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Fig. 1: Generating predictions of a future for a pedestrian attempting to cross the street. We pick out two key frames from the (a) input
sequence and the (b) ground truth sequence, 16 frames apart. Image (c) shows our prediction at the same time instant as the ground truth.

Abstract— We explore prediction of urban pedestrian actions
by generating a video future of the traffic scene, and show
promising results in classifying pedestrian behaviour before it is
observed. We compare several encoder-decoder network models
that predict 16 frames (400-600 milliseconds of video) from the
preceding 16 frames. Our main contribution is a method for
learning a sequence of representations to iteratively transform
features learnt from the input to the future. Then we use a
binary action classifier network for determining a pedestrian’s
crossing intent from predicted video. Our results show an
average precision of 81%, significantly higher than previous
methods. The model with the best classification performance
runs for 117 ms on commodity GPU, giving an effective look-
ahead of 416 ms.

I. INTRODUCTION

Automated vehicles must react very quickly to the actions
of pedestrians for safety. For maximum responsiveness, we
would like to predict dangerous pedestrian behaviours and
react to them before they are observed. In this work we
predict behaviours of pedestrians seen from a car dashboard
video while crossing, in a variety of street configurations
and weather conditions. Achieving this robustly would have
obvious applications in autonomous vehicles. We investigate
two data-driven methods to learn traffic activity as a scene
phenomenon: an autoregressive model of motion of traffic
participants for video prediction, and an action recognition
algorithm that detects crossing intent in pedestrians.

Most pedestrian scenarios explored in existing literature
are concerned with pedestrians who are approaching the
street orthogonally and in constrained settings. However,
many other configurations occur in real world scenes. A
traffic scene is an interplay between various agents besides
pedestrians. Cars driving on and off an intersection, the
nature of the intersection (stop controlled or not), and the
speed and direction of other pedestrians on the crosswalk are
among many factors that influence a pedestrian’s decision to
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cross a road. Here we manage the complexity of the full
multi-agent situation and its context by modelling it as a
scene phenomenon from the point of view of the vehicle
camera. From a history of 16 video frames, we predict the
evolution of scene by predicting the video into the future.
We propose and compare alternative neural network models
for predicting 16-frame video futures of driving clips: a fully
convolutional net, a decoding strategy employing recurrent
nets and a network that encourages iterative transformation
and refinement of learnt representations using residual con-
nections. We compare these models for their qualitative and
quantitative strengths.

The main novelty and contribution of this work is the
use of a sequence of learnt representations from which we
can decode a future, given past video, and thus potentially
take robot control actions. Our inventive supposition is that
using the video scene to summarize the situation can contain
useful context that for e.g. a list of bounding volumes with
kinematic forward models would not. Below we demonstrate
empirically that we can correctly detect changes in pedestrian
behaviour in the predicted video.

II. RELATED WORK

In a survey, Ohn-Bar and Trivedi highlight the roles of
humans in intelligent vehicle interactions [1]. Human driver
factors such as gestures, distraction, and gaze analysis have
been widely studied [2]–[7]. Direct observation of pedestri-
ans and occupants of nearby vehicles is less well studied,
though this is an important area of current interest [1].

We are concerned with modeling pedestrian intent. Hidden
Markov Model (HMM) based approaches [8, 9], in which the
hidden state is a pedestrian’s intent, have been extended to
partially-observable Markov Decision Processes (POMDP)
to learn a distribution over pedestrian intent [10]. Although
a Markovian process allows the model to quickly adapt to
changes in its observations, the Markov assumption itself can
be overly restrictive, owing to insufficient prior conditioning.
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Other approaches for time-series prediction are to assume
the samples come from a linear process driven by a white,
zero-mean, Gaussian input [11]. Schneider and Gavrilla [12]
provide a comparative study of recursive Bayesian filters for
pedestrian path prediction. Gaussian processes are slower
to detect a change than Markov models because the en-
tire observed trajectory is used to predict the future state
[13]. Additionally, they are too slow to learn previously
unobserved behaviour patterns. Switching linear dynamical
models as extensions to these models are shown to work
in constrained environments [12, 14]. Karasev et al. [11]
account for more accurate long-term predictions by postu-
lating goals of a pedestrian’s trajectory, that they navigate
to, by approximately following stochastic shortest paths.
Kooij et al. [14] incorporate a Dynamic Bayesian Network
(DBN) to supplement a Switching Linear Dynamical System
(SLDS) with environment parameters like a pedestrian’s head
orientation, their situational awareness and distance between
the car and the pedestrians to predict their paths.

