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Abstract

Automated vehicles must react very quickly to pedestrians for safety. We explore analysis
and prediction of pedestrian movements around urban roads by generating a video future of
the traffic scene, and show promising results in classifying pedestrian behaviour before it is
observed. Our first method consists of a decoding algorithm that is autoregressive of repre-
sentations that an encoder learns from input video. We compare many neural network based
encoder-decoder models to predict 16 frames (400-600 milliseconds) of video. We present
the contributions of time-dilated causal convolutions and additive residual connections in
our recurrent decoding algorithm. Furthermore, we show that these connections encourage
representations at various decoding stages to be mutually different. Our main contribution
is learning a sequence of representations to iteratively transform features learnt from the
input to the future. Our second method presents a binary action classifier network for de-
termining a pedestrian’s crossing intent from videos predicted by our first method. Our
results show an average precision of 81%, significantly higher than previous methods. Our
best model in terms of classification performance has a run time of 117 ms on a commodity
GPU with an effective look-ahead of 416 ms.

Keywords: autonomous driving, human-robot interaction, pedestrian prediction, video
prediction, spatio-temporal reasoning
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Chapter 1

Introduction

(a) (b) (c)

Figure 1.1: Generating predictions of a future for a pedestrian attempting to cross the street.
We pick out two key frames from the (a) input sequence and the (b) ground truth future
sequence, 16 frames apart. Image (c) shows our prediction of the future ground truth frame.

Automated vehicles must react very quickly to the actions of pedestrians for safety. For
maximum responsiveness, we would like to predict dangerous pedestrian behaviours and
react to them before they are observed. In this work we predict behaviours of pedestrians
seen from a car dashboard video while crossing, in a variety of street configurations and
weather conditions. Achieving this robustly would have obvious applications in autonomous
vehicles. We investigate two data-driven methods to learn traffic activity as a scene phe-
nomenon: an autoregressive model of motion of traffic participants for video prediction, and
an action recognition algorithm that detects crossing intent in pedestrians.

Most pedestrian scenarios explored in existing literature review pedestrians who are
approaching the street orthogonally and in constrained settings. However, a typical traffic
scene is an interplay between various agents besides pedestrians. Cars driving on and off an
intersection, the nature of the intersection (stop controlled or not) and speed and direction of
other pedestrians on the crosswalk, are some of the many factors that influence a pedestrian’s
decision to cross a road. Here we manage the complexity of the full multi-agent situation
and its context by modelling it as a scene phenomenon from the point of view of the vehicle
camera. From a history of 16 video frames, we predict the evolution of the scene by predicting
the video into the future. We propose and compare alternative neural network models for

1



predicting 16-frame video futures of driving clips: a fully convolutional net, a decoding
strategy employing recurrent nets and a network that encourages iterative inference and
refinement of learnt representations using residual connections. We compare these models for
their qualitative and quantitative strengths. We plot per-frame l1 losses between predicted
frames and the ground truth in a Temporal Variation Graph to visualize relative time
consistency across the models. We also report loss metrics from ablation studies to analyze
incremental improvements afforded by network style changes such as time-dilated causal
convolutions and additive residual connections in Sections 5.1.2 and 5.1.3.

The main novelty and contribution of this work is the use of a sequence of learnt repre-
sentations from which we can decode a future given past video, and thus potentially take
robot control actions. Our inventive supposition is that using the video scene to summarize
the situation can contain useful context that e.g. a list of bounding volumes with kinematic
forward models would not. In this thesis, we demonstrate empirically that we can correctly
detect changes in pedestrian behaviour in the predicted video.

Our second contribution is an algorithm that exploits C3D [6], a 3D convolutional ac-
tion recognition network for determining a pedestrian’s crossing intent by looking solely
at predicted videos. Along with measuring standard binary classification metrics such as
average precision and recall, we define a new metric called mean time to correct prediction
to measure the future generator’s responsiveness to input cues. We then discuss that for a
crossing intent predictor in the real world, it is imperative that such a model possess good
recall as false negatives are very expensive. On the other hand, a low false positive rate
would mean reduced unnecessary braking and a potentially smoother driving experience for
passengers in the car. We also perform a timing analysis of the various models end-to-end;
from loading input sequence of frames, to generating a future, to predicting intention of
crossing.

2



Chapter 2

Predicting a Future

2.1 The Problem

Autonomous driving has been the subject of intense research over the last few decades.
Although there are cars with limited autonomy, a ubiquitous transit system is still in the
making. Full autonomy requires that robot-cars interact with both their immediate en-
vironment and humans. Current robot-cars are impeded by their assumptions of rational
interactions with their surroundings. A human driver, on the other hand, would infer the
intent of other drivers and pedestrians from their behaviours. For example, in the case of a
pedestrian crossing a road, a driver may decide to stop at a cross-walk or slow down, conse-
quent to the appearance and apparent urgency of the pedestrian, amongst other non-verbal
cues.

The Insurance Corporation of British Columbia in Canada prescribes See-Think-Do as
an essential driving strategy [2]. Each unit of the strategy can be elaborated as, See: scan
for hazards and pay attention to other road occupants for potential hazards, Think: decide
which hazards are dangerous and rank possible evasive actions, Do: manoeuvre to keep
yourself and others safe. Typically, three-quarters of a second are needed to see a hazard
and to decide to stop. Three-quarters more of a second are needed to actuate the brakes to
stop a vehicle [2]. An early prediction of a potentially hazardous action, could add precious
time before one decides to act. By modelling pedestrian intent 400− 500ms in the future, a
car travelling at 60 kmph gains between 6.67−8.34m of stopping distance over the suggested
45m [7, 8]. This could make a significant difference in reducing accidents and saving human
lives.

Currently available autonomous driving datasets cater to the applications of 3D map-
ping, navigation, and car and pedestrian detection. Since the goal of our work is cen-
tred around human behaviour analysis, we opted to learn from the Joint-Attention in Au-
tonomous Driving (JAAD) dataset [9]. The JAAD dataset was created to facilitate be-
havioural studies of traffic participants. More details of the dataset are presented in Section
2.2. Perhaps one of the most widely used publicly available datasets, KITTI [10] contains

3



Figure 2.1: Total stopping distance is the distance a vehicle will travel from the moment a
hazard is noticed by the driver to the moment the vehicle stops. A driver needs time to see,
think and do before the brakes even begin to slow the vehicle. (Picture source: ICBC Learn
to Drive Smart Manual [2])

driving data collected from various locations such as residential areas and highways. How-
ever, the data has no annotation for pedestrian behaviours. The Caltech pedestrian detec-
tion benchmark [11] on the other hand has 10 hours of driving video clips in regular traffic
in urban environments. The data contains pedestrian bounding boxes and detailed occlu-
sion labels. The Berkeley pedestrian dataset [12] and the Daimler pedestrian benchmark
dataset [13] are both formulated with pedestrian detection, tracking and scene segmentation
as intended applications and contain pedestrian bounding box labels. All this data, although
rich in pedestrian annotations, does not include any labels for behavioural analysis such as
crossing or stopped [9], ignoring the role of context in influencing a pedestrian’s intent.

2.1.1 High Variability

Rasouli et al. [3] while presenting their analysis of the JAAD dataset observe high variability
in the behaviour of pedestrians. At a point of crossing, they observe more than a 100 distinct
patterns of actions. Typically expected crossing behaviour Standing-Looking-Crossing and
Crossing-Looking only account for half the situations observed in the dataset. In one-third
of the non-crossing scenarios, the pedestrians are waiting at the curb and looking at the
traffic - a strong indication of a possible crossing intention. An individual action performed
before and after a crossing event may mean different things. For example, a person may be
standing before beginning to cross or as a response to the oncoming vehicle. Figure 2.2 is a
visualization of the action transitions for all crossing events in the JAAD dataset. Such a
high variability presents a formidable challenge for generalization and hand-crafting features
to model behavioural sequences.
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Figure 2.2: A summary of sequences of pedestrian actions before and after crossing. The
thickness of lines represents the frequency of actions in the "crossing" or "non-crossing"
subset [3].

2.1.2 Non-Verbal Cues

In more than 90% of the JAAD dataset, pedestrians are observed to use some form of non-
verbal communication in their crossing behaviour. An observable attention behaviour is to
look at oncoming traffic (Figure 2.3). Other communication forms such as nodding and hand
gestures are less frequent. Spatial resolutions of cues such as looking, however, are almost
inconspicuous as we resize the frames in order to conform to computational limitations. Also,
although a pedestrian’s head orientation and attentive behaviour are strong indicators of
crossing intent, they are not always followed by a crossing event. In designated crosswalks,
a pedestrian may cross the street with no attention expressed towards the traffic. In such
events, a pedestrian’s gait, posture and approach to the curb (a cue as simple as raising
a leg to step forward), could lead to more informed inferences about their crossing intent.
The cues as observed, are not explicit, but are embedded in the behaviour of the pedestrian
in the presence of and in response to traffic movement.

