
the two gestures: left hand waving, and right hand waving,
hereby referred to as wave-left and wave-right respectively.
Using hand waving gestures to assign robots location de-
pendent tasks proved to be challenging in three cases:

1. two of our participants, at first, extended their hands
to point left or right rather than wave their hands in a
continuous motion,

2. the full hand waving motion of participants who were
located too close to the robot, was never captured by
the video camera, and

3. the one second optical flow history window required
for gesture recognition gave the interface a slow feel.

The accuracy of the system was good: 74 out of 77 com-
mands were correctly executed. The 3 errors occurred when
a user issued a command to a robot, and then quickly se-
lected a different robot. This resulted in the newly selected
robot classifying the previously issued gesture based on the
motion features stored in the optical flow history window.
This unintended behaviour could be remedied by reinitial-
izing the optical flow history window whenever a robot is
not elected.

To avoid classification errors, robots used a high clas-
sification threshold. Choosing a high threshold gives a
high level of precision, which prevents the robots from in-
correctly classifying a command resulting in opposite be-
haviour; however, setting the threshold too high limits our
level of recall which became an irritant to some participants.
After some exposure to the system participants were able
to fine tune their gestures to achieve quicker recognition.
Providing some sort of feedback mechanism may have de-
creased the interface’s learning curve.

7 Conclusion

In this paper, we presented a computer vision-based
human-robot interface for selecting and commanding an in-
dividual robot from a multi-robot system. A user first se-
lects a robot with face engagement by simply looking at
it. We employed a standard frontal face detector to detect

the user’s face. The detected-face score of each robot is
used in a distributed leader election algorithm to guarantee
at most a single robot is selected. Once a robot has been
selected by the user, it can then be commanded by using a
motion-based gesture. We retrained a previously developed
real-time classifier which uses motion-cues to discriminate
between gestures corresponding to robot commands.

A demonstration task was described to investigate the
feasibility of using face engagement and motion-based
gestures for commanding an individual robot in a multi-
robot system. Our demonstration showed that our face
engagement-based leader-election could be effectively used
to select an individual robot, which could then be com-
manded with motion-based gestures.

7.1 Future work

A proper user-study with a larger number of participants
would be the next step for evaluating the system; however,
the observations so far suggest some useful improvements:
the human-robot interface could first be improved by pro-
viding a better feedback mechanism. The use of LEDs
works well for quickly determining the current robot state;
however, it would be valuable to see how users respond to
an anthropomorphized robot with eyes. This could easily
be implemented with virtual eyes on the laptop screen.

An extension to this system would be to allow users to
first select a subset of the robots. The set of gestures could
also be extended to allow a user to point to any arbitrary
place in the environment, and have the robots drive to that
location. This has been done for a single robot system (e.g.
[15, 18]); however, a challenging task would be to coor-
dinate multiple robots to cooperatively estimate the vector
given the system’s ability to simultaneously capture images
of the user from multiple angles.
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