All these motion models assume accurate segmentation
and tracking of pedestrians in the scene, yet this is challeng-
ing due to the difficulty of choosing reliable and efficient
image features for tracking [15]. The solution is to enable
pedestrian activity models to work in the image space by
directly analysing videos from a car’s dashboard camera.
Hasan et al. [16] treat the prediction of adverse pedestrian ac-
tions as an anomaly detection problem. They first track hand-
crafted HOG features to create a spatio-temporal appearance
feature descriptor, then earn temporal regularity across video
frames. Existing generative architectures struggle with the
dimensionality of the input image space and are in many
instances not scalable to natural images. Consequently, they
suffer from short prediction time horizons. Vondrick et al.
[17] use a Generative Adversarial Network to predict future
frames using only one frame as the conditioning frame.
Lotter et al. [18] use a weighted mean-squared-error and
adversarial loss to predict future frames in the bouncing
balls dataset [19]. However, extension of this work to natural
image sequences is not presented. Lotter et al., subsequently
study the future prediction problem with the idea that each
layer of prediction only accounts for local changes and
forward deviations higher up [20]. Jastrzebski et al. [21]
provide observational and analytical evidence that residual
connections encourage iterative inference. We incorporate a
similar iterative strategy by using residual connections across
different scales of frame generation.

III. FUTURE GENERATION

Our objective is to predict the future positions of salient
objects like vehicles and pedestrians by learning their motion.
Functionally, an encoder reads a sequence of frames x =
{xT , ..., x1} to yield dense representations z = {z1, ..., zT }.
Conditioned on z, a decoder will then auto-regressively
predict an image sequence y′ = {y′T+1, ..., y

′
2T } by min-

imizing a pixel-wise loss between y′ and ground truth
frames y = {yT+1, ..., y2T }. Each generated frame is of
the same resolution as the input. We reverse the temporal

ordering of input data to condition the latent space with
spatial information from the latest frame. The most recent
frame carries forward the closest contextual resemblance.
Recursively learning representations from each input frame,
we expect to first learn a temporal regularity in the early
representations and parametrize a temporal variance in the
later representations. We later visualize the learned represen-
tations to validate our intuition.

A. Encoder

The encoder is a spatio-temporal neural network composed
of three-dimensional convolutional layers. In contrast to the
results of Tran et al. [22] we found that in our case, kernels
with decreasing sizes in the spatial dimension (11x11 →
5x5 → 3x3) and constant size in the time dimension capture
the input scene and temporal variations in greater detail. A
large spatial kernel (11x11) along with a stride with much
overlap between them (4) in the first layer was observed
to produce sharper images. We believe that this allows the
network to account for more spatial features per time frame.
Residual connections are introduced at two image resolutions
in our downsampling pipeline: 32×54 and 16×26. Two 3D
convolutional layers feed into these residual blocks, where
the filters are time dilated for larger temporal reception. We
forward the features learnt at the first residual block to the
decoder, building another residual connection. Each hidden
representation zj , j ∈ {1, ..., T} is a function of all input
frames, with the learnt weights determining the contribution
of each frame towards each zj . The learnt z is 16x26 di-
mensional. We abstract the mathematical formulation for 3D
convolutions in Equation (1) to show the temporal order of
processing. The equations presented are for an l-th residual
block in the encoder with two 3D convolutional layers, a and
b in each block. k is the kernel size in the time dimension
and the equations do not show dilations in the kernel. We
use time distributed 1 × 1, 2D convolution operations for
dimensionality matching in addition operations for residual
connections.

halt = fa(W a(r
l−1
t:t−k) + ba)

hblt = fa(W b(h
al
t:t−k) + bb)

rlt = rl−1t + hblt

(1)

B. Decoder

The decoder is recurrent, containing convolutional LSTM
layers [23]. ConvLSTM layers interspersed with up-sampling
layers go from the low-dimensional representation space of
z to the image space of y′. Unlike the encoder, the decoder
layers up-sample steadily to facilitate fluid transforms. We
found that a fixed kernel size of 3×3 provided an appropriate
balance between training time and quality of generation.