2.1.3 Context Matters

The context in which a crossing event takes place may strongly affect a pedestrian’s be-
haviour. The context can be identified as a set of factors like the weather, nature of the
intersections (stop controlled or not), street structure, presence of other vehicles at the in-
tersection and size of the crowd attempting to cross the street. The idea of context also
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(a) (b)

Figure 2.3: Some non-verbal cues exhibited by crossing pedestrians. Left: Looking onto
oncoming traffic. Right: Leaning forward and preparing to take a step.

extends to target specifics such as demographics (gender and age) or cultural attributes,
spatio-temporal variations (velocity and trajectory) or environmental context (traffic signs).
As can be seen in Figure 2.4 (a), cropping out the context makes it impossible for a model
to predict that the pedestrian will stop before the stationary car seen in Figure 2.4 (b).
Pedestrians in the JAAD dataset were observed to cross without attention to the vehicles
at non-designated cross-walks when time-to-collision (TTC) [14] was greater than 6 sec-
onds. When TTC is below 3 seconds, there is no occurrence of crossing without attention
in streets wider than 2 lanes. By adding context to a crossing event classifier, Rasouli et
al., [1] achieved more than 20% improvement in prediction performance (more details in
Section ??). Changing the speed of the vehicle leads to varying views of the same inter-
section on different approaches. Considering the vehicle’s own ego-motion is important in
further resolving prediction ambiguity.

2.2 JAAD Dataset

The Joint Attention in Autonomous Driving (JAAD) dataset [9] consists of 346 high-
resolution video clips (1920 x 1080 and 1280 x 720) created to study the behaviour of
traffic participants. The clips were collected from approximately 240 hours of driving videos
recorded at 30 FPS (except for a few recorded at 60 FPS) during different times of the day
and under varying lighting conditions. Some videos contain a challenging sun glare. The
videos collected also cover heavy snow conditions and with people wearing hooded jackets
or carrying umbrellas. Two vehicles equipped with wide-angle video cameras were used for
data collection. The cameras were mounted inside the cars in the centre of the windshield
and below the rear-view mirror. The clips cover a wide spectrum of urban and suburban
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(a)

(b)

Figure 2.4: Top: Without contextual knowledge, the pedestrian is likely to be predicted as
continuing to walk across. Bottom: The knowledge of the stationary car adds the information
that the pedestrian is very likely to stop before it.

locations and only a few in rural locations. The samples cover a variety of situations like
pedestrians crossing individually or as a group, pedestrians occluded by objects, pedestrians
pushing objects like a stroller while crossing and pedestrians walking along the street and
not crossing. Many crossing instances resemble the commonly seen pedestrians waiting at
intersections. The data also contains samples of the usually less recorded situations like a
pedestrian walking along the road looks back to see if there is a gap in traffic or peeks from
behind an obstacle to see if it is safe to cross. Pedestrian interaction locations range from
controlled intersections to parking lots.

All video data is annotated for pedestrian behavioural analysis and is provided with
bounding boxes and textual annotations. The bounding boxes are provided for cars and
pedestrians that are active in an interaction or require the attention of the driver. The
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textual annotations provide behavioural tags for each pedestrian and driver engaged in a
traffic correspondence. Each pedestrian is assigned a distinguishing label and tagged within a
range of actions: clear path, crossing, hand-wave, looking, moving fast, moving slow, walking,
nod, slow down, speed up, standing and stopped. The data includes 654 unique pedestrian
samples with behavioural tags to inform the type and duration of the pedestrian’s action.

Pedestrians are annotated such that their behaviours can be categorized into three
groups: Precondition:- the state of the pedestrian prior to crossing (standing, moving slow or
fast), Attention: the way the pedestrian becomes aware of the approaching vehicle (looking),
Response: behaviours the pedestrians respond with to the approaching vehicle (stop, clear
path). Although this method of annotation is behaviourally consistent, in our experiments,
we found it to be underspecifying. Consider for example the task of recognizing the action
being performed in an n-length sequence of frames where the pedestrian might exhibit
a mixture of actions. The pedestrian might be standing on the curb and looking at the
person standing next to them. The data only provides the standing label as the behavioural
annotation. A model that has learnt to recognize both the standing and looking actions to
a reasonable accuracy might be penalized in the evaluation for predicting the looking label
instead of the standing label. Irrespective of the seemingly erratic labelling, learning the
inherent temporal structure in the labels themselves could help adhere to the precondition-
attention-response strategy of tagging. Another point to note about the provided tags is the
skew in the number of labels for each class. The dataset contains about 88K unoccluded
pedestrian samples with around 14K samples for people standing and 17K for people looking.
Temporally, as the duration of a looking action is shorter than a standing action, standing
labels per frame vastly outnumber looking labels per frame. In our work, we identify that
the crossing label amongst all other labels, is visually sufficiently well-represented. Also, a
crossing pedestrian is the most urgent behaviour to be responded to. For these reasons, we
choose to predict a pedestrian’s crossing intent and ignore all other labels. We approach
the problem as a binary classification of the video sequence into either the crossing or not
crossing classes.

2.2.1 Baselines

Rasouli et al. [1] in their follow-up work from 2018, examine approaches using Convolu-
tional Neural Networks (CNNs) to detect and analyze the context of the scenes as well as
pedestrians’ behavioural cues. In this section, we present the results that are relevant to
our work.

They train separate models for pedestrian gait and attention estimation. A randomly
initialized AlexNet [15] is trained end-to-end on cropped images of pedestrians from the
JAAD dataset with minor occlusions up to 25% allowed in the image crops. They then try
transfer learning by fine-tuning AlexNet pre-trained on ImageNet. The networks are also
trained with full-body poses to improve classification performance instead of the using the
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Method walking looking
AlexNet-full 78.34 67.45
AlexNet-cropped 74.23 74.98
AlexNet-Imagenet-full 80.45 75.23
AlexNet-Imagenet-cropped 83.45 80.23

Table 2.1: The average precision (AP%) of classification results for pedestrians’ walking and
looking actions [1].

Method AP
Action 39.24± 16.23
Action + Context 62.73± 13.16

Table 2.2: Prediction accuracy (%) of pedestrians’ crossing. Adding context information
significantly improves the prediction results [1].

crops of the head to estimate orientation or lower body to estimate gait. The crops are
roughly obtained with the top third of the pedestrian bounding box for attention and the
bottom half for gait estimation. Table 2.1 (from their paper) lists the average precision of
the classification results for two classes: walking and looking.

In another experiment similar to our work, Rasouli et al. examine the contribution of
gait and attention to determine if a pedestrian is going to cross the street. They select
between 10-15 frames and corresponding pedestrian bounding boxes where the pedestrians
are either walking or standing and looking or not looking. This results in 81 non-crossing and
234 crossing scenarios with a total of 3324 frames. Visual features from a modified variant
of AlexNet trained for attention and gait estimation are used as a compact representation
to further train a linear SVM to classify the frames as crossing or not-crossing. A second
experiment is run to study the importance of context in this task. A fully-convolutional
variant of AlexNet is trained to detect contextual elements: narrow street, wide street,
pedestrian crossing sign, zebra crossing, stop sign , traffic light, parking lot. Output of
the last layer from this network is used as a context vector to supplement crossing intent
classification. As can be seen in the Table 2.2, the addition of context significantly improves
classification performance by 20%.
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Chapter 3

Related Work

A large number of human-centric vehicle studies emphasize humans inside the vehicle.
Ohn-Bar and Trivedi in their survey highlight the roles of humans in intelligent vehicle
interactions [16]. Human activity analyses, covering driver gestures, distraction and ma-
noeuvre classification and pre-condition, and eye and gaze analysis have been widely con-
ducted [17–22]. On the other hand, direct observation of pedestrians and occupants of
nearby vehicles is less well studied though this is an important area of current interest [16].

3.1 Humans and Crossing

Observing humans in the vicinity of intelligent vehicles is essential for smooth and safe
navigation. An intelligent vehicle should be able to sense and predict human intent because
the road is shared with pedestrians. Studies on pedestrian behaviour, styles, skill, attention,
distraction and social-forces are still in the early stages [16]. Schmidt and Farber [14] in their
work conclude that at least one part of the human body, either the head, the upper-body
or the legs must be visible for a human driver to accurately predict a pedestrian’s future
movements. Koehler et al. [23] model a pedestrian’s contour, particularly the spread of the
legs and bending of the body to infer crossing intent. Keller and Gavrilla [24] explore motion
features using dense optical flow to capture upper-body and leg movements. They use a low-
dimensional flow-based histogram to create a special trajectory representation by linking the
motion features to the pedestrian’s positions. Quintero et al. [25] study a larger variety of
body-parts including arm-movements to create sparse geometrical representations for them.
They detect 3D-poses of the body parts and joints with stereo cameras and use them to
learn pedestrian dynamics in latent space. Age, gender and other human properties of the
interacting pedestrians influence driving behaviour. Modelling social relationships among
agents is another method employed by drivers to recognize and communicate intent [26, 27].
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3.2 Time Series Predictions

Starting from an identical initial position, two pedestrians will rarely follow the same tra-
jectories in order to cross a road. Their trajectories depend on their own preferences, on the
environment and on the presence of other pedestrians. An accurate prediction of gait and
positions of a crossing pedestrian would imply that the learnt model understands dynamics
of motion to a reasonable extent. Most common approaches for future trajectory predictions
are based on the Markov property. A Markov Decision Process (MDP) is used to express
the dynamics of a decision-making process and is defined by an initial state distribution
p(s0), a transition model p(s′|s, a) and a cost function r(s) [28]. Given these parameters,
optimal control can be solved for by learning a policy π(a|s) which encodes the distribution
of the decision a to be taken in state s. Hidden Markov Model (HMM) based approaches, in
which the hidden state is the pedestrian’s intent [29, 30] have been extended to partially-
observable Markov Decision Processes (POMDP) to learn a distribution over pedestrian
intent [31]. Kitani et al. propose a hidden variable Markov decision process (hMDP), as-
suming that the observer has noisy observations of an actor, where the actor is fully aware
of its own state. In contrast, in a POMDP, the actor is uncertain about its own state and
the observer is not modelled. Although a Markovian process allows for the model to quickly
adapt to changes in its observations, the Markov assumption itself can be overly restrictive,
owing to insufficient prior conditioning.

