
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)
pages 2121--2427, Las Vegas, Nevada, October, 2003. (Also Technical Report CRES-03-009)

On device abstractions for portable, reusable robot code

Richard T. Vaughan1 Brian P. Gerkey2 Andrew Howard2

1Information Sciences Laboratory, HRL Laboratories LLC., Malibu CA 90265-4797 USA
2Robotics Research Laboratory, University of Southern California, Los Angeles CA 90089-0781 USA

Abstract— We seek to make robot programming more
efficient by developing a standard abstract interface for
robot hardware, based on familiar techniques from op-
erating systems and network engineering. This paper de-
scribes the application of three well known abstractions,
the character device model, the interface/driver model, and
the client/server model to this purpose. These abstractions
underlie Player/Stage, our Open Source project for rapid
development of robot control systems. One product of this
project is the Player Abstract Device Interface (PADI)
specification, which defines a set of interfaces that capture
the functionality of logically similar sensors and actuators.
This specification is the central abstraction that enables
Player-based controllers to run unchanged on a variety of
real and simulated devices. We propose that PADI could
be a starting point for development of a standard platform
for robot interfacing, independent of Player, to enable code
portability and re-use, while still providing access to the
unique capabilities of individual devices.

I. INTRODUCTION

Abstract, n. 1. That which comprises or
concentrates in itself the essential qualities of
a larger thing or of several things. [Webster’s
Revised Unabridged Dictionary, 1998 MICRA,
Inc., via Dictionary.com 2003]

The Player/Stage Project produces tools for rapid devel-
opment of robot control code. Its two main products are
the Player robot server, a networked interface to a collec-
tion of hardware device drivers, and Stage, a simulator that
provides a population of virtual robot devices. Player and
Stage are Open Source Software, released under the GNU
General Public License. Source code is freely avalable
from http://playerstage.sourceforge.net/.

The original goal of Player was to provide a simple,
flexible interface to our Pioneer robots, and to allow code
to run unchanged in simulation and on the real robots.
The Player/Stage development system is now used for
research projects in more than 20 labs around the world,
and by many more individual students. As Player evolved,
device drivers were written for the RWI robots (which
ship with “Mobility”). The new drivers re-used some of
the existing packet formats, as they did logically the same
thing (reporting sonar range readings, etc.). There was a
lot of overlap between interfaces.

This experience raised the possibility that a controller
could run unchanged on different robot platforms. Our
vision for the future development of Player and similar

interfaces is that robot applications should produce similar
behavior on a wide variety of robots, just as a web page
can be rendered on a varietry of browsers.

This paper describes the abstractions used in our soft-
ware, whereby Player “comprises and concentrates within
itself the essential qualities” of robotics devices in order
to afford code portability and re-use. We also make some
proposals for the development of a standard platform for
mobile robots, beyond the Player/Stage system.

II. THE PLAYER ABSTRACT DEVICE INTERFACE

The central abstraction that enables portability and code
re-use in Player is the Player Abstract Device Interface
(PADI) specification. The PADI defines the syntax and
semantics of the data that is exchanged between the robot
control code and the robot hardware. The PADI’s set
of abstract robot control interfaces constitutes a virtual
machine, a target platform for robot controllers that is
instantiated at run time by particular devices.

The Player Protocol implements the PADI along with
some additional structures and rules for multiplexing,
buffering, sending and receiving collections of PADI pack-
ets, and commands for inspecting and controlling the
behavior of the Player server. This protocol was designed
from scratch to be suitable for mobile robot applications.
While Player is a useful piece of software, the details of
the shifting of packets are not fundamental to an effort
to devise a standard robot programming environment.
A different protocol could implement the PADI and the
Player Protocol could manage a different abstract device
interface. While there are many examples of special-
purpose Session Layer (see section IV-A) protocols, the
PADI is (we believe) a uniquely open abstract robot
platform. As such, it is a candidate starting point for the
development of a standard. Yet PADI is still immature
and faces significant design challenges, some of which
we indicate below.

III. ABSTRACTIONS

As a development tool for robot control, the Player
server has enjoyed significant success, becoming an
important piece of enabling infrastructure for research
projects in more than 20 academic and industrial labs
around the world. However, Player’s primary contribution
derives from the abstractions it implements, rather than



from the details of its implementation. We recognize that
the particular way in which Player is implemented is not
fitting for all robotic application domains, but suggest that
the principles of Player’s design are instructive and widely
applicable.

