
Fall in! Sorting a group of robots with a continuous controller

Yaroslav Litus, Richard T. Vaughan
Autonomy Lab, School of Computing Science, Simon Fraser University, Canada

{ylitus, vaughan}@sfu.ca

Abstract

This paper describes the first robotic system that solves a
combinatorial computational problem by means of its own
continuous dynamics. The goal of the system is to rear-
range a set of robots on a line in a certain predefined or-
der, thereby sorting them. Conventional pairwise between-
robot rank comparisons suggested by traditional discrete
state sorting algorithms are avoided by coupling robots in a
Brockett double bracket flow system. A conventional multi-
robot simulation with non-holonomic driving, noisy sen-
sor data, collision avoidance and sensor occlusions sug-
gests that this flow system can withstand perturbations in-
troduced into the ideal dynamics by the physical limitations
of real robots.

1 Introduction

Ordering robots may be a necessary part of many robotic
tasks. For example, a team of robots may need to board a
transport vehicle in a certain order to use cargo space more
efficiently. Likewise, a certain order may be preferred when
deploying robots from that vehicle. Maintaining a prior-
ity queue of robots may be required when robots line up
for service or refueling (see Fig. 1) or when robots per-
form a convoying task. Finally, ordering robots may im-
prove performance of certain spatial interference resolution
algorithms [17].

Sorting is usually solved by algorithms running on dis-
crete state machines. To our knowledge this is the first pa-
per to explicitly consider performing such a discrete com-
putation by a continuous dynamics of a multi-robot system.
Other multi-robot systems either use continuous dynamics
to solve continuous problems [6,8] or use discrete dynamics
to solve discrete problems [10]. We describe a decentralized
multi-robot controller that sorts robots by coupling them ac-
cording to the Brockett double bracket flow system. This
controller is a novel robotic application of the well-known
Brockett system.

Formally, let n robots on a plane be initially positioned

on a line y = y0 at coordinates (xi(0), y0)), i = 1, . . . , n
in a Cartesian coordinate system. Assuming, without loss
of generality, that the sought ordering coincides with the
robot numbering, the goal is to drive the system to a state
(x(t), y(t)) where x1(t) < x2(t) < . . . < xn(t) and
y1 = y2 = . . . yn = y0. That is, we want the robots to
sort themselves along the horizontal axis and return to the
line where they started. The sorting computation should be
performed solely by the dynamics of interacting and mov-
ing robots.

The next section presents related work, which is fol-
lowed by a description of the Brockett sorter, a dynamical
system capable of performing sorting by means of smooth
dynamics. After an informal theoretical argument about is-
sues that may arise in using the Brockett sorter in a real
robotic system we describe a controller based on this sorter.
The controller is tested in a short demonstration followed
by discussion of the observed behavior and properties of
the system. The paper concludes by suggesting several di-
rections for future work.

2 Related work

The idea of viewing robotic systems as computational
devices is related to the Brooks’ advice against internalizing
the world [5]. As long as the computation problem faced by
a robotic system is set in terms of the variables that the sys-
tem can modify through its behavior, required computation
can potentially be performed by that behavior. The compu-
tation is hence externalized and happens outside of the in-
ternal information processing unit. From this point of view
a robotic system can perform computations not only by us-
ing its conventional dedicated processing units, but also by
its sensors and actuators.

These computational capabilities have some recognition
in the robotics community. In the domain of single robot
systems Paul [9] and Pfeifer [11] show that robot morphol-
ogy can assume a computational role. In multi-robot sys-
tems Payton et.al. [10] introduce a concept of “world em-
bedded computation” and describe a robot swarm system
that runs an analogue of Dijkstra’s shortest path algorithm

1

(a) Robots lined up in arbitrary order. The last
robot in the queue has a high chance of running out
of charge before reaching the station.

(b) Robots are sorted by the remaining charge. The
chance of starvation is minimized.

