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Abstract— We describe a simple controller for swarms of
foraging robots that reduces mutual spatial interference and
adapts to non-uniform resource distributions. We discuss sev-
eral sources of such non-uniformity, and show that some
non-uniform distributions are not well-handled by previously
described foraging schemes. Our new method adapts each
robot’s work site size and location during run time, to reflect
the distribution encountered. The controller is very scalable,
using only local information and no explicit communication.
Simulation studies demonstrate the method’s effectiveness.

I. INTRODUCTION

Central-place foraging is a well-studied task in robotics

and ethology [20]. The task requires agents to locate and

collect spatially distributed items and deliver them to a

“home” location. The delivery rate can be increased by

adding more foragers, but typically with diminishing returns

due to mutual spatial interference.

This interference effect creates a problem for foraging

robot controllers. To maximize performance, we want robots

to work where there are items to collect (“pucks” hereafter).

Yet we need to keep the robots spread out to minimize

interference. When pucks are clustered together, these two

goals are mutually exclusive. Figure 1 shows an example of

this difficult domain that is the focus of this paper.

In animal foraging literature, resources are frequently de-

scribed as occurring in “patches” or “food-source locations”,

or otherwise referred to as clusters implicitly in discussions

of isolated food sources distant from a nest site [15], [11],

[3]. Similar language and environmental setups are used in

ant-inspired artificial agent research, often in the context of

pheromone trail-following [17], [4].

Research in robot foraging has addressed scenarios in

which resources are uniformly distributed and where re-

sources are tightly clustered. The dominant approach for the

former is “bucket brigading”, which separates robots in space

to minimize mutual interference [19], [14], [6]. The dominant

approach for the latter is ant-inspired trail-following, which

directs robots to resource patches. Trail-following robots are

separated in time rather than space, and requires that robots

are able to navigate close together without significant mutual

interference.

In [13], we extended the bucket brigading method intro-

duced in [19]. Our adaptive bucket-brigade foraging algo-

rithm (described in Section V) allowed robots to vary the size

Fig. 1: Robots in simulation foraging around a cluster of

pucks. Robots are indicated by boxes with “arms”, and

pucks by solid black circles. Blue/dark robots are searching,

green/light robots are homing, and red/medium robots are

returning to their work areas. The larger circle in the northeast

corner is the home zone.

of their work-site dynamically in response to interference

with other robots. We showed that this could increase the

performance and scalability of the foraging team.

Here we further extend adaptive bucket brigade foraging to

allow robots to relocate their work zones to more productive

areas. This allows the distribution of robots to reflect the

current distribution of pucks, while still separating them in

space to maintain resistance to interference.

This paper narrows the gap between previous work in

bucket brigading, characterized by its assumption of high risk

of spatial interference, and uniformly distributed resources,

and ant-like foraging, with its assumptions of relatively very

low spatial interference and tightly clustered resources. We

discuss some ways that clusters may form spontaneously in a

foraging system, further motivating cluster-friendly methods.

We describe and examine our novel adaptive forager in a

series of simulation experiments.
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II. RELATED WORK

Foraging strategies that seek to reduce spatial interference

have been studied extensively. Liu et al., in [14], produced an

adaptive controller to dynamically decide between “resting”

and “foraging” operations, in order to maximize energy

income. Here interference was controlled by adapting the

size of the foraging population.
Fontán and Matarić [6] investigated foraging with small

teams (2, 3, and 4 robots) of real robots which forage in sepa-

rate territories to reduce spatial interference. Territories were

assigned a priori and covered all available space without

overlap. In contrast, in our work, work areas (the analogue

of territories) are assigned dynamically and adaptively.
Shell and Matarić [19] pioneered the bucket-brigade ap-

proach to foraging in large-scale multi-robot systems. They

discussed interference in multi-robot systems. Instead of

allowing all foragers to explore the entire environment, they

restricted each forager to straying no further from its starting

location than a universal, preset value: the search radius. That

study found a relationship between the number of workers

and the performance of the team as a function of search

radius. In the paper, we use a similar algorithm.
Bucket-brigade foraging had previously been explored,

and its efficacy demonstrated in real robots [9], [16]. Bucket-

brigade foraging in ants has also been studied (and explicitly

named) in [11]. Gordon et al.studied spatial division of labor

in red harvester ants [10].
Notably, Schmickl and Crailsheim, in [18], simulated

robots acquiring food from a localized source and investi-

gated the possibility of positive effects of spatial interference.