Putting aside the implementation details, which we
discuss in Section VI, we can distill Player to three
essential abstractions, which we describe in the following
sections.
A. The character device model

The “device-as-file” model, which originated in Multics
[1] and was popularized by UNIX [8], states that all I/O
devices can be thought of as data files. A distinction
is made between sequential and random access devices.
Sequential devices such as terminals and tapes produce
and consume streams of data one byte after another, and
are called character devices, while random access devices
such as disk drives can manipulate chunks of data in
arbitrary orders, usually through a cache, and are known
as block devices. The nature of sensors and actuators is to
produce and consume data in time-extended streams: they
are character devices.

The standard interface to character devices is through
five well-defined operations. Access to devices is con-
trolled by open and close operations. Data is collected
from the device by a read operation, and sent to the
device by a write operation. The asynchronous read and
write are sufficient on their own for many devices, but a
third transfer mechanism, the ioctl (input/output control)
provides a synchronous request/reply channel, typically to
access data that is persistent rather than sequential, such
as setting and querying the configuration of the device.
All five operations will indicate error conditions if they
fail.

1) Player application: Player uses the character device
interface to access its hardware devices. For example,
to begin receiving sensor readings, the client opens the
appropriate device and reads from it. Likewise, before
controlling an actuator, the client opens the appropriate
device and writes to it. An ioctl mechanism is used for
device configuration and for atomic test/set and read/clear
operations required by some devices. For reasons ex-
plained elsewhere [4], [3], Player does not currently
implement exclusive access to devices, so multiple client
programs can simultaneously control the same device. We
are considering adding exclusive access modes, which
would be analogous to file-locking mechanisms in oper-
ating systems.

2) Limitations: The character device model has some
drawbacks. In particular, since there is no interrupt mecha-
nism, clients must poll devices to receive new data. This is
not the best approach for low-latency I/O with high-speed
devices, which are usually interrupt-driven. Player was
designed to support update rates of the order of 5-100Hz,

covering the majority of research robots. This model is
unlikely to suffice for devices that operate on the order
of 1MHz. Also, the ioctl channel is often used in a way
that breaks device independence and reduces portability,
as discussed in Section IV-B.

3) Conclusion: The character device model defines five
operations (open, close, read, write, ioctl) that are provided
by the operating system to perform device I/O. Apart
from the assumption of sequential access (suplemented
with the ioctl), the character device abstraction is neutral
with respect to programming language and style. Almost
every programming language supports this model, and
almost any robot control architecture can be (and likely
has been) implemented atop the generic read/write/ioctl
interface. This model has successfully supported UNIX-
like operating systems for decades, and the Player server
for years. We suggest that the character device model is a
suitable foundation for a robot device control standard.
B. The interface/driver model

The character device model defines only the broadest
semantics of its three channels (roughly: input, output
and configuration), but imposes no other structure on the
data streams. Each device could have its own unique data
format, requiring controller code to be written specifically
for each device. Another powerful abstraction, the inter-
face/driver model determines the content of these streams
and provides the device independence that is the key to
portable code.

The interface/driver model groups devices by logical
functionality, so that devices which do approximately
the same job appear identical from the user’s point of
view. An interface is a specification for the contents of
the data stream, so an interface for a robotic character
device maps the input stream into sensor readings, output
stream into actuator commands, and ioctls into device
configurations. The code that implements the interface,
converting between a device’s native formats and the
interface’s required formats is called a driver. Drivers
are usually specific to a particular device, or a family of
devices from the same vendor.

Code that is written to target the interface rather than
any specific device is said to be device independent. When
multiple devices have drivers that implement the same
interface, the controlling code is portable among those
devices.

Many hardware devices have unique features that do
not appear in the standard interface. These features are
accessed by device-specific ioctls, while the read and
write streams are generally device independent. Interfaces
should be designed to be sufficiently complete so as to not
require use of device-specific ioctls in normal operation,
in order to maintain device independence and portability.

1) Player application: There is not a one-to-one map-
ping between interface definitions and physical hardware



components. For example, the Pioneer’s native P2OS
interface bundles odometry and sonar data into the same
packet, but a Player client program that only wants to
log the robot’s position does not need the range data.
For portability, Player separates the data into two logical
devices, decoupling the logical functionality from the
details of the Pioneer’s implementation. The pioneer driver
controls one physical piece of hardware, the Pioneer mi-
crocontroller, but implements two different devices: po-
sition and sonar. These two devices can be opened,
closed, and controlled independently, relieving the client
of the burden of remembering details about the internals
of the robot.