Other approaches for a time-series prediction are to assume the samples come from a lin-
ear process driven by a white, zero-mean, Gaussian input [32]. Gaussian processes perform
well with noisy observations and have a closed-form predictive uncertainty [33, 34]. Gaussian
process mixture models enable predictions for both intent and trajectory uncertainty. Schnei-
der and Gavrilla [13], in their work provide a comparative study of recursive Bayesian filters
for pedestrian path prediction. They consider Extended Kalman Filters based on single dy-
namical models and Interacting Multiple Models (IMM) combining several basic models
such as constant velocity or constant acceleration. These are applied to four typical pedes-
trian scenarios: Crossing, Stopping, Bending in and Starting. Gaussian processes are slower
to detect a change than Markovian models because the entire observed trajectory is used to
predict the future state [35]. Additionally they are too slow to learn previously unobserved
behaviour patterns. Ferguson et al. propose a novel changepoint detection and clustering
algorithm to combat the slower approaches in existing Gaussian process methods [36]. They
show that the resulting long-term movement predictions demonstrate improved accuracy in
both intent and trajectory predictions.

Restricting the order of an autoregressive time-series model yields predictions that are
accurate at shorter time scales, but inefficient beyond a few steps, as the processes are
stationary. It is also difficult to embed context, such as current traffic state, into these
models. Switching linear dynamical models as extensions to these models are shown to
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work in constrained environments [13, 37]. Karasev et al. [32] account for more accurate
long-term predictions by postulating goals to a pedestrian’s trajectory that they navigate
to by approximately following stochastic shortest paths. Kooij et al. in their work incor-
porate a Dynamic Bayesian Network to supplement a Switching Linear Dynamical System
(SLDS) with environment parameters like a pedestrian’s head orientation, their situational
awareness and distance between the car and the pedestrians to predict their paths. A non-
parametric approach based on Gaussian processes proposed by Ellis et al. [35], although
accurate on longer time-scales, is computationally expensive. Batkovic et al. present a com-
putationally efficient mathematical model for pedestrian motion over a finite horizon up to
10 s [38]. However they assume a rational pedestrian behaviour and the model is based on
a pre-conditioned road map structure.

3.3 Data-driven Modelling

All these motion models assume accurate segmentation and tracking of pedestrians in the
scene, yet this is challenging due to the difficulty of choosing reliable and efficient image
features for tracking [39]. The solution is to enable pedestrian activity models to work in
the image space by directly analysing videos from a car’s dashboard camera. Together with
the availability of large-scale annotated datasets, convolutional deep learning architectures
are breaking new ground in learning generalizable features due to supervision provided in
an end-to-end fashion [4, 40–42]. These models can leverage a multitude of information
available across video frames, including behavioural cues from crossing pedestrians. Infer-
ring, say a crossing intent in a pedestrian requires a time-series model of their actions. Both
Long Short Term Memory (LSTM) [43] and 3D convolutional networks are popular algo-
rithms used to study temporal variations of features learnt from images. Hasan et al. [44]
treat the prediction of adverse pedestrian actions as an anomaly detection problem. They
first leverage hand-crafted features like the Histogram of Oriented Gradients (HOG) and
Histogram of Optical Flows (HOF) in a temporal cuboid as a spatio-temporal appearance
feature descriptor and learn a fully-connected feed-forward autoencoder to learn temporal
regularity across video frames. For comparison, they build a fully-convolutional autoen-
coder and anomaly classifier in an end-to-end fashion. Their deep-learnt model consistently
outperforms hand-crafted feature model across datasets such as the Avenue [45] and UCSD
pedestrian dataset [46].

Our work is based on the hypothesis that by re-generating a scene we learn a visual
structure of the scene itself. And by generating a next-frame future conditioned upon the
past, our model builds representations that also address motion in the scene. Although gen-
erative video models can impact many applications in video understanding and simulations,
not much work has been done in this regard. Existing generative architectures struggle with
the dimensionality of the input image space and are in many instances not scalable to nat-
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ural images. Consequently, they also suffer from shorter prediction time horizons. Vondrick
et al. [47] use a Generative Adversarial Network to predict future frames using only one
frame as the conditioning frame. Their model can sometimes predict a plausible, but in-
correct video. Lotter et al. [48] use a weighted mean-squared-error and adversarial loss to
predict future frames in the bouncing balls dataset [49]. However, extension of this work to
natural image sequences is not presented. Lotter et al. in their subsequent work [50] study
the future prediction problem with the idea that each layer of prediction only accounts for
local changes and forward deviations higher up. We incorporate a similar strategy by using
residual connections across different scales of upsampling based on the idea that residual
connections encourage iterative inference from the latent space. Jastrzebski et al. [51] in
their work further provide observational and analytical evidence for such this.

Typical neural machine translation architectures use recurrent networks in an encoder-
decoder stack to translate an n length sequence in the source language to an m length
sequence in the target language [52–54]. We follow a similar network structure philosophy
of translating past frames to the future. Unlike typical NMT architectures, our encoder
is 3D-convolutional in operation and our decoder is a multi-stage recurrent up-sampling
network. In similar work Kalchbrenner and Blunsom [55] use 1-D convolutions to learn
hierarchical representations for English input sentences and recurrent layers conditioned on
this representation to derive French translations.
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Chapter 4

Technical Description

4.1 Predictive Networks

We formulate the prediction of crossing intent in pedestrians as a multi-objective problem.
In stage one, we learn a sequence of hidden representations for the input such that they
encode a regularity in spatial layout as well as variance and rate of variance in temporality.
Stage two is about an autoregressive consumption of these representations to predict an
image sequence. Appearance cues such as posture are important to model in order to avoid
blindly predicting a motion continuing from the past frames. The third stage is the analysis
of the predicted video to determine the probability of a crossing event in the scene. A
video presents an action classifier with a more defined future to reason from, than working
from a latent space. This way we leverage the continuity of visual context also factoring
the camera’s own motion (egomotion) in the predictions. We approach the three stages
with neural networks mainly because of the data-driven generalizability of deep networks
alongside the capability of learning hierarchical features from error feedback.

xT xT­1 x1

z1 z2 zT

y'T+1  y'T+2  y'2T

Figure 4.1: Abstract representation of the future generation process. A sequence of learnt
representations iteratively condition the decoder.

Recurrent learning of dense representations along with low perplexity language models
have lead to ground-breaking research in Neural Machine Translation (NMT). The general
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structure of NMT architectures contain an encoder network that recursively learns a dense
representation z for a sentence in the source language. Conditioned on this z, a decoder
further recursively predicts a variable length sequence of words in the target language [56]
[52]. In the context of predicting a sequence of frames, we propose that the conditioning
representation z plays a critical role in influencing the plausibility of the sequence. Frames
from both the past and the future share a significant visual structure. We hypothesize that
learning T representations, z = {z1, ..., zT } for an input sequence of frames x = {x1, ..., xT }
offers more transfer of information than that of a comprehensive z for the entire input
sequence. Learning a sequence of representation vectors affords Iterative Inference to the
future generator. The earlier vectors contribute more towards the spatial reasoning of the
predictions. The later vectors successively transform predictions to a later time.

A relative prominence of input frames in the learnt z will arise because of their temporal
ordering. In other words, xT should contribute more to z1 than x1. Reversing the input
sequence from x = {x1, ..., xT } to x = {xT , ..., x1} implements this sort of conditioning.
However, as a result, the earlier frames have diminishing influence on predictions. Combined
with lower pixel-level variations between the consecutive input frames for objects in motion,
small resolutions for pedestrians at a distance lead to motion itself not being recognized.
We address this particular issue by recognizing that feeding a convolutional kernel with
frames deeper in time would activate more neurons to the now more apparent motion. We
implement this idea by time dilating the convolution operations.

4.2 Structuring Predictions

4.2.1 Dilated Convolutions

Dilated convolutions, also referred in literature as à trous convolutions, is the method where
the convolution filter is applied to an area larger than the specified filter size by overlooking
certain input values. In practice, it can be seen as applying a larger filter over the original size
and dilated with zeros. Yu and Koltun [57] mathematically formalize a dilated convolution
operation in equation 4.1; where F : Z2 → R is a discrete function representing the input.
Let Ωr = [−r, r]2 ∩Z2 and k : Ωr → R be the filter of size (2r+ 1)2. A discrete convolution
operation ∗l is defined with the dilation factor l, or simply an l-dilated convolution. As a
special case, a dilated convolution with dilation 1 is the same as the standard convolution.
Stacking dilated convolutions enables a network to have very large receptive fields with
just a few layers while preserving the input resolution for the same number of trainable
parameters, thus also being computationally efficient.