Their robots communicated using trophallaxis (transferring

food from one robot to the next directly) and avoided non-

trophallactic collisions with one another. The use of trophal-

lactic contact induced a gradient of food concentrations,

and robots could measure the local gradient and use the

information to to navigate uphill. However, their research

did not explicitly look at the effect that using a localized

source had on the performance of their algorithm.They did

not address alternate distributions of the “dirt”, such as the

uniform distribution.
Other authors are closing the natural/artificial gap between

ants and robots. Kube and Bonabeau, in [12], modeled a

group of ants cooperatively carrying a single food item with

real robots in a cooperative box-pushing task. They produced

a coordinate movement effect without direct communication

between robots.
Bucket-brigade foraging has been studied in insect soci-

eties as a form of task partitioning. Anderson et al., in [1],

described a form of bucket-brigading seen in several species

of ant and termite in which insects pass resources directly

from one to the next until it reaches the nest. They gave

situations in which bucket-brigading would be especially

effective, such as situations in which material must be passed

along a narrow passageway, or when many insects foraging

around the same source create a bottleneck.
Trail-following behavior in robotics research is well-

studied. Vaughan et al. in [21] implemented trail-following

in robots in a transportation task (similar to foraging) using

low-bandwidth wireless communication. Real-world imple-

mentation of ant-like trail following shows that mutual spatial

interference is a severe limitation. Later work by the same

authors addressed this problem directly by quickly resolving

conflicts over navigation space [23].

III. SIMULATED ROBOTIC FORAGING

Our experiments were performed in a dedicated multi-

robot foraging simulator. The environment is a square region

with a home location in the northeast corner. Space is

approximately continuous, and there are no obstacles in the

environment apart from the robots themselves; robots avoid

collisions with the environment’s boundaries and with one

another. Pucks are distributed throughout the environment,

either uniformly or in a cluster depending on the experiment;

pucks are modeled as points and do not “interfere” with

one another. Robots are initially placed at random intervals

throughout the environment.

Robots are equipped with 12 short-range proximity sensors

capable of detecting walls and other robots up to 1m away;

the sensors can differentiate between walls and robots. Each

robot has a gripper which can lift, carry and drop a single

puck. Another sensor detects when a puck is under the

gripper and therefore grippable. This is the only way the

robots can sense pucks. The robots measure 15cm× 15cm,

approximately 1/28,000 the area of the world.

Except for the ability to place clusters of pucks (see

below), this is the same experimental setup as used in [13].

IV. CLUSTERING

Much of the previous work with foraging in robotic

swarms assumes that the distribution of pucks is initially

uniform. However, in real-world foraging scenarios, it is

possible that the resources to be collected are distributed non-

uniformly, especially in patches or clusters. In this work, we

examine scenarios where there is initially a single cluster

of pucks. Clusters are of interest for two reasons, first

because some resources naturally or inherently are produced

or deposited in clusters (apples on a tree; a bucket of tennis

balls; a pile of rocks), and secondly because clusters may

emerge as a side-effect of the actions of the robots and the

peculiarities of their controllers.

The controller developed in [19] allowed robots to keep

track of the distance and bearing to their starting location,

through odometry. The inevitable error and unbounded drift

in odometry caused the robots’ work areas to drift over time.

The authors noted that this had the added effect of ensuring

coverage of otherwise neglected areas of the environment.

In our original experiments with global, non-drifting lo-

calization, we noticed that some areas of the environment

were indeed neglected (see Figure 2a), in that no robot’s

work area covered them. Clusters of pucks spontaneously

formed in these neglected areas. Even when total coverage

is achieved, if some areas are more frequently visited for

drop-off than pick-up then a clustering effect will exist.
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(a) (b)

Fig. 2: Clusters forming spontaneously (a) in neglected

regions and (b) near the boundaries of foragers’ work areas.