Since Player was initially designed as an interface
to our Pioneer 2-DX mobile robots, early versions of
the server provided almost transparent access to specific
components and peripherals of the Pioneer as it was used
in the USC Robotics Lab. For example, each data packet
from the sonars comprised 16 range readings, because
the Pioneer has 16 sonar transducers. Likewise, command
packets to the wheel motors comprised two velocities,
because the Pioneer is a non-holonomic, differentially-
driven robot (see Section IV-C for a further discussion
of motor command formats).

This Pioneer-specific device model was extensible, but
did not encourage code reuse or portability in the server
or in client control programs. When code was added to
the server to provide access to a new device, that device
presented a unique, device-specific interface that required
device-specific client-side support. As a result, client pro-
grams that controlled the second Player-supported mobile
robot, the RWI B21r, used an API that was completely
different from that used to control the Pioneer, despite the
fact the two robots are functionally similar.

In order to more conveniently support different devices,
we introduced the interface/driver distinction to Player. An
interface, such as sonar, is a generic specification of the
format for data, command, and configuration interactions
that a device allows. A device driver, such as pioneer-
sonar, specifies how the low-level device control will
be carried out. In general, more than one driver may
support a given interface; conversely, a given driver may
support multiple interfaces. Thus we have extended to
robot control the device model that is used in most
operating systems, where, for example, a wide variety of
joysticks all present the same “joystick” interface to the
programmer.

As an example, consider the two drivers pioneer-
position and rwi-position, which control Pioneer
mobile robots and RWI mobile robots, respectively. They
both support the position interface and thus they both
accept commands and generate data in the same format,
allowing a client program to treat them identically, ignor-
ing the details of the underlying hardware. This model also

allows us to implement more sophisticated drivers that do
not simply return sensor data but rather filter or process
it in some way. Consider the lasercspace driver,
which supports the laser range-finder interface. Instead
of returning the raw range values, this driver modulates
them according to the dimensions of the robot, creating
the configuration-space representation of free space in the
environment.

2) Limitations: The primary cost of adherence to a
generic interface for an entire class of devices is that the
features and functionality that are unique to each device
are ignored. Imagine a ficudial-finder interface
whose data format includes only the bearing and distance
to each fiducial. In order to support that interface, a driver
that can also determine a fiducial’s identity will be under-
utilitized, some of its functionality having been sacrificed
for the sake of portability. This issue is usually addressed
by either adding configuration requests to the existing
interface or defining a new interface that exposes the
desired features of the device. As an interesting example,
consider Player’s first Monte-Carlo localization driver;
it can support both the sophisticated localization
interface that includes multiple pose hypotheses, and the
simple position interface that includes one pose and is
also used by robot odometry systems.
C. The client/server model

The third abstraction provides a practical model for
implementing a robot interface. Player is based on a
client/server model, in which the user’s control program,
or client, is separated from the server, which executes low-
level device control, by an external, standardized medium.
In Player’s case, that medium is a TCP socket. The most
common alternative approach is the “direct link” model,
in which only a function call separates the user from low-
level device control [7].

Client/server is the dominant model for network and
Internet applications. Many of the other models for mov-
ing data across networks, such as RPC, are themselves
implemented on top of a client/server infrastructure.

A major advantage of the client/server model is that
clients can be written in any programming language that
supports the standardized communication medium used by
the server. For this purpose Player uses a TCP socket,
which is supported by almost every modern programming
language. Thus Player is language-neutral, without the
need to generate “wrappers” for different languages1.

The client/server model also facilitates concurrent ac-
cess to devices. Given a server that is capable of support-
ing a single client, relatively little extra work is required
to support multiple clients simultaneously. Furthermore,
if the medium that separates client and server is network-
aware, as is the TCP socket, then clients can execute on

1However, it is common to use language-specific client libraries that
encapsulate the handling of socket communication; see Section VI-A.



any machine with network connectivity to the machine
on which Player is executing. In this way, Player is
both platform- and location-neutral, exposing an identical
interface to all clients, regardless of whether they are
executing on the same machine or across the Internet.