Figure 1. Robots queuing for recharging at the station “C” located near the wall. The share of re-
maining charge is shown for every robot. Sorting robots increases the probability that all robots can
charge before running out of energy.

in a world embedded manner. Robots spread themselves
in the environment and then find the shortest path between
two points by exchanging local messages. Hamann and
Wörn [6] discuss the idea of embodied computation and
present a swarm system that computes an approximation to
the solution of geometric Steiner tree problem. Litus and
Vaughan [8] argue that embodiment and spatial embedded-
ness can serve as a surrogate for computational resources
for developing decentralized distributed gradient descent
optimization algorithms for teams of embodied agents.

Since robotic systems evolve in continuous state space,
the relation between discrete computation and continuous
systems is very important for treating robot systems as com-
puters. Brockett [4] shows that double-bracket matrix flow
dynamical systems can serve as an analog computer solv-
ing a variety of combinatorial problems including sorting.
These systems bear similarity to finite aperiodic Toda lat-
tices, a recent thorough review of which is given by Ko-
dama and Shipman [7]. Saxena and Clark [12] describe an
electronic implementation of Brockett double bracket flow
built from analogue integrated circuits. Zavlanos and Pap-
pas describe a dynamical system inspired by the double
bracket flows that approximates the solution to the combi-
natorial weighted graph matching problem [15]. Bloch and
Crouch [3] argue that from control theoretical point of view
some combinatorial problems can be seen as minimization
of a function over a set of configurations which can be con-

trasted with minimization over a class of curves in classical
optimal control. The problem of sorting robots could be re-
lated to formation control (see Bahceci et.al. [1] for a recent
review).

3 Brockett smooth sorter

In a seminal paper [4] Brockett analyzes dynamical sys-
tems

Ḣ = [H, [H,N]] (1)

where H and N are symmetric matrices and [A,B] =
AB − BA. He shows that these so called “double bracket
flow” systems define an isospectral gradient flow, so as H
evolves its eigenvalues do not change. The author proves
that these systems can serve as a versatile analog com-
puter solving linear programming problems, certain combi-
natorial optimization problems and diagonalizing symmet-
ric matrices. This last ability is of a particular interest for
robot sorting since it provides means to sort a list of num-
bers by a smooth dynamical system.

Brockett proves that if N is a diagonal matrix with dis-
tinct elements, the equilibrium matrix H(∞) will be a di-
agonal matrix with its elements arranged in the same order
as elements of N . In particular, if N = diag(1, 2, . . . , n)
then for almost all Θ and for

H(0) = ΘT (diag(λ1, λ2, . . . , λn))Θ

2

the equilibrium Ḣ = [H, [H,N]] will approach
H(∞) = diag(λπ(1), λπ(2), . . . , λπ(n))

where permutation π sorts the final list by its size. Our
choice ofH(0) is dictated by a need to decrease the number
of state variables in order to simplify the controller. Diago-
nal H(0) has the fewest number of variables, but produces
no dynamics. However, symmetric tridiagonal matrix H(0)
will produce the desired dynamics and result in H(t) being
symmetric tridiagonal for any time t. Setting

H(0) =


b1 a1

a1
.
. an−1

an−1 bn

 (2)

where bi, i = 1, 2, . . . , n are the values to be sorted and
ai, i = 1, 2, . . . , n− 1 are small non-zero values will make
H(∞) a diagonal matrix containing entries that approach
the sorted list of eigenvalues that are close to bi. The smaller
the values of ai, the closer matrix H(0) is to being diagonal
and having bi as its eigenvalues, and the closer the diagonal
of H(∞) is to the list of sorted components of bi. Decreas-
ing ai, though, comes at the cost of increasing convergence
time.

System (1) with N = diag(1, 2, . . . , n) and H(0) as in
(2) is equivalent to symmetric tridiagonal Toda equations
[2]. These equations describe the behavior of the system
of n unit mass particles arranged along a line with adjacent
particles interacting with a magnitude that exponentially de-
pends on the distance between them [13]. Component-wise
in terms of a and b dynamics of this system can be written
as

ȧk = ak(bk+1 − bk), k = 1, 2, . . . , n− 1 (3)

ḃk = 2(a2
k − a2

k−1), k = 1, 2, . . . , n (4)
with initial conditions a0 = 0.