(F ∗l k)(p) =
∑

s+lt=p

F (s)k(t) (4.1)
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Reversing input data allows spatial conditioning of the decoder on the most recent frame
as described in Section 4.1. However, the compositional differences between subsequent
frames may not be enough for the network to understand motion. This occurs because
of the relatively small pixel boundaries for pedestrians in resized frames. In this work we
dilate our convolutions in the temporal dimension in order to combat this problem. The
goal of using time-dilated causal convolutions is to expand the temporal depth of the 3D
convolutional filter, retaining the resolution and size of the network. This also aids the
network in learning the differential rate of motion for the various objects in the scene
(pedestrian and vehicles). Figure 4.2 visually represents how stacking multiple dilated filters
achieves a greater temporal receptive field compared to an undilated filter hierarchy.

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Figure 4.2: An abstract representation of the dilated convolution operations. The first level
of transformations are undilated with a kernel 3-deep in time. Levels two and three are each
2-dilated.

4.2.2 Residual Connections

With increasingly deep neural networks, the accuracy of the network is known to saturate
and then degrade rapidly. This goes against the idea that a deeper model should produce no
higher a training error than its shallower counterpart. The degradation itself is not caused by
overfitting but due to vanishing or exploding gradients. Residual connections, introduced by
He et al. [4] were originally formulated to tackle this problem with respect to the trainability
of deep neural networks. Specifically, training compositional neural networks deeper than
15-20 layers. One treatment of its internal working is that the later layers of a residual
block as shown in Figure 4.3 optimize a residual mapping leftover from the earlier layers.
The additive framework used to transform representations allows an exponential number of
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paths between the input and the prediction layer. The resulting network can be seen as an
ensemble of many shallower units making it easier for the deep network to be optimized.

Figure 4.3: A residual block [4].

In our work, we hypothesized that these residual blocks at varying scales of decod-
ing hidden representations, can lead to what Jastrzebski et al. [51] formalize as Iterative
Refinement. The insight we develop is that at different scales of image generation, each
residual block will learn hidden representations that are different from each other. Also,
by upsampling an earlier residual block’s output, the subsequent block does not have to
start from scratch. The later blocks only have to refine the images pixel-wise rather than
compositionally, as in the earlier blocks. Jastrzebski et al. in their recent work from 2018,
formally present this idea concluding that ResNets perform both representation learning
and iterative refinement.

4.2.3 Convolutional LSTM

Recurrent neural layers are standard in many sequence modelling problems. The Long
Short Term Memory layer [43] is perhaps the most used recurrent layer to learn long-range
dependencies in sequences. A major drawback of the LSTM is that it has to unfold its
input vectors to 1D, thereby losing spatial information of the data. We use a modification
of the LSTM with dense layer connections replaced with convolution operations called the
Convolutional LSTM [5]. The idea is represented pictorially in Figure 4.4. Key equations
of the ConvLSTM are shown in (4.2) where ‘∗’ represents a convolution operation and ‘◦’
represents Hadamard product, {X1, ..., Xt} represent inputs, cell outputs are {C1, ..., Ct},
hidden states are {H1, ...,Ht}, and the gates it, ft, ot of the ConvLSTM are 3D tensors
whose last two dimensions are the spatial dimensions. In our work, we leverage the recurrent
learning ease of the ConvLSTM layers to decode learnt representations to images.
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it = σ(Wxi ∗ xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi)

ft = σ(Wxf ∗ xt +Whf ∗ xt−1 +Wcf ◦ ct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 +Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(4.2)

Figure 4.4: The convolutional structure of ConvLSTM [5].

4.3 Future Generation

The task of generating image frames falls into the general category of dense prediction
problems like semantic segmentation. Modern image classification networks integrate multi-
scale contextual information via successive pooling and subsampling until a global prediction
is obtained as a weighted measure of the learnt features. In contrast, dense prediction calls
for multi-scale compositional reasoning with pixel-level full-resolution output. Although,
classification networks have been successfully repurposed for semantic segmentation, the
two problem are structurally different [57]. Our method is to employ an encoder-decoder
architecture which we describe later.

The objective of our model is to predict the future positions of objects like vehicles and
pedestrians in the world by learning their motion. In order to do so, we build a decoder
that transforms hidden representations of the input, learnt by an encoder. Representations
are decoded to a sequence of frames that minimize a pixel-wise error between the predicted
frames and the ground truth. Functionally, the encoder reads a sequence of frames x =
{xT , ..., x1} to yield dense representation z = {z1, ..., zT }. Conditioned on z, the decoder
will then auto-regressively predict an image sequence y′ = {y′T+1, ..., y

′
1} by minimizing a

loss between y′ and ground truth frames y = {yT+1, ..., y1}. Each generated frame is of the
same resolution as the input (128 × 208 in our case). Intuitively, the encoder’s job is to
comprehend the visual content in input frames. Recursively learning representations from
each frame, we expect to first learn a temporal regularity in the early representations and
parametrize a temporal variance in the later representations. The decoder, on the other
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hand, is an autoregressive consumer of these hidden representations. We arrived at these
designs and procedures after extensive iterated experiments. The following sections will
provide details for our Res-EnDec model, our most successful one.

4.3.1 Encoder

The encoder is a spatio-temporal neural network composed of three-dimensional convolu-
tional layers. 3D convolutions are good feature learning machines that can model motion
and spatial appearance simultaneously. Tran et al. [6] in their paper on learning spatiotem-
poral features from 3D convolutions, empirically find that 3 × 3 × 3 convolutional kernels
for all layers work best among the set of architectures explored. Their learnt features with
a linear classifier outperformed the state-of-the-art on the Sports-1M action classification
challenge [58]. In contrast we found that kernels with decreasing sizes in the spatial di-
mension (11x11 → 5x5 → 3x3) and constant size in the time dimension capture the input
scene and temporal variations better. A large spatial kernel (11x11 in our case) along with
a stride with much overlap between them in the first layer was observed to produce more
detailed representations. We believe that this allows the network to account for more spatial
features per time frame. We use strided convolutions to down-sample the output instead of
max-pooling layers. Residual connections are introduced at two image resolutions: 32× 54
and 16 × 26. Two 3D convolutional layers feed into these residual blocks, where the filters
are time dilated for larger temporal reception. We forward the features learnt at first resid-
ual block (Layer 3 in the Table 4.1) to the decoder building another residual connection.
Each hidden representation zj , j ∈ {1, ..., T} is a function of all input frames, with the
learnt weights determining the contribution of each frame towards each zj as represented in
equation (4.3). The learnt z is 16x26 dimensional. We abstract the mathematical formula-
tion for 3D convolutions in the equation 4.3 to show the temporal order of processing. The
equations presented are for an l-th residual block in the encoder with two 3D convolutional
layers, a and b in each block. k is the kernel size in the time dimension and the equations
do not show dilations in the kernel. The Table 4.1 presents more architectural details of
the encoder. We use time distributed 1 × 1 2D convolution operations for dimensionality
matching in addition operations for residual connections.

halt = fa(W a(rl−1
t:t−k) + ba)

hblt = fa(W b(halt:t−k) + bb)

rlt = rl−1
t + hblt

(4.3)

4.3.2 Decoder

The decoder is recurrent in nature, containing convolutional LSTM layers. ConvLSTM
layers, interspersed with up-sampling layers, go from the low-dimensional representation
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Type Kernel Stride Dilation Input Output
E1 Conv3D 3 × 11 × 11 1 × 4 × 4 1 × 1 × 1 128 × 208 × (3×16) 32 × 52 × 128
E2a Conv3D 2 × 5 × 5 1 × 1 × 1 2 × 1 × 1 32 × 52 × 128 32 × 52 × 64
E2b Conv3D 2 × 5 × 5 1 × 1 × 1 2 × 1 × 1 32 × 52 × 64 32 × 52 × 64
E2c Conv2D 1 × 1 1 × 1 1 × 1 32 × 52 × 128 (E1) 32 × 52 × 64
E3 Add 32 × 52 × 64 (E2b)

32 × 52 × 64 (E2c)
32 × 52 × 64

E4 Conv3D 3 × 5 × 5 1 × 2 × 2 1 × 1 × 1 32 × 52 × 64 16 × 26 × 64
E5a Conv3D 2 × 3 × 3 1 × 1 × 1 2 × 1 × 1 16 × 26 × 64 16 × 26 × 64
E5b Conv3D 2 × 3 × 3 1 × 1 × 1 2 × 1 × 1 16 × 26 × 64 16 × 26 × 64
E6 Add 16 × 26 × 64 (E4)

16 × 26 × 64 (E5b)
16 × 26 × 64

Table 4.1: Architectural details of the encoder. Input and output sizes are indicated per
time slice of a 16-frame video.