1) Limitations: The principal drawback of the
client/server model is that it introduces additional latency
to device interactions, because data and commands are
necessarily delayed as they pass through the server. Since
Player provides data at a constant rate, it imposes an
average delay of a half cycle on all data, in addition
to network-related latencies. Although the data rate is
configurable, Player is usually operated at 10Hz. Thus on
average, new data sit in Player’s buffers for 50ms, which
is not significant for many robot control applications. This
kind of latency can be reduced but not eliminated, for
there are unavoidable costs resulting from the scheduler
and network stack of the underlying operating system.
An additional drawback of the client/server model is
that it requires network hardware and software, which
may not be available in extremely low-power embedded
computing systems (e.g., robomotes [9]).

IV. ISSUES FOR A STANDARD INTERFACE

Assuming that we employ the character device and
interface/driver abstractions described in the previous sec-
tions, we must devise a set of useful interfaces.

These interfaces will define the classes of equivalent
devices for robots, as concepts like “mouse” and “printer”
do for workstations. Although each device in a given class
may require a different driver, they all present the same
interface and provide the same (or very similar) func-
tionality. The PADI currently specifies 29 interfaces for
a range of devices including range-finders, grippers, and
probabilistic localization systems (see the Player Manual
[2] for a full list). Although Player’s interfaces are neither
orthogonal nor spanning in the space of devices, we sug-
gest from collective experience that the PADI specification
provides a starting point for creating a standard set of
interfaces.

An integral part of selecting the set of interfaces is
deciding for each interface the content and semantics
of the data, command, and configuration streams. In
determining what is included in an interface, we trade off
between generality across many devices and exposing the
capabilities of any particular device. A similar tradeoff is
made when deciding what is in the command and data
streams, as opposed to the configuration channel.

The Player interfaces have evolved over time, but most
quickly settle into quasi-static states. Interfaces usually
become more general as more drivers are written, exposing
limitations of the existing interfaces. The simulator Stage
is an extreme example of this phenomenon, because it has
none of the constraints of physical hardware.

A. The OSI Standard Model

We can define our recommended area of development in
terms of the standard model for networking protocols and
distributed applications. The International Standard Or-
ganization’s Open System Interconnect (ISO/OSI) model
distinguishes seven layers of functionality in a networked
system, grouped into Application layers (5-7) and the
Network layers (1-4) [10].

In terms of this model, Player uses TCP as a Transport
Layer (4) which implements the character device model.
The Player Protocol forms the Session Layer (5), defining
the semantics of the packets moved by the Transport. The
client libraries (see Section VI-A) form the Presentation
Layer (6), converting data into a format appropriate for the
Application Layer’s (7) specific language and architecture.

Robot applications have no unique requirements for the
Presentation Layer, which handles byte order, etc, so we
recommend that some existing standard should be used
to do the bulk of the work. The XDR External Data
Representation [5] is a candidate specification. Instead,
standardization effort should focus on the Session Layer,
defining the commands, data and configurations supported
by each interface, and thereby deciding what each class
of device does.
B. ioctl issues

Since a major use of ioctls is for device-specific con-
trols, managing them while maintaining device indepen-
dence becomes an issue. Player applies the following
policy, which we have found to work well. To support
an interface, a driver may be required to support a certain
set of ioctls. A driver may also support other ioctls. The
set of ioctls defined for an interface is the union of all
required and optional ioctls. If a driver supports an ioctl,
whether required or optional, the driver must preserve
the semantics for the ioctl as they are laid down in the
standard.

A remaining question regarding ioctls is that of how
to handle querying generic properties that cross interface
boundaries, such as pose and geometry. It would be in
keeping with many operating systems to leave it to each
interface to define its own ioctls for these purposes (this
is currently the case in Player). However, there is some
benefit to be had, in terms of code re-use and usability of
the standard, from defining and possibly requiring certain
ioctls for all interfaces. For example, all drivers could be
required, when queried, to return geometry information
(or at least a standard “don’t know”) in the same format.

For maximum portability, a controller should use no
device-specific ioctls. One simple mechanism to ensure
this is to provide a “core” PADI specification that excludes
all device-specific ioctls. Users would explicity enable
non-portable extensions at run time, perhaps by setting
a global flag, or on a per-device basis.



C. A challenge: position device interface

We have suggested that a standard set of interfaces
could be designed that are widely useful for robot control.
It is often straightforward to design an interface for a
particular piece of hardware, but generalizing an interface
over a range of devices is a non-trivial task, as the
following example illustrates.