The large circles indicate the boundaries of robots’ work

areas. The areas outside the clusters are blurred to highlight

the clusters.

As an example of this effect, we observed that clusters of

pucks tended to spontaneously form near the edges of robots’

work zones, visible in the simulator screenshot depicted in

Figure 2(b).
The existence of non-uniform resource distributions, typ-

ically clusters caused either by the asymmetry inherent in

the initial supply of resources, or by asymmetrical pick-

up and drop-off frequency, motivated us to study adaptive

approaches to foraging that work well under these conditions.
In our experiments, we looked at two distributions of

pucks:

• the “hat” distribution, in which pucks are uniformly

distributed, but only appear within a fixed circular area

(the “cluster”) of radius 1

c
× 25m, and

• the uniform distribution (effectively c = 0).

Here c is the “clustering parameter”, which indicates how

tightly clustered the pucks are.

V. FORAGING IN A BUCKET-BRIGADE

In the bucket brigade foraging controller of [19], each

robot stays within the same fixed radius of its work-space

location. This restriction means that robots approximately

maintain their initial uniform distribution, keeping the robots

spread out and limiting interference. Our adaptive method al-

lows the robot’s distribution to change over time in response

to the environment. We describe the original method and our

extensions in this section.

A. Basic bucket-brigading algorithm

Robots can be in one of three states: searching, homing, or

returning. The initial state is searching.

• A robot in the searching state searches its “work

area”, the circle defined by the robot’s initial loca-

tion and a fixed work-radius. The search method is

implementation-specific; the details of how a robot goes

about locating a puck are not relevant to the application

of the bucket-brigade strategy. In our implementation,

robots followed a random walk except when avoiding

obstacles and steering to stay within the work area.

On detecting a puck, the robot picks it up and transitions

from the searching state to the homing state.

• A robot in the homing state drives in the direction of

the global home location (supplied to the robot) while

avoiding collisions with other robots.

On reaching the home zone, or on leaving its work area,

the robot drops its puck and transitions to the returning

state.

• A robot in the returning state, drives towards the center

of its work zone. On arriving within half their search ra-

dius from this location, the robot returns to the searching

state.

In any state S, if a robot must avoid an obstacle it will

transition to an avoiding state until obstacle avoidance is no

longer necessary, at which point it will return to state S, as

per a subsumption architecture [2].

The result of this strategy is that very few robots actually

deliver pucks to the home zone. Assuming robots are uni-

formly distributed in space, and assuming a sufficiently large

population, one or more robots will have a work area that

overlaps the home zone. These robots will transport pucks

just outside the home zone into the home zone. Other robots

will have work areas that overlap these robots’ work areas,

and this pattern of overlap will continue so that most of the

environment is covered by a work area that is “connected” to

the home zone, and pucks will travel toward the home zone

in a manner suggested by the algorithm’s name—a bucket-

brigade.

B. Adding adaptive work-zone size

Our first extension is to allow each robot to adapt its work-

zone radius with experience. While the robot is avoiding

collisions with other workers, it decreases the radius at a

preset rate. Otherwise, the radius increases at a (possibly dif-

ferent) preset rate. Allowing different robots to use different

work area radii gives the team more flexibility in adapting

to the distribution of workers in the environment. We have

previously shown that this simple extension improves perfor-

mance and allows larger population sizes to work efficiently

in uniform puck distributions [13].

C. Effects of clustering on the bucket-brigade controller

Given the controller described above, we found that if the

initial placement of pucks is clustered instead of uniformly

distributed, then performance decreases. Using the simula-

tion environment shown in Figure 1 we ran 30 trials for a

range of cluster parameters c, and for two robot populations.

Figure 3 shows the results. The more tightly clustered the

pucks (larger c), the fewer pucks are delivered over the

length of the experiment. The success of the non-adaptive

bucket brigade method depends on exploiting the uniform

distribution of pucks.

D. Where to start searching

Recall that the bucket-brigade foraging algorithms require

each robot to maintain an approximation of its start location.

They begin their puck search near this point each time.