Fig. 2 illustrates the evolution of the system (3-
4) with initial values b(0) = (3, 1, 6, 2), a(0) =
(.001, .001, .001, .001). The system was simulated in dis-
crete time as b(t + 1) = b(t) + δḃ(t), a(t + 1) =
a(t) + δȧ(t) with discretization parameter δ = 0.005. Four
lines on the figure show the values of four components
of vector b plotted against simulation time. After 3500
steps the value of the vector b converges to b(3500) =
(6.088, 2.976, 1.999, 0.937) ≈ (6, 3, 2, 1): the desired or-
dering.

4 Application to robot sorting

4.1 Theoretical considerations

The dynamical system (3-4) (hereinafter “the sorting
system”) can serve as a basis for a multi-robot system con-
troller that sorts robots. To do this we need to find a way

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000 3500

Figure 2. Dynamics of sorting system (3-
4) initialized with b(0) = (3, 1, 6, 2), a(0) =
(.001, .001, .001, .001). Four components of
vector b (vertical axis) are plotted against
time (horizontal axis). In 3 500‘ simula-
tion steps the system converges to b =
(6.088, 2.976, 1.999, 0.937).

to embed the sorting system into the state space of a multi-
robot system. This way the movement of the robots can
be dictated by the evolution of sorting system and result in
robots sorting themselves.

Regardless of the means of embedding the sorting sys-
tem into the state space of a multi-robot system we need
to acknowledge the limitations a realistic robot system im-
poses on the possible trajectories in a state space. For exam-
ple, robots have limited speed and acceleration and may be
non-holonomic. Also, a real system will have noise present
in sensor readings and responses to control inputs. Finally,
collision avoidance should be employed by a real robot sys-
tem introducing additional constraints on trajectories. This
raises an important question: is the sorting system able to
withstand some perturbation of the state variables as the
system evolves and still converge to the same equilibrium?
A brief analysis shows that this is not the case. Assume
that sorting system evolves from tridiagonal matrix H(0)
to diagonal matrix H(∞) = diag(λπ(1), λπ(2), . . . , λπ(n))
and at time t one of the state variables was perturbed re-
sulting in matrix H ′(t) 6= H(t). As long as the spec-
trum of H ′(t) differs from the spectrum of H(t) the sys-
tem will now converge to a different equilibrium H ′(∞) =
diag(λ′π(1), λ

′
π′(), . . . , λ

′
π(n)). There is no feedback in the

system to correct this deviation from the original trajectory
and restore original spectrum of H . In this sense the sorting
system is fragile and using it as a base for a robot sorting

3

controller seems to be difficult.
However, the sorting system should not be discarded be-

cause of its fragility. Despite the sensitivity of the equilib-
rium to the perturbation of state variables, all equilibriums
are in fact diagonal matrices with sorted eigenvalues. Thus,
if some state variable si of the i-th robot in the sought order-
ing behaves as the i-th diagonal entry of H , the equilibrium
values si(∞) will follow the sought ordering irrelevant of
the changes in the spectrum of H brought by the deviations
from the perfect trajectory. In other words, though the ac-
tual values of si(∞) will differ from what they could have
been in the absence of perturbations, as long as the system
is allowed to converge the values of robots state variables
si(∞) will be sorted. In this sense the sorting system is
reliable and we can attempt to use it to control an appropri-
ately constructed robot system.