Many research robots are mobile, containing a device
that allows them can change their position in the world.
We’ll attempt to generalize such a ‘Position Device’, and
consider the definition of an abstract Position Device
interface. A robot controller should be able to drive any
mobile robot that presents the interface, with similar
results.

The position of a rigid, non-articulated object can be
completely specified in three dimensions relative to a
fixed reference point by six numbers: latitude, longitude,
altitude, roll, pitch and yaw, or (x, y, θ, a, b, c). For a
wheeled robot on the plane, we have just three degrees
of freedom (x, y, θ). So any Position Device can be
commanded completely and unabiguously by sending it
six numbers, and floor-travelling robots (the most common
kind) require just three numbers.

Unfortunately, things are not so simple. Many devices
and applications require velocity control rather than po-
sition control. We can extend our specification with an
ioctl that switches the interpretation of the values between
positions and velocities. A simple further extension al-
lows us to select the nth derivative of position, allowing
acceleration control, etc. We can even allow a different
derivative to be specified for each axis; for example we
can command a robot to move to (x, y) while spinning
at θ radians/second - a behavior that most wheeled robots
can not achieve!

The HRL Pherobot is a useful example of a position
device that is difficult to fit into the standard interface. The
Pherobot uses the Descartes small, wheeled mobile robot
platform. The Descartes’s native command is (absolute
heading, forward distance, speed percentage). That is,
position control in θ in global coordinates, position control
in x in local coordinates, and velocity control in a local
frame. The velocity percentage is input into a Descartes’
internal controller and does not map easily into any one
coordinate system. Suffice to say, the Descartes, a simple
wheeled mobile robot, has its own specific interface.

The Position Device illustrates the trade-off between a
useful abstraction and a fully generalized interface. The
reality of the robots’ implementation makes it difficult
to apply the most general abstractions, because it does
not capture some important constraints imposed by real
position devices.

In practice we observe that the Position Device drivers
specify several device-specific ioctls, which change the
meaning of the basic command packet considerably and

dilute the generality of the interface. The design of a
maximally general Position Interface is an interesting
problem.

V. SIMULATION OF ABSTRACT DEVICES

The Player/Stage system includes the Stage simulator,
which provides a population of virtual Player devices. The
simulated devices interact with Player in exactly the same
way as real device drivers, consuming command packets,
generating data packets and responding to ioctls. There
is a Stage model for each interface that requires interac-
tion with the environment. Mirroring the development of
Player, Stage models began by emulating specific devices,
such as the Pioneer 2 and SICK LMS200 rangefinder, but
have evolved with the interfaces to become more generic.

Designing a model to match an interface has been
a useful test of the interface semantics. Removed from
the constraints of a particular device, but attempting to
implement the full functionality required by the logical
interface, we have found that ambiguities or contradictions
in the interface are exposed. Being forced to implement a
general model makes explicit the key parameters, which
are exactly those that must be exposed by the interface. We
suggest that simultaneously designing the interface and a
model is a useful methodology for developing a standard.

By operating with the same device abstractions as
Player, Stage provides a drop-in replacement for the real
devices. This enables convenient development of control
code in simulation, and many controllers written this way
have been shown to work unchanged on the real hardware.
But this relationship is transitive; we can transparently
replace Stage with another simulator that supports this
interface. We are currently developing a new simulator
“Gazebo” that models three-dimensional outdoor terrain
(Stage uses a simple two-dimensional model in order to
scale to large populations).

Mirroring the ioctl issues in Player, Stage must manage
a growing number of device-specific ioctls. Should a
generic model attempt to implement all the ioctls for a
given interface? Probably not, since there is no require-
ment that the logic for ioctls for different devices can
be consistent, merely that all the ioctls implemented by
any given device be consistent, and that the behavior
of a single ioctl is the same across devices. If we wish
to model device-specific features, a reasonable approach
would be to provide an extension layer to each model,
corresponding to a particular device (e.g. an LMS200)
or group of devices (e.g. P2OS-based robots). We have
adopted this approach for future Stage development.

VI. PUTTING IT TOGETHER

A. APIs

It is conceivable that a single standard API for robot
programming could be specified. However, our philosophy



has been to constrain the design of controllers as little as
possible and experience suggests that a single API will not
be practical to support the range of controller architectures
and programming styles that are currently used for mobile
robots.