We introduce residual connections at three image scales
of the upsampling pipeline: (16×26, 32×52 and 64×104),
following the intuition that each block would optimize for
mutually different visual features. We introduce another
residual connection to factor in the first convolutional level
image features forwarded from the encoder. This is added
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at the 32 × 52 image resolution, or the second level of
decoding. We only add the first feature vector corresponding
to the last few input frames for a balance between keyframe
retention and over-conditioning of the decoder. We choose
a greater number of filters in the earlier stages of the
decoder, reducing them rapidly towards the end (128 →
64 → 16 → 3) to generate a 3-channel colour image.
Our interpretation is that the greater number of filters early
on offers more opportunities for a structural transformation
due to smaller image resolutions. The reduced number of
filters in the later stages eases the network’s optimizing
efforts. The final transformations are encouraged to be more
refining than compositional because of iterative refinement
in residual networks [21]. Each decoding layer’s function
can be elementarily defined as in Equation (2). We abstract
the hidden state dependences from less relevant convolution
operations in the recurrence formulation of the ConvLSTM.

halt = fa(W a(r
l−1
t )† +Uah

al
t−1 + ba)

hblt = fb(W b(h
al
t )
† +U bh

bl
t−1 + bb)

rlt = rl−1t + hblt

(rlt)
† = Upsamp(rlt)

r0t = zt

(2)

IV. ACTION RECOGNITION

The task of action recognition is motivated by the idea
that by looking ahead in time, we could react to a hazardous
pedestrian interaction a little earlier, with safety benefits. We
do this end-to-end by appending a binary action classifier to
our future video generator. In this task, we want to learn
to predict a pedestrian’s crossing intent across a multitude
of crossing scenarios and behaviours. Prediction accuracy
also serves as an evaluation metric to compare the quality
of videos generated by various models. Formally, a classifier
parametrized by θ, predicts the probability of a crossing event
P (a) in a scene as a sigmoidal function of the generated
frames y′ = {y′T+1, ..., y

′
2T } as shown in Equation (3).

P (a|y′
T+1:2T ) = σ{fθ(y′

T+1:2T )} (3)

As most occurrences of the beginning and end of a cross-
ing event take place towards either the left or right edges of
the frame (usually the curbsides), we slice our input frames
into two with an overlapping region between them (Column
slices 0 : 112 and 96 : 208). Two instantiations of the
same classifier network are used to extract motion and visual
features from these image slices. Features from the C3D pair
are concatenated before transforming into the probability of
crossing through two newly trained fully connected layers.
The last layer uses a sigmoidal activation, with the classifier
trained on binary-crossentropy loss. Performance scores and
training strategy are detailed in section V-F.

V. EXPERIMENTS

A. Experimental Setup

We use the JAAD dataset [24] consisting of 346 high
resolution videos in pedestrian interaction scenarios. The