4.2 Implementation

We will embed the sorting system into the robot system
as follows. xi will correspond to the diagonal entries of
H while y′i = yi − y0 + ε where ε is a small non-zero
value will correspond to non-diagonal entries ofH . In these
variables, sorting system (3-4) can be rewritten as a first
order controller

ẋ1 = 2y2
1 , (5)

ẋi = 2(y
′2
i − y

′2
i−1), i = 2, . . . , n− 1 (6)

ẏi = ẏ′i = −(xi − xi+1)y′i, i = 1, . . . , n− 1 (7)

ẋn = −2y
′2
n−1, (8)

ẏn = y′n = 0; (9)

This controller requires every robot i to use the following
information:

1. y′i, the vertical distance from the original line y = y0

2. y′i−1, the vertical distance of the previous robot (if
there is one) in ordering from the original line y = y0

3. (xi − xi+1), horizontal distance to the next robot (if
there is one) in the ordering

Note, that y′i−1 can be computed from y′i if robot i knows
the vertical distance to robot i − 1. Therefore, the con-
troller requires the robot to be partially localized (know an
estimate of its y coordinate) and be able to estimate hor-
izontal distance to one robot and vertical distance to an-
other robot. These requirements can be met by various sen-
sory/communication solutions. To avoid any sort of com-
munication, in the demonstration robots are equipped with
fiducial detectors that can determine the relative bearing
and distance to the previous and next robot in the ordering.
Robots are also localized, though we use only orientation

Figure 3. State diagram of the robot sorting
controller

and the y coordinate. Horizontal or vertical distance to a
team member is calculated from the position of self, and es-
timates of distance and bearing to the team member. Thus,
all information required by the controller is available in this
robot system.

There are several issues that emerge when using this con-
troller in a realistic system (or realistic simulation). First,
fiducial finders require clear line of sight and hence occlu-
sion can prevent the robot from getting information about
distances to other robots. Second, as all sensors, fiducial
finders are noisy, therefore information about bearing and
distance to the teammates is imprecise. Third, all robots
have bounded magnitude of their speed vector, and non-
holonomic robots have also bounds on the direction of this
vector. Finally, robots can not drive through each other so
collision avoidance should be used. All these issues will
force the robots to deviate from the trajectory prescribed
by the sorting system, however as we argued above we still
expect the robots to converge to the sorted order. We will
address aforementioned issues in the following paragraphs.
The state machine of the resulting controller is shown on
Fig. 3.

Occlusions Robots have no knowledge of the team size or
their absolute position in the ordering. They are capable of
sensing positions of the previous and the next robot in the
ordering if the line of sight is not occluded by other robots.
Initially every robot assumes that it is the only robot in the
team. Once robot i senses the previous robot i − 1 in the
ordering, without sensing robot i+1 before, robot i assumes
that i is the last robot. It will behave accordingly and use
the relative position of robot i − 1 in its future calculations
of speed vector. If robot i senses the next robot i+ 1 in the
ordering without previously sensing i − 1, robot i assumes
that i is the first robot. If robot i senses i − 1 and i + 1
simultaneously or in any order, it knows that i is not the
first and not the last robot and needs relative positions of
both i+ 1 and i− 1 to calculate its speed vector. Therefore,
the robot discovers its position in the ordering (last,first, in
between) as the dynamics unfolds.

4

Regardless of the currently assumed position of robot i
if its fiducial sensor is occluded and robot i can not see one
or both of the robots it needs to calculate the speed vec-
tor, it reduces speed to a certain predefined constant with-
out changing its direction. Once the line of sight is restored,
the robot selects the desired speed and direction following
Eq. (5). Since initially all robots are located along a line
and almost all fiducial finders are occluded, the robots dis-
perse themselves by moving with random speeds along the
vertical axis for a fixed predefined time. With high proba-
bility this allows most of the robots to observe the required
teammates and follow Eq. (5-9).

Noise We will not use any noise reduction techniques and
instead treat all noisy sensor readings as true values.

Bounds on a speed vector If the magnitude of the de-
sired speed vector ~v = (ẋ, ẏ) exceeds the maximum speed
Vmax of the robot, the robot tries to set its speed vector
to ~vclamped = ~v

‖~v‖Vmax thus attempting to go in the de-
sired direction with the maximum speed. In the demonstra-
tion below we use non-holonomic steering robots which are
driven by a simple negative feedback controller

θ̇ = θ − ∠~v (10)

s = ‖~v‖ cos(|θ̇|), (11)

where θ is the robot bearing, ∠~v is the direction of the de-
sired speed vector in the same coordinate system, s is the
driving speed.