space of z to the image space of y′. Unlike the encoder, the decoder layers up-sample
steadily to facilitate fluid transforms. We found that a fixed kernel size of 3 × 3 provided
an appropriate balance between training time and quality of generation.

halt = fa(W a(rl−1
t )† + Uah

al
t−1 + ba)

hblt = fb(W b(halt )† + U bh
bl
t−1 + bb)

rlt = rl−1
t + hblt

(rlt)† = Upsamp(rlt)

r0
t = zt

(4.4)

Residual blocks play an important role in the generation of image sequences as described
in Section 4.2.2. We introduce residual connections at three image scales (16 × 26, 32 × 52
and 64× 104) following the intuition that each block would optimize for mutually different
visual features. We introduce another residual connection to factor in the first convolutional
level image features forwarded from the encoder. This is added at the 32 × 52 image reso-
lution, or the second level of decoding. We only add the first feature vector corresponding
to the last few input frames (out of 16) for a balance between keyframe retention and over-
conditioning of the decoder. We choose a greater number of filters in the earlier stages of
the decoder, reducing them rapidly towards the end (128 → 64 → 16 → 3) to generate a
3-channel colour image. Such a sharp reduction in the number of filters is an extension to
the compositional feature learning and iterative refinement capability of the residual blocks.
Our interpretation is that the greater number of filters early on offer more opportunities for
a structural transformation due to smaller image resolutions. The reduced number of filters
in the later stages, afford the network a lesser optimizing effort. The final transformations
are encouraged to be more refining than compositional because of iterative refinement in
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Type Kernel Stride Input Output
In1 Input 16 × 26 × 64 (E6)
In2 Input 32 × 52 × 64 (E3)
D1a ConvLSTM2D 3 × 3 1 × 1 16 × 26 × 64 16 × 26 × 128
D1b ConvLSTM2D 3 × 3 1 × 1 16 × 26 × 128 16 × 26 × 128
D2 Add 16 × 26 × 128 (In1)

16 × 26 × 128 (D1b)
16 × 26 × 128

D3 Upsamp3D 1 × 2 × 2 16 × 26 × 128 32 × 52 × 128
D4a ConvLSTM2D 3 × 3 1 × 1 32 × 52 × 128 32 × 52 × 64
D4b ConvLSTM2D 3 × 3 1 × 1 32 × 52 × 64 32 × 52 × 64
D5 Add 32 × 52 × 64 (In2)

32 × 52 × 64 (D3)
32 × 52 × 64 (D4b)

32 × 52 × 64

D6 Upsamp3D 1 × 2 × 2 32 × 52 × 64 64 × 104 × 64
D7a ConvLSTM2D 3 × 3 1 × 1 64 × 104 × 16 64 × 104 × 16
D7b ConvLSTM2D 3 × 3 1 × 1 64 × 104 × 16 64 × 104 × 16
D7c Conv2D 1 × 1 1 × 1 64 × 104 × 64 (D6) 64 × 104 × 16
D8 Add 64 × 104 × 16 (D7b)

64 × 104 × 16 (D7c)
64 × 104 × 16

D9 Upsamp3D 1 × 2 × 2 64 × 104 × 16 128 × 208 × 16
D10 ConvLSTM2D 3 × 3 1 × 1 128 × 208 × 16 128 × 208 × 3

Table 4.2: Architectural details of the decoder. Input and output sizes are indicated per
time slice of a 16-frame video.

residual networks (Section 4.2.2). Each decoder layer’s function can be elementarily defined
as in equation (4.4). We abstract the hidden state dependences from less relevant convolu-
tion operations in the recurrence formulation of the ConvLSTM. More architectural details
of the decoder are present in the Table 4.2. A 1× 1 time distributed convolution is used to
project inputs to match dimensions in residual connections.

4.4 Action Recognition

The task of action recognition is motivated by the idea that by looking ahead in time,
we could counter a potentially hazardous pedestrian action. To do this in an end-to-end
fashion, we append a binary action classifier to our 16-frame generator. In this task, we
want to learn to predict a pedestrian’s crossing intent across a multitude of scenarios and
behavioural sequences. Accuracy of prediction serves as an evaluation metric to gauge the
quality of generated images. Formally, the classifier network parametrized by θ predicts the
probability of a crossing event P (a) in a scene as a sigmoidal function of the generated
frames y′ = {y′T , ..., y′2T } as shown in equation 4.5. Figure 4.5 pictorially represents the
same.

21



xT xT­1 x1

z1 z2 zT

y'T+1  y'T+2  y'2T

p(a) 

Figure 4.5: Abstract representation of the action recognition process. The generated future
is analyzed to predict a pedestrian’s crossing intent.

P (a|y′T :2T ) = σ{fθ(y′T :2T )} (4.5)

Type Input Units Output
C1a C3D 112 × 112 × 3 4096
C1b C3D 112 × 112 × 3 4096
C2 Concatenate 4096 (C1a)

4096 (C1b)
8192

C3 Dense 8192 1024 1024
C4 Dense 1024 1 1

Table 4.3: Architectural details of the classifier. Input and output sizes are indicated per
time slice of a 16-frame video.

We fine-tune the C3D network presented by Tran et al. [6] pre-trained on the Sports
1M dataset [58] as our classifier. The pretrained model accepts 16 frames of size 112× 112
whereas our model generates frames of size 128×208. As most occurrences of the beginning
and end of a crossing event take place towards either the left or right edges of the frame
(the curbsides), we slice our input frames into two with an overlapping region between them
(Column slices 0 : 112 and 96 : 208). Two instantiations of the same classifier network are
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used to extract motion and visual features from these image slices. Features from the C3D
pair are concatenated before transforming into the probability of crossing through two new
fully connected layers. The last layer uses a sigmoidal activation, with the classifier trained
on binary-crossentropy loss. Performance scores and training strategy are detailed in Section
5.2. More information on the architecture can be found in the Table 4.3.
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Chapter 5

Experiments and Discussion

5.1 Video Prediction

5.1.1 Experimental Setup

The JAAD dataset consists of 346 traffic videos of pedestrian interaction scenarios. We
use 95 (∼30%) of them in our test set and 35 (∼10%) for validation. We omit 8 videos
sampled at a higher frame rate of 60 FPS, leaving 208 videos (∼60%) in the training set.
The recordings across the sets are mutually exclusive, meaning we do not split the same
video across any of the sets. To augment the training set, we stride a window of 32 frames
by one over the training videos and pack them in randomly shuffled batches. We train the
encoder-decoder stack described in the previous chapter to optimize for a combination of
l1 and l2 losses as shown in equation 5.1. The losses are calculated between the N pixels
of T predicted frames y and ground truth frames y′. For video prediction experiments,
we set N = 128 × 208 and T = 16 frames. The input frames are normalized across the
three RGB channels to fall within the range [-1, 1]. We use BatchNormalization [59] layers
after every convolutional layer. The outputs in the encoder are activated with LeakyReLU
functions with α = 0.2 whereas we use tanh activations in the decoder. We also use Dropout
layers to avoid overfitting. The generator is first trained with the RMSprop optimizer for 30
epochs to minimize l2 loss. Learning rate is set at 10−3 for 7 epochs and then reduced by
a tenth after 14 and 20 epochs. We then train the network for 10 more epochs to minimize
l1 loss for sharper edges with the learning rate set at 10−5. In order to visualize relative
consistency across frames in the generated sequence, we plot l1 loss between the prediction
and the ground truth per frame in a Temporal Variation Graph (TVG). We experimented
with various architectures for the 16-frame generator that lead to lower losses and enhanced
visual coherence that we evaluate qualitatively and quantitatively in the following sections.
All training and experiments are run on an Nvidia GTX 1080Ti GPU.

L = 1
N

T∑
t=1

N∑
i=1

(yt,i − y′t,i)2 + λ
1
N

T∑
t=1

N∑
i=1
|yt,i − y′t,i| (5.1)
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5.1.2 Qualitative Analysis

We train three kinds of models for future prediction: 1. Fully convolutional model (Conv3D)
2. Recurrent decoder model (Segment) and 3. Residual encoder-decoder model (Res-EnDec).
In Figure 5.1, we show a block diagram view of network architectures experimented with.
We then perform ablation studies on the residual encoder-decoder model described in the
previous chapter. Figures 5.2 - 5.6 present examples of videos predicted by each of these
models as a sequence of frames stacked one below the other for comparison. The sequences
progress in time towards the right in every row. We only show some key-frames for brevity.
Predicted videos in the graphics interchange format are posted online 1.

xTx1

y'T+1 y'2T

xTx1

y'T+1 y'2T

(a) (b)
xTx1

y'T+1 y'2T

+

+

+

+

xTx1

y'T+1 y'2T

+

+

+

+

(c) (d)

Figure 5.1: Block diagram for (a) Conv3D model (b) Segment model (c) Res model (d)
Res-EnDec model

1http://autonomy.cs.sfu.ca/deep_intent/
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Input

Future

Figure 5.2: Example predictions by various models. Every third frame shown for brevity.
Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-EnDec model;
Row 4: Res model; Row 5: EnDec model; Row 6: Undilated model; Row 7: Unreversed
model; Row 8: Segment model; Row 9: Conv3D model. The car is turning right towards the
pedestrian who is crossing the street leftwards. Visually, the Res-EnDec model seems to be
able to define the background better than all other models.
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Input