The Player distribution comes with several “client li-
braries” in various languages, linkable code libraries that
handle the details of packing and unpacking the device
interface structures, converting from local to network-
safe variable types, etc. The Player Protocol is open and
documented, and users could implement controller clients
that talk directly to Player through a socket. However
in practice we observe that every Player client uses a
client library, and the Player Protocol is only used by
implementors of client libraries.

Each client library has a different design and presents
a different API to the user, due partly to the differences
between programming langages. Some common features
have emerged, for example the C++ and Java libraries have
a similar proxy-based design, but they do not match each
other call-for-call. Just as the various programming lan-
guages provide different APIs to the POSIX environment,
each in their native style, we believe that Player’s various
APIs, each targeting the PADI, are an important strength of
the system. We consider the existence of multiple APIs for
Player as increasing the portability and re-usability of the
system by exposing the functionality of the set of device
drivers in multiple programming languages and styles.

A standard abstract robot interface with diversity at the
API level maximizes portability while interfering mini-
mally with the design of controllers.
B. Transport Issues

This paper has so far played down the importance
of the OSI Network Layers (Transport and below), and
the packet-shuffling machinery in the Session Layer. For
convenience, we’ll refer to this whole communications im-
plementation as the transport. This is because we believe
the key abstractions unique to robotics are independent of
any particular transport. Player is a socket server that uses
TCP, while other robot interface systems use UDP [11],
Remote Procedure Calls or CORBA [6] to do a similar job.
Each approach has strengths and weaknesses in terms of
ease of use, reliability and handling of errors, but these can
be thought of as seperate from the logic of the interface. A
wide variety of transports could present the same logical
PADI environment to the robot application.

However, the dynamic properties of any implemented
robot interface are highly significant. Unlike many com-
puting applications, robot controllers have strong dynamic
constraints. They may have specific requirements for
bandwidth, latency, jitter and connection reliability. These
are all attributes of the transport, not the abstract device
descriptions, so the transport remains a significant factor
in the design of a particular robot system.

We make a distinction, then, between the dynamic
requirements of a device, determined by the application
and provided by the transport, and the semantics of the
device interface, determined by the PADI. The semantics
of the (idealized) Position interface for a robot blimp
and a robot hummingbird are the same, but the dynamic
requirements of transport are very different. This implies
that we should take care to leave out any specification of
dynamic properties from the PADI.

The PADI specification does have some specific de-
mands on the transport though, in that it must support the
character device model. This is parsimonious with TCP
and other stream socket protocols, but less so of RPC and
CORBA approaches.

In systems that must be highly reliable, or that have very
challenging communcation environments, the ability to
detect and manage communication failures becomes very
important. Player’s TCP transport is highly reliable under
typical loads and uses, but TCP’s built in retries and long
time-outs would provide very poor dynamic properties to
clients under very heavy network loads or with intermittent
connections.

These examples demonstrate that the PADI is by no
means the whole story for designing a robot controller.
It is, however, a sufficiently independent component that
could be standardized and built into robot systems that
are otherwise heterogeneous, thus permitting them to
interoperate.
C. Resource Discovery

A key advantage of current Player-based robot code is
that it is possible to use different hardware devices at run
time. Ioctls provide a way to inspect the properties of a
given device, but there is the question of how the controller
establishes its connection to a device in the first place.

Player provides some basic resource discovery, in that
the server can be queried for the set of devices it has
available. However, client programs must know a pri-
ori the precise address of the server. A more powerful
scheme would allow controllers to obtain addresses for
available hardware on-the-fly; a resource-discovery mech-
anism. With this in place, controllers could probe for
available hardware and choose the best sensor available for
a task, optionally configuring it with ioctls. Alternatively,
a controller could change its planned behavior according
to the hardware resources available. This is beyond the
current state of the art in robot control, and would of-
fer interesting research opportunities. However, we can
immediately suggest a further extension. The addition
of a mechanism for processes to migrate between hosts
would allow our robot controllers to graduate from being
portable to being mobile, discovering local resources as
they go. This would be an extraordinarily rich environment
for future robot controllers, made feasible by a standard
Abstract Device Interface.



VII. CONCLUSION

The specification of an abstract robot interface can
usefully be broken up into three tasks. These are:

1) A collection of abstract device interaces, which
specify a virtual machine that becomes the target for
robotics applications. The Player Abstract Device
Interface offers a starting point for this effort.