Collision avoidance We employ a simple collision avoid-
ance algorithm that uses laser range-finder sensor readings.
If there is an obstacle closer than a certain distance dstop,
the robot stops. If there is an obstacle which is at closer
than a certain distance davoid > dstop then the direction
that gave the smallest distance reading is found. If smallest
reading came from the direction to the right of the robot
bearing, a collision avoidance maneuver with a duration
randomly selected in a certain interval is performed. The
robot starts to turn left with a fixed turning speed and driv-
ing speed. Otherwise, the robot performs a right turn ma-
neuver. If smallest reading came from the left, a right turn
maneuver is performed. Once the collision avoidance ma-
neuver is over, the robot continues to set the speed as pre-
scribed by Eq. (5-9).

4.3 Demonstration

For the demonstration we use a team of simulated robots.
Robots are placed along a horizontal line and the sorting
controller is executed simultaneously on every robot. We
perform two kinds of simulations. In the first, “idealistic”,

Maximum speed 1.2 m/s
Collision avoidance speed 0.1 m/s
Collision avoidance turning speed 0.5 rad/s
Collision avoidance initiation distance 1 m
Minimum front stopping distance 0.5 m
Collision avoidance duration interval [1,2]s
Speed during occlusion 0.2 m/s
Initial dispersing duration 1.5s
Fiducial finder bearing accuracy ±3 degrees
Fiducial finder range accuracy ± 15 mm

Table 1. Parameters used in Stage simulation

simulation the robots are holonomic, with no speed restric-
tions, no sensor occlusions and no collisions. Therefore, the
dynamics of this system are described by Eq. (3-4). In the
second, “lifelike” simulation Pioneer robots are simulated
in the well-known Stage robot simulator [14]. Simulated
Pioneer robots can collide, so they need to use collision
avoidance, they have non-holonomic driving, top speed re-
striction and their fiducial sensors can be occluded by other
robots. Sensor noise is simulated by adding uniformly dis-
tributed random errors to the true distance and bearing read-
ing of fiducial finder before they are used by a controller.
Robots in the Stage simulation use the controller described
in Section 4.2. Parameters of the Stage simulation are given
in Table 1. All simulations run until the speeds of all robots
converge to a near-zero value.

Figure 4 shows the trajectories produced by the robots
for three different initial conditions. For every initial con-
dition two trajectories are shown. The first trajectory is
produced by an idealistic simulation, the second by a life-
like Stage simulation. Note that Stage simulations are non-
deterministic because of the sensor noise and initial random
dispersal and infinitely many different trajectories are pos-
sible of which we show only one. The idealistic simula-
tion trajectory, on the other hand, is repeatable and fixed up
to the rounding and discretization errors during simulation.
Each trajectory is described by two graphs. The first graph
plots values of x coordinates of robots against simulation
time, the second shows the joint (x, y) trajectories of the
robots.

In the idealistic simulations most of the robots initially
start moving with small speed with vertical component of
the speed vector dominating horizontal component. As
robots move away from the start horizontal line their speed
grows, the horizontal component of the speed vector in-
creases and the vertical component decreases to the point
where the vertical component becomes negative and robots
begin to return to the start horizontal line but with differ-
ent horizontal coordinate. Some of the robots move along
the start horizontal line for the part of their trajectory while

5

the last, n-th robot never leaves the start line moving only
horizontally (see Eq. (9)). Depending on the initial con-
ditions robots may depart from and return to the start line
several times before the robots converge to the sorted order
(see, e.g., robots starting at positions x = 3 and x = 5 on
Fig. 4(e),4(f)). Also, robots may switch their vertical direc-
tion before reaching the start line (see, e.g., robot starting
at positions x = 13 on Fig. 4(e), 4(f) and robot starting at
position x = 8 on Fig. 4(i), 4(j)). Once the sorted state
is reached, robots do not depart from it any more. The fi-
nal configuration has robots rearranged in the sorted order
along the start horizontal line with the set of final horizon-
tal positions having values very close to the set of original
horizontal positions. Therefore, the robots not only end up
in the sorted order, but they also jointly occupy same hori-
zontal positions that where occupied by the team initially.