Future

Figure 5.3: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-
EnDec model; Row 4: Res model; Row 5: EnDec model; Row 6: Undilated model; Row 7:
Unreversed model; Row 8: Segment model; Row 9: Conv3D model.
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Input

Future

Figure 5.4: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-
EnDec model; Row 4: Res model; Row 5: EnDec model; Row 6: Undilated model; Row 7:
Unreversed model; Row 8: Segment model; Row 9: Conv3D model.
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Input

Future

Figure 5.5: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-
EnDec model; Row 4: Res model; Row 5: EnDec model; Row 6: Undilated model; Row 7:
Unreversed model; Row 8: Segment model; Row 9: Conv3D model. Both Res-Endec and
Res models falter more than other models towards the end of the sequence with a poor
definition of the pedestrians.
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Input

Future

Figure 5.6: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-
EnDec model; Row 4: Res model; Row 5: EnDec model; Row 6: Undilated model; Row 7:
Unreversed model; Row 8: Segment model; Row 9: Conv3D model. This example is a case of
a featureless scene with the car turning rightwards in the parking lot. Almost all predictions
quickly become inaccurate.
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5.1.3 Quantitative Analysis

Figure 5.7 shows the training progress for the Res-EnDec model. As can be seen, l2 loss
saturates around the eighth epoch and l1 loss varies in the fourth decimal in the graph on
the right, though at first glance it would not appear to saturate. The average pixel-wise
prediction l1 error is (1.37± 0.37)× 10−1 for this model. The errorbar l1 loss TVG for the
model (Figure 5.8) showcases an increase in prediction error, as the errors can be expected
to accumulate as one goes further in time. We suspect the high initial error in the TVG to be
because of the substantial influence the last input frame has on the generation because of our
reverse ordering of the input. Also, the model appears to configure the spatial manifestation
of the scene first and then successively transform objects to project in motion, due to the
observed drop in prediction loss from the second frame. The shaded blue area in the TVG
shows standard deviation in l1 loss for k−th predicted frame. Standard deviation in error
over consecutive frames remains fairly consistent. We believe these errors primarily originate
from prediction uncertainties for objects in motion and because motion itself remains fairly
uniform, the deviation remains consistent with an almost linear increase.

Model l1 loss (10−1) Appreciation (%)
Conv3D 3.13± 0.47 7.61
Segment 1.43± 0.37 14.94
EnDec 1.46± 0.37 13.48
Undilated 1.42± 0.36 15.60
Unreversed 1.49± 0.39 5.22
Res 1.42± 0.36 15.88
Res-EnDec 1.37± 0.37 19.86

Table 5.1: Analysis of loss variation in time for various models
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Figure 5.7: Training and validation curves for Res-EnDec model. Left: l2 loss for 20 epochs
and Right: l1 loss for ten epochs of training.
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Figure 5.8: TVG for Res-Endec model

By comparison, the TVG for the Conv3D model shows a much higher mean prediction
error of (3.13±0.47)×10−1. The Conv3D model consists of 3D convolutions in the encoder
and decoder. The encoder employs striding to reduce image sizes to representations. The
decoder on the other hand uses transposed convolutions, referred to as deconvolutions in
some literature, to increase image sizes [60]. All kernel sizes are set to 3×3×3 as is common
with 3D convolutional architectures. The trend over time, as can be noted from Figure 5.9 is
unstable and the error does not appreciate as much as in the case of the Res-EnDec model.
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Figure 5.9: Left: TVG for Conv3D model and Right: TVG for Segment model

The sequential nature of the video frames can be better modelled with recurrent layers
than with 3D-convolutions. We change the decoder from the Conv3D model to adopt recur-
rent convolutional layers to build our Segment model. The convolutional layers help preserve
the spatiality of the data relative standard vector LSTM layers. The Segment model is de-
signed with kernel sizes and number of filters drawn from the common image segmentation
models. The encoder is 3D-convolutional with 3× 3× 3 filters as kernels and the number of
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filters increases from 32 to 64. The mean error is now (1.43 ± 0.36) × 10−1, ∼ 54% better
than the Conv3D model and ∼ 4% worse than the Res-EnDec model.

Ablation Studies
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Figure 5.10: Temporal Variation of the l1 prediction loss for various models. TVG for the
Conv3D model is not shown to avoid graph skew due to the relatively large error values.

We perform ablation studies on our Res-Endec model to determine the importance of
the residual connections, dilated convolutions and reversing the input data. In our first Res
model, we remove the residual connection between the encoder and decoder, but let the
connections within the sub-modules remain. Next we remove all residual connections in the
EnDec model. In the Undilated model, all convolutions are undilated and we retain the
residual connections within the encoder-decoder pair. In our last ablation study, we study
the effect of reversing the input data. In the Unreversed model, the input data ordering
is not reversed. The graph in Figure 5.10 compares the temporal error variance across all
models. We do not include the TVG for the Conv3D model so as to not skew the y−axis
with its relatively large prediction errors.

Prediction error appreciates across all models over time. We will quantify this apprecia-
tion for comparison across all models here. As is evident from the graph some losses increase
at a faster rate than others, particularly after the third-frame prediction. We tabulate this
rate of increase as a percentage over the third-frame prediction loss in the Table 5.1 as Ap-
preciation. Our best performing Res-EnDec model also shows the most error appreciation
of 19.86% over the least appreciating Unreserved model at 5.22%. However, the mean loss
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for the Res-EnDec model is ∼ 8% lower. For the case of the unreversed T -frame input data
making T -frame predictions, we observe that although an empirical distance between frames
xk and xT+k is higher than between xT and xT+1, the distance remains fairly uniform for
short-length sequences. As a result, it can be seen that the Unreserved model makes higher
errors, but consistently so. From the Table 5.1, it can be seen that the error for the Conv3D
model appreciates lower than most other models from frame 3 onwards, but the error itself
is ∼ 56% worse than the best. It is important to note that though the Res-EnDec model
shows the highest appreciation, the error is consistently lower than the other models for the
duration of 16 frames. All other ablations increase the mean prediction error across frames,
with the removal of all residual connections causing the most decline at 6%. This suggests
that both dilated convolutions and residual connections have improved loss performance.

5.1.4 Latent Space Visualization

Consider this toy example of a person called Enco whose only job is to describe 16-length
traffic videos in English. On the other hand, Deco’s job is to paint 16 new images that look
like what the future would be after they read these English descriptions. Enco could describe
the entire video in one sentence or many. Further we could ask Enco to use a definite number
of words in a sentence. It can be argued that multiple sentence descriptions are better as
they present more opportunity for including details, given each sentence is different from
the other. In our work, as is obvious, Enco is the Encoder, Deco is the Decoder. We choose
to represent the encoder’s definition of the traffic video as 16 representations z1:16, similar
to 16 equal length sentences from Enco.

If Enco said, "The red car is driving from the left to the right", 16 times instead of
saying new things, Deco would perhaps ignore a pedestrian stepping on to the street in
their painting of the future. In these experiments we study how different each of the z are
to each other. In our first experiment, we repeat the first learnt representation z1 across
the decoder’s input in our Res-EnDec model and show the predicted future in figure 5.11.
We continue to repeat the rest of the learnt z2:16 in the same fashion and show the predic-
tions to compare their relative contribution. The predictions are presented in Figure 5.11.
Repeating z1 results in virtually no visible motion across predicted frames as seen in the
figure. However, repeating the later representations, z16 for example, shows the most aber-
ration along the edges suggesting movement in the objects. From these comparisons, it can
be inferred that every representation z learnt by the encoder is encouraged to be different
from the others. This is because of the recurrent nature of the decoder and the additive
framework of residual connections. Our treatment of the future generation stage is that the
first few frames offer a transfer of spatial layout from the past to the future. Then, motion
variances across frames are imparted to the predictions as multi-stage autoregression over
the trailing representations.
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In our second experiment, we visualize the 16×26×64 dimensional representation space
z using the t-distributed Stochastic Neighbour Embedding algorithm (t-SNE) [61]. Or in
other words, we are reprojecting Enco’s 16 sentential descriptions into say, three dimensions
to study if and how they are different from each other. If they are different, we can conclude
that they are contributing new information to aid Deco in painting the future. Visualizing
each zi, 1 ≤ i ≤ 16 directly is clearly inconclusive because they correspond to a variety of
traffic videos. We proceed to subtract the first representation, z1 from each of the rest to
retain temporal variances and project them onto a 3-dimensional space in Figure 5.12. We
choose z1 for subtraction from the other representation because we deem it to transfer the
most spatial information. We do not plot the now normalized z1 as they are all zero vectors
following the subtraction. For each video in the test set, we gather z1:16 that are used to
decode the future. We then randomly choose 625 instances for each of the 16 representations
and plot their t-sne minimized vectors in Figure 5.12 and 5.13. The slices going from time
t = 2 to t = 16 are shown using a spectrum variation in colour with the legend on the
right edge of every graph. The scatter plot shows a trend going from deep blue to maroon,
equivalently from the second predicted frame to the last. The clustering of like colours
indicates a similarity in decoding a given time slice of prediction. It is interesting to note
that the representations appear to transition sequentially, suggesting Iterative Inference as
discussed in Section 4.1.