clips were collected from approximately 240 hours of driving
videos recorded at 30 fps during different times of day and
under varying lighting conditions. We split 30% of the data
into our test set and 10% as validation set. We omit 8 videos
sampled at a higher frame rate of 60 fps, leaving 60% of
the data as the training set. The recordings across the sets
are mutually exclusive, meaning we do not split the same
video across any of the sets. To augment the training set,
we stride a window of 32 frames by one, over the videos
and pack them in randomly shuffled batches. We train the
encoder-decoder stack described in the previous sections to
optimize for a combination of l1 and l2 losses as shown
in Equation (4). The losses are calculated between the N
pixels of T predicted frames y′ and ground truth frames y.
For video prediction experiments we set N = 128 × 208
and T = 16 frames. The generator is first trained with
the RMSprop optimizer for 30 epochs to minimize l2 loss.
Learning rate is set at 10−3 for 7 epochs and then reduced
by a tenth after 14 epochs and again after 20 epochs. We
then train the network for 10 more epochs to minimize l1
loss for visually smoother images and sharper edges with
the learning rate set at 10−5. In order to visualize relative
consistency across frames in the generated sequence, we plot
l1 loss between the prediction and the ground truth per frame
in a Temporal Variation Graph (TVG) as a function of time.
We experiment with various architectures for the 16-frame
generator which we evaluate qualitatively and quantitatively
in the following sections. All training and experiments are
run on Nvidia GTX 1080Ti GPU. We arrived at these designs
and procedures after extensive iterated experiments. For lack
of space we describe only the most successful designs.

L =
1

N

2T∑
t=T+1

N∑
i=1

(yt,i − y′t,i)2 + λ
1

N

2T∑
t=T+1

N∑
i=1

|yt,i − y′t,i|

(4)
B. Frame-wise Accuracy: Qualitative Analysis

We train three kinds of models for future prediction: a
fully convolutional model (Conv3D), a recurrent decoder
model (Segment) and a residual encoder-decoder model (Res-
EnDec). We then perform ablation studies on the residual
encoder-decoder model described earlier. Figures 1, 4 and
5 present examples with action labels inscribed within.
Figure 4 shows image sequences predicted by various models
and are stacked one below the other for comparison. We
only show some key-frames for brevity. See accompanying
predicted videos.1

C. Frame-wise Accuracy: Quantitative Analysis

Table I lists some frame generation metrics for various
models. The average pixel-wise prediction l1 error is (1.37±
0.37) × 10−1 for the Res-EnDec model. The errorbar l1
loss TVG for this model, shown in Figure 2a displays an
increase in prediction error, as the errors can be expected
to accumulate as one goes deeper in time. We suspect the

1http://autonomy.cs.sfu.ca/deep_intent/
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Fig. 4: A group of pedestrians are about to cross the street from right to left. Row 1: Input frames - pedestrians are not yet crossing; Row
2: Ground-truth future frames for reference - a pedestrian steps into the street at Column 3; Row 3: Res-EnDec model predicted frames;
Row 4: Segment model predicted frames; Row 5: Conv3D model predicted frames. Frames are labelled with the classified action. All
models except the Segment model predict the action change correctly.

Fig. 5: Row 1: Ground Truth. Rows 2: Future predicted by Res-EnDec model; A pedestrian can be seen to cross the intersection from
behind the car ahead from the ground truth sequence. All models are unable to capture this movement. We believe that the car’s motion
dominates the transformation for objects in the scene, hindering the pedestrian’s forward movement prediction.

Fig. 2: TVG for Res-EnDec model (left) and Conv3D model (right)

high initial error in the TVG to be caused by the substantial
influence the last input frame has on the generation due to
our reverse ordering of the input. An observed drop in the
prediction loss from the second frame onwards empirically
suggests that the model appears to configure the spatiality
of the scene first and then successively transform objects to
project motion.

In comparison, the TVG for the Conv3D model shows
a much higher mean prediction error of (3.13 ± 0.47) ×
10−1. The decoder in the Conv3D model uses transposed
convolutions or deconvolutions, to increase image sizes [25].
All kernel sizes are set to 3 × 3 × 3 as is common with
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Fig. 3: Temporal Variation of the l1 prediction loss for various
models. Conv3D model omitted due to large values.