In the Stage simulations robots initially disperse them-
selves by moving for a fixed time with a random speed
in a vertical direction. This eliminates some of the occlu-
sion and allows some robots to move in the direction pre-
scribed by the sorting system. After dispersal the robots
start moving with increasing speeds which is limited by the
top speed of the robot. Occlusions that were not resolved
by the initial dispersal are eventually resolved as occluded
robots move, slowly creating new lines of sight (see Section
4.2). Some occlusions are resolved by the collision avoid-
ance behavior. Robots move away from the horizontal line
with horizontal component of their speed vector increasing
and vertical component decreasing until the vertical compo-
nent changes the sign and robots return to the start line at a
different horizontal coordinate. Part of the robot trajectory
may include a horizontal segment when robot moves along
the start line without departing from it. As in the idealistic
case, a robot may return to and depart from the start line
several times (see robot starting at position x = 5 on Fig.
4(g), 4(h)). Robots can also switch their vertical direction
before reaching the start line (see the robot starting at po-
sition x = 8 on Fig. 4(k), 4(l)). If the robots meet, they
initiate collision avoidance which may be repeated several
times if their desired trajectories lie close to each other. The
occlusion resolution described in Section 4.2 ensures that
the robots keep moving even if they can not observe one or
both of their neighbors, thus eventually restoring the line of
sight. Once the robots reach the sorted order, there are no
occlusions and robots can finish convergence by bringing
their speeds to zero. The final configuration has robots rear-
ranged in the sorted order along or close to horizontal start
line. However, they jointly occupy horizontal positions that
differ from those occupied by the team initially.

5 Discussion

Both idealistic and lifelike simulations result in success-
ful sorting of the robots. However, in a lifelike simulation
robots end up converging to a set of positions that differs
from the original set. That agrees with theoretical consid-
erations stated in Section 4.2 as departures from the per-
fect trajectory caused by speed limitations, occlusions and
collision avoidance change the eigenvalues of matrix H(t)
in Eq. (1) and, thus, the set of final horizontal positions.
Therefore, the limitations of real robots used in simulations
break down the position set preservation property of the
ideal sorting system while still reaching the goal of sorting
robots.

Another difference between the idealistic and life-like
simulation is the convergence time. Life-like simulations
take more time to converge due to the speed limitations,
time spent on collision avoidance, and time spent moving
during the occlusions when trajectory may stray away from
the convergence path. For example, it takes approximately
10 seconds for idealistic system to sort robots under con-
ditions shown on Fig. 4(a), while life-like Stage simula-
tion takes about 90 seconds. With more robots (see Fig.
4(e)) the idealistic system still takes 10s to sort robots while
the life-like simulation takes approximately 300 seconds to
converge. A similar difference is observed under different
initial conditions (see Fig. 4(i)) where the idealistic sys-
tem converges in 7 seconds, while the life-like system sorts
robots in 250 seconds. Fiducial sensor range imposes an-
other limit on the practicality of this system as an increase
in the team size will lead to an increase in the distance be-
tween robots which will eventually exceed the fiducial sen-
sor range.

Formal analysis of the behavior of this system, including
convergence properties is desirable but presents difficulties.
While including non-holonomic driving and noisy sensors
and controls into the formal model of the system seems
tractable, sensor occlusions and collision avoidance present
a major obstacle. Sensor occlusions result in a non-smooth
changes in the robot controls and require analysis that is
significantly more complicated than the analysis of the dou-
ble flow system itself. Likewise, the simple threshold based
obstacle avoidance algorithm we employ introduces non-
smooth transitions into the system which are further compli-
cated by a random selection of the collision avoidance du-
ration. Even if more tractable deterministic repulsive poten-
tials are used for collision avoidance, convergence analysis
of the flow based system is prohibitively challenging [16].