603



 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  2  4  6  8  10  12  14  16

p
u
c
k
s
 f
o
ra

g
e
d

clustering parameter

Effects of clustering on performance

100 robots
36 robots

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  2  4  6  8  10  12  14  16

p
u
c
k
s
 f
o
ra

g
e
d

clustering parameter

Effects of clustering on performance

100 robots
36 robots

Fig. 3: Performance of the standard, non-adaptive bucket-

brigade algorithm degrades significantly as the degree of

clustering increases. As the “clustering parameter” increases,

the cluster gets smaller but has the same number of pucks in

it. Mean performance over thirty trials are plotted with 95%

confidence interval.

found puck
location

old starting
location

new starting
location

D

ρD

Fig. 4: If D is the distance between the old starting location

and the newly found puck, then ρD is the new distance; ρ

(for 0 ≤ ρ ≤ 1) is the relocation parameter.

When puck density is uniform, one location is as good as

another for puck searching, and the start location serves

only to spread robots out. In non-uniform puck distributions,

however, placing the center of the work zone in a puck-rich

neighborhood is likely to reduce search time and improve

performance. Our second adaptive modification attempts to

improve the position of the work zone center over time.

As in Shell and Matarić’s original method [19], our robots’

estimates of their work areas drift on a slow random walk.

We improve on this by adding non-random, deliberate work-

zone relocation as follows.

Upon finding a puck, a robot will relocate its estimate of

its starting location a certain portion of the way along the

line from its current position to the location of the puck.

This proportion is an adjustable relocation parameter ρ; a

value of ρ = 0 (no relocation) corresponds to non-relocating

bucket-brigade foraging, in which the robot’s estimate of its

starting location remains fixed (upon finding pucks; it is still

subject to drift). A value of ρ = 1 (complete relocation)

indicates that robots will return to the last place they found

a puck before they begin searching again. All robots use the

same value of ρ (though there is no a priori reason requiring

this). This process is illustrated in Figure 4 and described

algorithmically in Algorithm 1.

This tends to cause robot work zones to move towards

areas of high puck density, reducing search time and poten-

Algorithm 1 Procedure for robots in the searching state.

Require: 0 ≤ ρ ≤ 1 is the relocation parameter

Require: rZ ≥ 0 is the range to zone center from odometry

if I found a puck then

Pick up the puck.

rZ ← (1− ρ)rZ

Switch to the homing state.

end if

tially improving performance.

VI. EXPERIMENTS

A. Simulated environment

We performed a series of simulation experiments to ex-

amine the new method. Our hypothesis is that relocation

can improve performance by adapting to the current puck

distribution.

The simulator was a modified version of the one used in

[13]. The foraging environment was a 25m× 25m enclosure

with a quarter-circular home area, of radius 1m, in the

northeast corner. Robots were initially positioned at random

locations (different in each trial).

Pucks are initially placed at random locations throughout

the environment (different in each trial), either in a uniform

distribution, or according to the clustering model described

in Section IV. In either case, on average there were two

pucks per square meter (for a total of 1,250 pucks available

to be foraged). Upon delivery to the home zone, a puck is

replaced at random according to the same initial distribution.

B. Parameter space

Experiments were run with all possible combinations of

the following parameter values:

• Clustering parameter: we tested several small values

(c = 1, . . . , 5), and a few larger values (c = 10, c = 20).

• Robot population: could be either a “small swarm” of

36 (0.25 robots per square meter) or a “large swarm”

of 100 (0.69 robots per square meter).

• Relocation parameter: could be 0.00, 0.25, 0.50, 0.75,

or 1.00.

C. Performance metric

We make two claims; first, that clustering of pucks hurts

the performance of existing algorithms, such as bucket-

brigading, which ignore the distribution of the pucks. This

is supported by the data discussed in Section V-C and

displayed in Figure 3. The second claim is that we can

adapt the foraging algorithm to work well in the presence

of non-uniformity by using the relocation system described

in Section V-D and illustrated in Figure 4. To support the

second claim, we compare the performance of foragers in

clustered-resource situations with and without relocation.