Model l1 loss (×10−1) Appreciation (%)
Conv3D 3.13± 0.47 7.61
Segment 1.43± 0.37 14.94
EnDec 1.46± 0.37 13.48
Res 1.42± 0.36 15.88
Res-EnDec 1.37± 0.37 19.86
Undilated 1.42± 0.36 15.60
Unreversed 1.49± 0.39 5.22

TABLE I: Analysis of loss variation in time for various models

3D convolutional architectures [22, 26, 27]. The trend over
time, as can be noted from Figure 2b is unstable and the
error does not appreciate as much as in the case of the Res-
EnDec model. We believe the instability arises due to our
reverse ordering of input frames on an architecture that is
more parallel than the others with recurrent decoders.

The sequential nature of the video frames can be benefit
from recurrent layers over 3D-convolutions. We change the
decoder from the Conv3D model to adopt recurrent convolu-
tional layers to build our Segment model. The convolutional
layers help preserve the spatiality of the data relative to
standard vector LSTM layers. The Segment model is de-
signed with kernel sizes and number of filters drawn from the
common image segmentation models [28]. The mean error
for this model is (1.43 ± 0.36) × 10−1, ∼ 54% better than
the Conv3D model and ∼ 4% worse than the Res-EnDec
model.

D. Ablation Studies

We perform ablation studies on our Res-EnDec model
to determine the importance of the residual connections,
dilated convolutions and reversal of image data. In our first
Res model, we remove the residual connection between the
encoder and decoder, but let the connections within the sub-
modules remain. Next we remove all residual connections in
the EnDec model. In the Undilated model, all convolutions
are undilated and we retain the residual connections within
the encoder-decoder pair. In our last ablation study, we study
the effect of reversing the input data. In the Unreversed
model, the input data ordering is not reversed. The graph
in Figure 3 compares the temporal error variance across
all models. We do not include the TVG for the Conv3D
model so as to not skew the y−axis with its relatively large
prediction errors.

Prediction error can be seen to appreciate across all
models over time. These results suggest that both dilated
convolutions and residual connections have improved loss
performance. We omit discussion for space.

E. Latent Space Visualization

Fig. 6: Scatter plot of t-sne minimized representations learnt by
the encoder. A gradual trend from deep blue to red suggests that
the representations are different from each other. Autoregressively
processing them encourages iterative transformation.

Fig. 7: Scatter plot of t-sne minimized tensors obtained from the first
residual connection in the decoder. Close association of samples in
the form of blue-red streaks suggests that the recurrent convolutions
assist in reforming the representation space into a hypersphere with
motion projecting the transformations outwards.

We visualize the 16× 26× 64 dimensional representation
space z using the t-distributed Stochastic Neighbour Embed-
ding algorithm (t-SNE) [29]. Visualizing each zi, 1 ≤ i ≤ 16
directly is inconclusive because they correspond to a variety
of traffic scenes. Subtracting the first representation from
each of the predictions to retain temporal variances borne
out of object motion, we project them into 3D in Figure
6. We observe almost no visible motion across predicted
video when we replace learned representations z1:16 with
the first representation z1. Thus we choose the first frame
for subtraction because we deem it to transfer the most
spatial information. The embedding graph is a scatter plot
of 625 representations for each of the 16 temporal slices.
The slices are shown with each colour corresponding to
a slice of prediction time. The scatter plot shows a trend
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going from deep blue to red from the second predicted
frame to the last. The clustering of like colours indicates a
similarity in decoding a given time slice of prediction. Note
representations appear to transition sequentially to a later
point in time, suggesting that each representation iteratively
adds information to the generation process.

We perform the same experiment as previously discussed
but now extract new representations ri, 1 ≤ i ≤ 16 from
the first residual connection in the decoder. The scatter plot
for t-SNE minimized 16 × 26 × 64 dimensional space is
presented in Figure 7. The plot shows streaks of colour
transitions flowing from r1 to r16. The representation space
is rendered with more structure, with the r’s earlier in the
sequence appearing to spawn from within a virtual volume
outwards as seen in the 3D rendition. The effect of the
recurrent and residual connections together is that of an
Iterative Refinement.