Due to the slow convergence observed in simulations the
described system should be viewed as a proof of concept
rather than a suggested practical solution. While this sys-
tem can definitely be used in situations where restrictions on
the robot communications and sensing preclude using other

6

sorting methods, it is desirable to find ways to accelerate the
convergence and make extensive experimental evaluation of
the modified system before it could be recommended as an
engineering recipe.

6 Conclusion

We described a multi-robot system sorting controller
based on a smooth Brockett double-bracket flow equa-
tion. This controller provides a novel demonstration of
computational capabilities of multi-robot systems solving
a combinatorial problem by means of continuous dynam-
ics. The controller integrates the Brockett system with non-
holonomic steering, simple collision avoidance and sensor
occlusion resolution. This strength of this approach is in
the fact every robot needs to identify only two or one other
robots in the team. No conventional pairwise robot-robot
comparisons that standard sorting algorithms suggest are
necessary. The robots are reactive agents with information
between robots exchanged by means of relative position
sensing. Robots have no global knowledge of the system
state and very limited memory capacity (memory is used
only for dispersal and collision avoidance timers and queue
position status). These modest information processing re-
quirements for robots come at a cost of slow convergence
and a potential need for long distance sensing which is the
weakness of this approach.

Future work includes three main directions. The first
direction is performance improvement of the robot sorting
controller. This includes devising faster and more reliable
collision avoidance strategies, trying to include some feed-
back mechanisms to correct changes in eigenvalues and thus
preserve the set of original horizontal positions, looking for
ways to bring down the system convergence time and elim-
inate the need for long-distance sensing. The second direc-
tion is looking for other ways to embed the Brockett sorter
into a multi-robot system. While this controller uses the
vertical coordinate of the robot as a non-diagonal entry in
the H matrix, other modalities may be used. For exam-
ple, robots can display values of non-diagonal entries by
emitting sound, or changing the color or intensity of a dis-
play light. Also, more state variables may be involved by
considering non-tridiagonal matricesH . Finally, as double-
bracket flow systems’ computational capabilities include
more than sorting, these capabilities should be evaluated in
the context of multi-robot systems.

Simulation code

In accordance with the Autonomy Lab’s policy on code
publication, the source code is made available online at
http://www.sfu.ca/˜ylitus/

robotSortingSources.zip,
MD5SUM cb0eb487bf06a0e62b75350f377dcd3f.

References

[1] E. Bahceci, O. Soysal, and E. Sahin. A review: Pattern for-
mation and adaptation in multi-robot systems. Technical Re-
port CMU-RI-TR-03-43, Carnegie Mellon University, 2003.

[2] A. M. Bloch, R. W. Brockett, and T. S. Ratiu. A new for-
mulation of the generalized Toda lattice equations and their
fixed point analysis via the momentum map. Bulletin of the
American Mathematical Society, 23(2):477–485, 1990.

[3] A. M. Bloch and P. E. Crouch. Optimal control, optimiza-
tion, and analytical mechanics. In Mathematical control the-
ory, pages 268–321. Springer-Verlag New York, Inc., New
York, NY, USA, 1999.

[4] R. Brockett. Dynamical systems that sort lists, diagonalize
matrices and solve linear programming problems. In Deci-
sion and Control, 1988., Proceedings of the 27th IEEE Con-
ference on, pages 799–803 vol.1, Dec 1988.

[5] R. A. Brooks. Elephants don’t play chess. Robotics and
Autonomous Systems, 6(1&2):3–15, June 1990.

[6] H. Hamann and H. Wörn. Embodied computation. Parallel
Processing Letters, 17(3):287 – 298, Sept. 2007.

[7] Y. Kodama and B. Shipman. The finite non-periodic toda
lattice: A geometric and topological viewpoint, 2008.