We perform the same experiment as previously discussed but now extract new repre-
sentations ri, 1 ≤ i ≤ 16 from the first residual connection in the decoder. The scatter plot
for t-SNE minimized 16 × 26 × 64 dimensional space is presented in Figure 5.14. The plot
shows many streaks of colour transitions flowing from r1 to r16. The representation space is
rendered with more structure, with the r’s earlier in the sequence appearing to spawn from
within a virtual volume outwards, as seen in the 3D rendition. The pseudo-spherical nature
of the volume is clearer in 2D form in Figure 5.15. The effect of the recurrent and residual
connections together is that of Iterative Inference, as intuited.
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Figure 5.11: Studying the effect of sequential z
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Figure 5.12: Scatter plot of 15 representations z2:16 learnt by the encoder. 625 instances
for each of the 15 tensors have been reduced to 3 dimensions using the t-sne algorithm.
The reprojected tensors are shown as a colour gradient from 2 to 16. A gradual trend
from deep blue to maroon suggests that the representations are different from each other.
Autoregressively processing them encourages iterative inference.
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Figure 5.13: Scatter plot of 15 representations z2:16 reduced to 2 dimensions using the t-sne
algorithm. The reprojected tensors are shown as a colour gradient from 2 to 16.
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Figure 5.14: Scatter plot of tensors r2:16 obtained from the first residual connection in the
decoder. 500 instances for each of the 15 tensors have been reduced to 3 dimensions. The
reprojected tensors are shown as a colour gradient from 2 to 16. Close association of sam-
ples in the form of blue-maroon streaks suggests that the recurrent convolutions assist in
reforming the latent space into a virtual sphere with motion projecting the transforma-
tions outwards. The distinction between the samples suggests that the residual connections
encourage mutually different representations and encourage iterative refinement.
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Figure 5.15: 2D scatter plot of 500 instances each for the 15-length tensor sequence r2:16
output at the first residual connection in the decoder. The representations are shown as a
colour gradient from 2 to 16.
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5.1.5 Discussion

A significant challenge to generalization is posed by high variability in how a traffic activity
transpires over time. This work is motivated by an observation of human behaviour that
short-term predictions of their immediate surroundings are based based on prior experiences.
A prediction of the future aids humans in taking more-informed control decisions. In this
section we discuss some observations we make in our video prediction experiments.

Working in the image space helps the model understand motion as a scene phenomenon.
This results in implicit modelling of individuals’ motion, relaxing the need for expensive
annotations needed to supervise a network. Multiple object and pedestrian motions, even
in orthogonal directions, are also tractable, as seen in Figure 5.16(a). However, such a scene
interpretation leads to cases where the largest moving object inadvertently dominates the
motion transform. Figure 5.16(b) shows a case where the relatively large motion content of
the car impedes the network’s ability to perceive the pedestrians in the background.

(a)

(b)

Figure 5.16: The effects of learning motion as a scene phenomenon. (a) Multiple object and
pedestrian motions, even in orthogonal directions, are tractable. (b) The relatively large
motion content of the car impedes the network’s ability to perceive the pedestrians in the
background.

Object motions, unseen in the input frames are not predicted in the future. Although
this is intuitive, the 16-frame window our model looks at the world through makes it im-
possible to generate an otherwise periodic motion. Figure 5.17 shows the periodic motion of
a windshield wiper in row 1 corresponding to the past, a window prior to the current input
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to the model, which itself is shown in row 2. The model does not reproduce this motion as
seen in row 3, the predicted sequence.

The approach of data-driven modelling makes it possible to build more generalizable
models than ones with hand-crafted features. However, a bias in sampling the training data
could lead to flawed predictions for previously unseen or less frequently seen cases. Figure
5.18 shows one such case. Figure 5.18 (a), row 1, is the ground truth video of a car backing
up onto the street. The generated future, row 2, predicts that the car is stationary. We
suspect this could be because of how rarely such a scenario is encountered in our training
data. Ground truth set 5.18 (b) shows the car now showing a movement laterally to the
right in each frame while backing up. As this motion is very common, lateral variations in
the car-shape can be seen in the prediction, while still failing to embody the car’s reverse
travel.

Figure 5.19 depicts a test sequence of pedestrians moving forward in the direction of
the camera’s travel. It can be seen that the predictions (row 2), represent visually incon-
spicuous movement in the pedestrians, although the car’s egomotion borne transitions are
reproduced. We believe that these instances can be better approached by considering mo-
tion as a three-dimensional phenomenon. Inclusion of depth supplements the model with
the needed information to reason longitudinal motion from.

Figure 5.17: Row 1: The past, a window prior to the current input to the model; Row 2:
Current input to the model; Row 3: The predicted sequence. The model does not reproduce
the periodic motion of the windshield wiper even though it has seen it in an earlier input.
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(a)

(b)

Figure 5.18: Training data contains very few examples of a car backing up on to a street,
making such predictions inaccurate.

Figure 5.19: Non-lateral motion cannot be predicted accurately. Such instances can be better
approached by considering motion in 3-dimensions.
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5.2 Crossing Intent

5.2.1 Experiments and Results

We fine tune the classifier model described in Section 4.4 on the JAAD dataset. Our model
is trained on the similar data train, validation and test splits as described in [1] so that
we can compare with them in terms of Average Precision (AP) for classifying a video into
crossing or not crossing. Their Action + Context model has an AP of 62.73% as shown in
Table 5.2 for classifying 10-15 frames of video. Details of this work are presented in section
2.2.1. We organise training videos in strides of 8 and test videos in strides of 16. We also
augment image sequences with every alternate frame chosen to train on, to simulate faster
moving traffic. We use RMSprop as the optimizer starting with an initial learning rate of
10−5 for 30 epochs. The learning rate is reduced by a factor of 10 at epochs 7 and 16. We
also regularize the fully connected layers to lessen overfitting. The most frequent label in
a sequence is considered as the target label for binary classification. Although our usage
of l1 loss over l2 renders sharper edges in the images, we pose that these losses do not
evaluate the compositional consistency of the predictions. Recognizing an action using a
classifier network, we can reason about motion and visual content in the video by building
hierarchical representations.

Model AP
Action [1] 39.24 ± 16.23
Action + Context [1] 62.73± 13.16
Conv3D 78.61
Segment 80.85
Res 80.42
Res-EnDec 81.14

Table 5.2: Average precision in predicting crossing intent

Model Accuracy
Conv3D 61.18
Segment 65.23
Res 66.59
Res-EnDec 67.38

Table 5.3: Crossing intent prediction accuracy across various models

We fine tune our classifier model for 30 epochs with early stopping based on validation
loss and on the futures predicted by the models listed in the Table 5.3 as input. The table
compares accuracy in recognizing a crossing action from predicted videos alone. The test
set contains 1257 image sequences of 16 frames each, of which 474 are labelled crossing and

42



783 as not crossing. The Res-EnDec model with the lowest reconstruction loss outperforms
the Conv3D model by around 6%. We compare average precision scores with the results
presented by Rasouli et al. in [1], in the Table 5.2. We outperform their Action+Context
model consistently across all our models and by about 18% in the case of our best results.
Figures 5.20 - 5.28 present some video sequences with predicted and ground truth labels
on the bottom left corner of each frame. The image descriptions underneath provide more
observations from the sequences.

Model AP Precision Recall F1 score Accuracy
Conv3D 69.91 78.26 39.13 52.17 52.17
Segment 72.99 67.86 41.30 51.35 47.83
Res 71.09 67.74 45.65 54.55 49.28
Res-EnDec 72.56 68.29 60.87 64.37 55.07

Table 5.4: Crossing intent prediction statistics across various models for videos with an
action change between input and ground truth.

Model AP Precision Recall F1 score Accuracy MTCP
Conv3D 74.86 92.86 63.93 75.73 76.85 1.52± 1.85
Segment 76.92 91.49 70.49 79.63 79.63 2.06 ± 2.87
Res 77.82 86.89 80.30 83.46 80.56 2.37 ± 3.48
Res-EnDec 81.93 89.61 89.61 89.61 86.09 2.01 ± 2.83

Table 5.5: The performance of various models from MTCP experiments employing sliding
for test cases where the ground truth labels change from crossing to not crossing and vice-
versa.