F. Crossing Intent
We fine-tune the pre-trained C3D network presented by

Tran et. al., [22] on the JAAD dataset of pedestrian be-
haviours. The C3D model is pre-trained on the Sports 1M
dataset [30]. Our model is trained on the same data training,
validation and test splits of the JAAD Dataset as described in
[31] for comparison. We organise training videos in strides of
8 and test videos in strides of 16. We augment training videos
by choosing every alternating frame in the sequence. This
also helps simulate faster moving traffic. We use RMSprop
as the optimizer starting with an initial learning rate of 10−5

for 30 epochs with early stopping based on validation loss.
The learning rate is reduced by a factor of 10 at epochs 7 and
16. We also regularize the fully connected layers to lessen
overfitting.

Model Acc Prec Recall F1 Time (ms)
Conv3D 61.81 83.75 46.74 60.00 68.84 ± 26.34
Segment 65.23 81.80 56.83 67.07 96.10 ± 28.89
Res 66.59 79.23 62.84 70.09 116.11 ± 42.22
Res-EnDec 67.38 74.77 71.90 73.31 116.39 ± 38.78

TABLE II: Crossing intent classification performance

Model AP
Action [31] 39.24 ± 16.23
Action + Context [31] 62.73± 13.16
Conv3D 78.61
Segment 80.85
Res 80.42
Res-EnDec 81.14

TABLE III: Average precision in predicting crossing intent
The classifier is input with futures predicted by the models

listed in Table II. The table compares accuracy in recognizing
a crossing action from predicted videos alone. The test
set contains 1257 image sequences of 16 frames each, of
which 474 are labelled crossing and 783 as not crossing.
The Res-EnDec model with the lowest reconstruction loss
outperforms the Conv3D model by around 6%. We com-
pare average precision scores with the results presented by
Rasouli et al. in [31], in Table III. We outperform their
Action+Context model consistently across all our models and
by about 18% in the case of our best result.

VI. DISCUSSION

Predicting adverse pedestrian crossing actions has the
potential to save lives. Conversely, it would be undesirable
for an autonomous driving system to brake every time a
pedestrian is detected on the curbside. Such a system could
tolerate a non-crossing action mislabelled as crossing or false
positives, but false negatives need to be penalized. From
Table II, we find that the Res-EnDec model has similar
precision and recall scores on our test set. On the other hand,
the Conv3D model has a precision ∼10% higher than the
Res-EnDec, but has the lowest recall. The F1 scores better
summarize this trend.

Predicting 16 frames of future at a frame rate of 30 fps
corresponds to looking ahead 533 ms in time. Any advantage
gained from this is reduced by the run time of the prediction
method. The last column in table II lists the run time to load
a 16-length image, predict the next 16 frames and classify
each predicted frame as an action for four of our test models
on our implementation running on an Nvidia GTX 1080 Ti
GPU. Conv3D is the fastest model at 69ms, for an effective
maximum look-ahead time of 463 ms.

VII. CONCLUSION

In this paper, we proposed and demonstrated three broad
categories of neural network algorithms tasked with gener-
ating video predictions of the future. We then introduced
a Temporal Variation Graph for all models, to measure
their contributions in per-frame visual reproducibility and
a temporal coherence. Our results suggest that the residual
connections encourage learnt intermediate representations
to be mutually different. Along with multi-stage recurrent
decoding, iterative refinement can be seen. The novelty of
our approach is that we learn a sequence of representations
from an encoder rather than a comprehensive vector as done
in many sequence generation approaches.

We also proposed and demonstrated a classifier algorithm
based on the C3D action classifier model. The network was
tasked with recognizing a crossing action by looking at a
video of a predicted future, thereby being able to predict a
pedestrian’s crossing intent. We showed that our best model
with an average precision of 81.14% is 18% higher than the
model introduced by Rasouli et al. [31] for videos from the
JAAD Dataset. This demonstrates the contribution of context
in the overall gain in performance without explicitly having
to detect scene elements such as traffic signs to interpret as
context. Our best performing model predicts a future and a
crossing intent with an effective look-ahead of 416ms.

We propose this system and results as a proof-of-concept
that predicting the future via video could potentially provide
useful early input to action selection for mobile robots
including safety critical systems like urban driving.
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