[8] Y. Litus and R. Vaughan. Distributed gradient optimiza-
tion with embodied approximation. In S. Bullock, J. Noble,
R. Watson, and M. A. Bedau, editors, Proc. Int. Conf. on
Simulation and Synthesis of Living Systems, pages 359–365.
MIT Press, Cambridge, MA, 2008.

[9] C. Paul. Morphology and computation. In Proc. Int. Conf. on
Simulation of Adaptive Behavior, pages 33–38. MIT Press,
2004.

[10] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee.
Pheromone robotics. Auton. Robots, 11(3):319–324, 2001.

[11] R. Pfeifer, F. Iida, and G. Gómez. Morphological compu-
tation for adaptive behavior and cognition. International
Congress Series, 1291:22–29, 2006.

[12] N. Saxena and J. Clark. Analogue system for eigenvalue
computation and sorting based on an isospectral matrix flow.
Electronics Letters, 31(1):24–26, Jan 1995.

[13] M. Toda. Vibration of a chain with nonlinear interaction.
Journal of the Physical Society of Japan, 22(2):431–436,
1967.

[14] R. T. Vaughan. Massively multi-robot simulations in Stage.
Swarm Intelligence, 2(2-4):189–208, 2008.

[15] M. Zavlanos and G. Pappas. A dynamical systems approach
to weighted graph matching. In Decision and Control, 2006
45th IEEE Conference on, pages 3492–3497, Dec. 2006.

[16] M. Zavlanos and G. Pappas. Dynamic assignment in dis-
tributed motion planning with local coordination. Robotics,
IEEE Transactions on, 24(1):232–242, Feb. 2008.

[17] M. Zuluaga and R. Vaughan. Reducing spatial interference
in robot teams by local-investment aggression. In Proceed-
ings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Edmonton, Alberta, Au-
gust 2005.

7

Id
ea

l
St

ag
e

x(
t)

y(
x)

x(
t)

y(
x)

x(0)=(1,7,3)

1234567

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

(a
)

0

0
.51

1
.52

2
.53

1
2

3
4

5
6

7

(b
)

1234567

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

(c
)

-0
.50

0
.51

1
.52

2
.53

1
2

3
4

5
6

7

(d
)

x(0)=(3,10,5,13,8)

2468

1
0

1
2

1
4

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

(e
)

012345

2
4

6
8

1
0

1
2

1
4

(f
)

-6-4-202468

1
0

1
2

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

(g
)

-3-2-1012345

-6
-4

-2
0

2
4

6
8

1
0

1
2

(h
)

x(0)=(3,5,8,10,13)

2468

1
0

1
2

1
4

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

(i
)

0

0
.51

1
.52

2
.53

3
.5

2
4

6
8

1
0

1
2

1
4

(j
)

-505

1
0

1
5

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

(k
)

-4-3-2-1012345

-5
0

5
1
0

1
5

(l
)

Fi
gu

re
4.

R
ob

ot
tr

aj
ec

to
ri

es
fo

r
di

ff
er

en
t

in
iti

al
co

nd
iti

on
s.

E
ve

ry
ro

w
of

fig
ur

es
ha

s
ro

bo
ts

po
si

tio
ne

d
at

sp
ec

ifi
ed

x
-c

oo
rd

in
at

es
w

ith
y

=
0.

01
fo

r
al

lr
ob

ot
s.
x

(t
)

gr
ap

hs
pl

ot
x

co
or

di
na

te
(v

er
tic

al
ax

is
)a

ga
in

st
tim

e
(h

or
iz

on
ta

la
xi

s)
.
y
(x

)
gr

ap
hs

pl
ot
y

co
or

di
na

te
(v

er
tic

al
ax

is
)a

ga
in

st
x

-c
oo

rd
in

at
e

(h
or

iz
on

ta
la

xi
s)

.D
is

ks
de

no
te

en
ds

of
tr

aj
ec

to
ri

es
on

y
(x

)
gr

ap
hs

.N
ot

e
th

e
di

ff
er

en
ce

in
sc

al
es

on
th

e
gr

ap
hs

.

8