In a second experiment, we only consider those test cases where there is a change in
action labels between the current and the future ground truth frames. The ground truth
data is labelled with actions per frame. We consider the most frequently occurring label in
our input sequence as the current action label and in the ground truth future as our target
label for this experiment. We report several metrics for this experiment in the Table 5.4.
In some test scenarios, we observe that incorrect action predictions may arise because of
insufficient stimulus in the input to feature a change in the future transformation. We define
a new metric, mean time-to-correct-prediction (MTCP), as a measure of the number of new
frames to be subsequently processed to correct a mistaken crossing intention. As another
experiment, we slide our input window of 16 frames by every frame once we determine there
is change in a pedestrian’s crossing intent by looking at the ground truth. We do this until
the classifier predicts correctly. Therefore, the maximum MTCP is 16 beyond which sliding
would effectively mean seeing the future, and we consider this as a misprediction. We report
the MTCP for different models in the Table 5.5 along with other binary classification metrics
to compare with those from the Table 5.4. The MTCP score is a means of comparing an
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empirical latency in predicting a different behaviour, triggered by an input feature such as
a stepping forward cue by a crossing pedestrian. However, the score should not be taken to
imply that by waiting to process new frames all initial mispredictions can be corrected. The
Conv3D model, with the most visually obscure predicted images, has the highest precision
at 92.86% when sliding is employed, but suffers with poor recall with and without sliding.
The model also shows the lowest MTCP at 1.56, meaning that it responds to input changes
faster than the other models experimented with. We suspect this could be because of fully
convolutional nature of the model. All other models experimented with feature a recurrent
variant of the decoder and sport a similar MTCP of around 2.20. The Res-EnDec model
performs about 10% better than the Conv3D in terms of prediction accuracy and reports
around 10% better average precision for our MTCP experiments. Also notable is the high
recall score at 89.61% for this model with sliding, giving it the best F1 score.
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Input

Future

Figure 5.20: Example predictions by various models. Every third frame shown for brevity.
Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3: Res-EnDec model;
Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. The pedestrian exits
the frame towards the right going from crossing to not-crossing.
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Input

Future

Figure 5.21: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. The
pedestrian is seen to be exiting the view frame towards the left with some partial presence
in the first few frames of the future. Action transition is from crossing to not-crossing.
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Input

Future

Figure 5.22: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model.
A pedestrian is attempting to cross the street with action transition from not crossing
to crossing. Although, from the ground truth, a crossing label is seen only in the last
frame, Res-EnDec, Res and Conv3D models are able to correctly identify the action for this
example.
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Input

Future

Figure 5.23: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. A
pedestrian can be seen to be attempting to cross the street towards the left going from not-
crossing to crossing. All models except Conv3D mis-predict this change. We believe this
is because of seemingly inconspicuous movement from the pedestrian indicating an intent
to cross until the very last frame of the input sequence. Reading a few more frames could
potentially help the models to correct their prediction.
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Input

Future

Figure 5.24: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. A
group of pedestrians can be seen attempting to cross the street towards the left with the
foremost pedestrian stepping forward first. All models except the Segment model predict
the change correctly.
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Input

Future

Figure 5.25: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. A
pedestrian can be seen to cross the intersection from behind the car ahead from the ground
truth sequence. All models are unable to capture this movement as can be seen by the
stationary generations for the pedestrian in the future.
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Input

Future

Figure 5.26: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. A
pedestrian is seen walking longitudinally along the road not appearing to cross. Ambiguous
labelling in such scenarios is a challenge.
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Input

Future

Figure 5.27: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. No
model succeeds in correctly predicting the action for the pedestrian crossing longitudinally
in the left region of the frame. We believe this is because this pedestrian, as can be seen
from the input and the ground truth, features only in the future. The models cannot predict
motion for unseen participants.
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Input

Future

Figure 5.28: Row 1: Input frames; Row 2: Ground Truth. Futures predicted by, Row 3:
Res-EnDec model; Row 4: Res model; Row 5: Segment model; Row 6: Conv3D model. An
example where the car’s own egomotion is in a direction non-orthogonal to that of the
crossing pedestrian. Res-EnDec and Segment models correctly predict the crossing action.
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5.2.2 Discussion

Prediction of crossing intent in traffic scenarios has the potential to save lives. Conversely,
braking every time a pedestrian is on the curbside could make the drive intermittent and
uncomfortable. Reasoning from a probable future affords a stochastic estimate of a pedes-
trian’s crossing intent, reducing the chances of unnecessary braking. Such a system could
tolerate false positives, but false negatives need to be penalized. Or, in other words, a good
precision is desired but a good recall is necessary. From the Table 5.6, we can see that the
Res-EnDec model has comparable precision and recall scores on our test set. The Conv3D
model has a precision ∼10% higher than the Res-EnDec, but has the lowest recall. The F1

scores better summarize this trend.

Model Precision Recall F1 score
Conv3D 83.75 46.74 60.00
Segment 81.80 56.83 67.07
Res 79.23 62.84 70.09
Res-EnDec 74.77 71.90 73.31

Table 5.6: Crossing intent prediction accuracy across various models

Predicting 16 frames of future at a frame rate of 30 FPS corresponds to looking ahead
533 ms in time. Any advantage gained from this is reduced by the run time of the prediction
method. The Table 5.7 lists the run time to load a 16-length image, predict the next 16
frames and classify the video as an action for four of our test models on our implementation
running on an Nvidia GTX 1080 Ti GPU. Conv3D is the fastest model at 69ms, for an
effective maximum look-ahead time of 463ms. Res-EnDec has a runtime of ∼ 117 ms, with
a similar time for the Res model and an effective look-ahead of 416ms.

Model Time (ms)
Conv3D 68.84 ± 26.34
Segment 96.10 ± 28.89
Res 116.11 ± 42.22
Res-EnDec 116.39 ± 38.78

Table 5.7: Time taken to recognize crossing intent. The time estimated is from the instant the
input frames are fed to the future generator to the instant the classifier makes a prediction.
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Chapter 6

Conclusion

6.1 Video Prediction

In this thesis, we demonstrated three broad categories of neural network algorithms tasked
with generating future videos. All models followed an encoder-decoder strategy. The three
categories are: a) fully convolutional, b) recurrent decoder c) residual network. We intu-
ited that time dilated causal convolutions can help an encoder look deeper in time for the
same number of parameters for the purpose of tackling potentially negligible temporal vari-
ation in subsequent frames. Ablation studies were also performed by unreversing the input
frame sequence, undilating convolutional kernels, removing residual connections between
the encoder and decoder and the ones within the encoder and decoder for the Res-EnDec
model, producing the lowest l1 error between predictions and ground truth future. We then
introduced a Temporal Variation Graph for all models, to measure their contributions in
per-frame visual reproducibility and temporal coherence. Our results suggest that the resid-
ual connections encourage learnt intermediate representations to be mutually different and
along with multi-stage recurrent decoding, iterative inference can be seen.

Our insight was learning a sequence of representations from an encoder rather than a
comprehensive tensor as done in many sequence generation approaches. We do this with
the understanding that motion is nuanced and distributed throughout direct and indirect
participants in a traffic interaction. A vehicle’s own egomotion is hard but essential to
model in conjunction with the scene. From the t-sne plots in Section 5.1.4 we see that
an autoregressive consumption of learnt representations makes the latent space organize
same frame vectors into a cloud almost distinct from one another. Recurrent decoding
with residual learning further structures this latent space suggesting a transformation that
iterates the representations to the future one at a time, validating our hypothesis.
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6.2 Reasoning from a future

We also proposed and demonstrated a classifier algorithm based on the C3D sports action
classifier model presented by Tran et al. [6]. The network was tasked with recognizing a
crossing action by looking at a video of a generated future, thereby being able to predict a
pedestrian’s crossing intent. We showed that our best model with an average precision score
of 81.14% is 18% higher than the model introduced by Rasouli et al. [1] for videos from
the JAAD Dataset [9]. Their model also studies the contribution of context in the overall
gain in performance by explicitly assigning the network the additional job of detecting
scene elements such as traffic signs against our implicit modelling of motion as a scene
phenomenon. For the specific instances of a changing action from the input to the future,
our experiments with the Res-EnDec model result in the best accuracy in prediction at
88.74% with an F1 score of 90.81%. We then introduced a new metric called mean time to
correct prediction as a measure of the average number of new frames that lead to a correct
prediction in the case of a changing intention in crossing. It also serves as a measure of
the future generator’s responsiveness to variations in the input that trigger a change in the
action generated. The best MTCP was that of 1.56 frames with a standard deviation of
2.12 frames for the Conv3D model, but the model suffered in all other metrics. All other
models report a similar MTCP of 2.12 frames. In the discussion we described the necessity
for such a classifier to have a good recall because false negatives invoke severe penalty. A
good precision is desired to reduce intermittent braking caused by false positives. This is
likely to result in a smoother and more comfortable drive for the passengers.

6.3 Unification

The idea of looking into the future to predict a potential hazardous crossing action is only
validated as long the computational processing time is fast enough to take preventative
action. We reported that the fastest model Conv3D can look-ahead by about 463ms and
our best performing model, Res-EnDec has an effective look-ahead of 416ms. Data driven
methods, by extracting features from videos as a learning optimization of weights, help
in establishing a prior on motion from challenging traffic scenes. However some cases, as
discussed in Section 5.1.5, showcase a few shortcomings. We also present potential improve-
ments by studying motion in 3-dimensions. Another avenue to consider could be fine-tuning
the future generator while freezing the weights of a satisfactorily trained classifier so that
only the features responsible for action recognition from the scenes can be refined.

Our hypothesis is that an intelligence predicting, preparing, anticipating, expecting or
prospecting the future, will augment motor control and decision making in humans. This
feature is critical to combat an artificial indifference with which we inherently build our
autonomous cars. For they will soon start to live amongst us.
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