2) A Session Layer protocol for negotiating connec-
tions and shifting packets. The Player Protocol is
an example.

3) Presentation Layer APIs, providing the abstract in-
terface description in a covenient format for the
client’s chosen language and control style. Client
libaries are available for Player in C, C++, Python,
TCL, LISP, and Java, each with a distinct API.

We have referred extensively to Player, but we em-
phasize that we do not suggest Player as a panacea for
robot control. Player has evolved from its beginnings
as a platform-specific interface into its own platform,
used by large projects as an integration tool. From the
beginning, we have worked to make Player as open as
possible in accordance with the principles of Open Source
Software and in contrast to the goals of the commercial
robot interfaces. This experience informed the ideas set
out in this paper, which are already feeding back into
Player/Stage development, and into our discussions with
our colleagues in the Robotics Engineering Task Force, a
body set up to examine the opportunities for standards in
robotics [http://robo-etf.org].

The Player system, based on the Player Abstract Device
Interface, is the most open and portable platform for robot
control currently available. Player-based robot control pro-
grams target a robot virtual machine, which can, in some
cases, be implemented with a choice of hardware and
software devices. We aim to increase Player’s generality
over time, tackling challenges like the Position Device
interface along the way.

There is probably not One True Standard of Robot
Abstract Device Interface waiting to be discovered, but
there will be widely useful approximations. A community
effort in this area will rapidly improve the portability and
reuse of robot code.

ACKNOWLEDGMENTS

The authors thank the Player/Stage developer and
user community. A list of contributors is maintaind at
http://playerstage.sf.net/credits.html.
Thanks also to SourceForge.net for project hosting, and to
Doug Gage at DARPA IPTO for his support. This work
is supported in part by DARPA grant DABT63-99-1-0015
(MARS) at USC and contract N66001-99-C-8514 (SDR)
at HRL.

VIII. REFERENCES

[1] R.J. Feiertag and E.I. Organick. The Multics in-
put/output systems. In Proc. of the Symposium on
Operating Systems Principles, pages 35–41, New
York, October 1971.

[2] Brian P. Gerkey, Richard T. Vaughan, and Andrew
Howard. Player User Manual 1.3. Player/Stage
Project, http://playerstage.sourceforge.net, December
2002.

[3] Brian P. Gerkey, Richard T. Vaughan, and Andrew
Howard. The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In Proc. of
the Intl. Conf. on Advanced Robotics (ICAR), pages
317–323, Coimbra, Portugal, June 2003.

[4] Brian P. Gerkey, Richard T. Vaughan, Kasper Støy,
Andrew Howard, Gaurav S Sukhtame, and Maja J
Matarić. Most Valuable Player: A Robot Device
Server for Distributed Control. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Sys-
tems (IROS), pages 1226–1231, Wailea, Hawaii, Oc-
tober 2001.

[5] Network Working Group. XDR: External Data
Representation Standard. Internet RFC 1014, June
1987. http://www.faqs.org/rfcs/rfc1014.html.

[6] Gary Holness, Deepak Karuppiah, Subramanya Up-
pala, and Roderic Grupen. A Service Paradigm
for Reconfigurable Agents. In Proc. of the Second
Intl. Workshop on Infrastructure for Agents, MAS,
and Scalable MAS at Autonomous Agents, Montreal,
Canada, May 2001.

[7] James S. Jennings. Threaded servers enable thin
robot clients. Technical report, Computer Science
Dept., Tulane University, 1998.

[8] Dennis M. Ritchie and Ken Thompson. The UNIX
Time-Sharing System. Communications of the ACM,
17(7):365–375, October 1974.

[9] Gabriel T. Sibley, Mohammad H. Rahimi, and Gau-
rav S. Sukhatme. Robomote: A Tiny Mobile Robot
Platform for Large-Scale Ad-hoc Sensor Networks.
In Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), pages 1143–1148, Washington
DC, May 2002.

[10] Andrew S. Tannenbaum. Computer Networks. Pren-
tice Hall PTR, Upper Saddle River, New Jersey,
Third edition, 1996.

[11] Barry Brian Werger. Ayllu: Distributed port-
arbitrated behavior-based control. In Lynne E.
Parker, George Bekey, and Jacob Barhen, editors,
Distributed Autonomous Robotic Systems 4, pages
25–34. Springer-Verlag, Knoxville, Tennessee, Oc-
tober 2000.