In each experiment, robots foraged for one hour of simu-

lated time. At the end of the hour, the total number of pucks

delivered to the home zone was counted.
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#robots Clustering ρ
Performance

p
µ σ

36 0 0 221.000 33.837
< 0.0001

36 0 1 130.300 19.701
36 5 0 120.633 15.940

< 0.0001
36 5 1 179.800 14.372
36 10 0 76.900 11.973

< 0.0001
36 10 1 146.133 12.260
36 15 0 56.100 9.386

< 0.0001
36 15 1 124.367 17.604

100 0 0 313.833 36.545
0.0022

100 0 1 347.433 53.187
100 5 0 335.667 36.456

0.0002
100 5 1 367.500 33.470
100 10 0 208.033 17.629

< 0.0001
100 10 1 328.067 19.311
100 15 0 150.033 15.751

< 0.0001
100 15 1 282.833 24.552

TABLE I: Analysis of performance for extreme values of the

relocation parameter ρ. p-values for the significance of the

difference between the ρ = 0 and ρ = 1 cases’ performances

are shown (mean over thirty trials).

Performance is reported as the average number of pucks

collected over thirty trials for each possible choice of param-

eters as given in Section VI-B. A 95% confidence interval

was determined, assuming that real performance is normally

distributed.

VII. RESULTS AND DISCUSSION

We found that relocation can have either a beneficial or an

adverse effect, depending on the setting. The results support

our hypothesis that relocation would allow robots to adapt to

a tightly clustered distribution of pucks: swarms employing

complete relocation outperformed those that did not relocate

their starting locations, nearly doubling performance in the

small-swarm (36 robots) scenario. These results are statisti-

cally significant; see Table I.

The results are illustrated graphically in Figure 5.

We found that the performance did increase when reloca-

tion was used, and we suggest that the observed improve-

ments were due to the robots’ search areas adapting to the

puck distribution. See Figure 6 for an illustration.

VIII. FUTURE WORK

In focusing on adaptive work site relocation, we discov-

ered a wealth of complexity arising out of a non-uniform

resource distribution. In [13] we provided a simple, one-

dimensional mathematical model of such distributions that

form as a result of the action of robots using the bucket-

brigade algorithm for transporting pucks. We would like to

develop a more general model that includes the variety of

sources of clustering. We would also like such a model

to incorporate the energy requirements of the workers, as

discussed in [14].

Furthermore, we would expect that relocation of work

sites would arrange the robots approximately in an ideal

free distribution as described by Fretwell and Lucas in [7].

That is, in an environment with multiple clusters, the robots

will distribute their starting locations so that the number of
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Fig. 5: Performance of relocating compared to non-

relocating foragers, averaged over thirty trials, with 95%

confidence interval, over a range of relocation parameters.

In tightly clustered puck distributions, the graph shows a

upward trend in performance as the relocation parameter is

increased.

robots working at each cluster is proportional to the number

of pucks in the cluster. Further investigation is needed to

confirm this hypothesis.

The problem of spatial interference motivated the bucket-

brigade foraging algorithm as a means to spatially separate

the workers[19]; temporal separation has been studied in both

ecology[5] and robots[8]. We would pursue a descriptive (or

even better–generative) model that can describe or produce

spatial and temporal foraging in a unified framework.

Wawerla and Vaughan modeled the time-value of labor in

[22]. Fundamentally, all robotics enterprises must be judged

in the context of a real-world economy; future work in

foraging swarms should take this dimension into account.

This would provide greater weight to pucks foraged early on,

which highlights the value of early recruitment of workers

into active foraging.

Also, since we have shown that relocation can be benefi-

cial or detrimental to performance in different environments,

we would like, as we did in [13], to develop an adaptive

mechanism for selection of the relocation parameter.
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(a) Initial

(b) 20 minutes

(c) 40 minutes

Fig. 6: Distribution of pucks (dark circles) and robots’ start-

ing locations (squares) initially and after 20 and 40 minutes.

As pucks are spread out via bucket-brigading, the foragers

automatically relocate to the “trail” of pucks from the cluster

to the home zone. For the clarity of this illustration, robots

were initially placed on a grid.
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