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Abstract— We present a robust real-time system for simulta-
neous detection of hands and faces in RGB and gray-scale
images, and a novel dataset used for training. Our goal is
to provide a robust sensor front-end suitable for real-time
human-robot interaction using face-engagement and gestures.
Using hand-labelled videos obtained from real human-UAV
interaction experiments, we re-trained the YOLOv2 Deep
Convolutional Neural Network to detect only hands and faces.
This model was then used to automatically label several much
larger third-party datasets. After manual correction of these
results, we modified and re-trained the model on all these
labelled data. We obtain qualitatively good detection results at
60Hz on a commodity GPU: our simultaneous hand-and-face
detector gives state of the art accuracy and speed in a hand-
detection benchmark and competitive results in a face detection
benchmark. To demonstrate its effectiveness for Human-Robot
Interaction we describe its use as the input to a simple but
practical gestural human-UAV interface for entertainment or
industrial applications. All software, training and test data are
freely available.

I. INTRODUCTION

Several researchers have demonstrated Human-Robot In-
terfaces that use either face detection, hand detection or
both [1]. We present a fast and accurate detector that finds
the hands and faces of multiple people in RGB images at
frame-rate, which can be used directly as an input to an HRI
system. This extends our work on HRI for UAVs with un-
instrumented users [2].

The contributions of this paper are: (i) we describe and
provide software to simultaneously locate all the hands and
faces from multiple people in a single 2D camera image, with
state of the art accuracy and speed compared to dedictated
face detectors and hand detectors. The software uses a
scalable CNN model that can be resized for speed/accuracy
trade-off based on YOLOv2 [3]; (ii) the first integrated
hands and faces detection dataset for HRI, gathered from
real HRI experiments and labeled by hand, plus new labels
for previous well-known datasets; (iii) a novel, simple but
effective method for static gesture detection based on hand
position relative to the face, and a small vocabulary of
hand gestures for un-instrumented human-UAV interaction;
(iv) a demonstration of a real-world, end-to-end, close-range
interaction system by which an un-instrumented user can
take-off, steer, command and land a UAV by gestures alone
with a single on-board camera. This is the first demonstration
of ’joysticking’ a UAV with directional commands by an un-
instrumented user with only mono-camera sensing.
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Fig. 1: Typical outputs: hands and faces detected accurately
in 15msec per frame in images from a commodity UAV in
flight. The user in the lower image is 10m away.

We evaluate our implementation by comparing it with
dedicated hand detectors and face detectors in offline bench-
marks, and by real-world experiments determining the ges-
ture recognition accuracy versus human-robot distance in
various environments under different illuminations and back-
grounds.

II. BACKGROUND

A. Object Detection

Object detection in a 2D image is a crucial and challenging
topic in computer vision. Researchers have examined many
approaches, generally involving extraction of low-level fea-
tures from the image, followed by finding the features that
match the object of interest.

The earliest widely-used object detection method was
Viola-Jones[4], using Haar-like features. Later methods
use other hand-designed features, notably Discriminatively
trained part based models (DPM) [5] using Histogram of
Oriented Gradients (HOG) features, and Integral Channel
Features (ICF) [6] which combined multiple transformations
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(i.e. color, gradient, edge, gradient histogram, difference-of-
Gaussians, thresholding, and absolute value of Gaussian).
Most pre-CNN detectors use some combination of these
methods for feature extraction, followed by Support Vec-
tor Machines (SVM) or Adaptive Boosting (AdaBoost) for
object classification.

AlexNet [7] showed the effectiveness of Convolutional
Neural Networks (CNNs) for object detection, winning the
ILSVRC 2012 image detection challenge by a large margin.
Since then, CNNs have been the main focus of object
detection research, with the orthodox architecture being a
large, multi-layered CNN, often pre-trained as an image
classifier, combined with a method for creating bounding
box proposals. Object bounding box proposals are generated
either before passing the image through the feature extractor,
or after extracting the features from the image and consid-
ering those features in the region proposal generation. Two
kinds are seen: direct classification using region-free methods
[3], [8], [9], [10], [11] and refined classification approaches
in region-based models [12], [13], [14], [15]. In general,
region-free methods are faster but less accurate than region-
based methods. An examination of speed/accuracy trade-off
in recent CNN object detectors can be found in [16].

Region-based methods first regress the region proposal for
a refined bounding box and then pool the features of the
refined region from the common features volume and classify
the object by these features. Listing notable examples: R-
CNN [12] uses Selective Search [17] to generate almost
2000 region proposals per image, crops these proposals, and
feeds them to AlexNet for classification. Subsequently, Faster
R-CNN [13] improved accuracy and speed by replacing
selective search with a Region Proposal Network (RPN) as
suggested in [11] as well as classification by taking advan-
tage of VGG16 instead of AlexNet. Another variant is R-
FCN [14], which uses fully-convolutional RPN with almost
all computation shared on the entire image, in contrast to
previous region-based detectors that apply a costly per-region
sub-network hundreds of times. Recently, Mask R-CNN [15]
extended the Faster R-CNN to efficiently detect objects while
simultaneously generating a high-quality segmentation mask
for each instance, resulting in pixel level object detection.

In the alternate approach, region-free models simultane-
ously regress region proposals and classify objects directly
from the same input region. OverFeat [9] uses AlexNet to
extract the features at multiple evenly-spaced square win-
dows in the image over multiple scales. MultiBox [11] was
not an object detection method, but introduced CNN-based
region extraction using RPNs. You Only Look Once [8]
(YOLO) extends MultiBox from a region proposal solution
to an object detector by adding a softmax layer, in parallel
with the box regressor and box classifier layers, to directly
predict the object class. SSD [10] increases the diversity of
region proposal resolution by running the Faster R-CNN
RPN on multiple convolutional layers at different depth
levels. Finally, YOLOv2 [3] is a fully convolutional version
of YOLO [8] integrating several techniques such as batch-
normalization, anchor boxes, multi-scale training, as well as

a new image classifier model called Darknet19 with Network
in Network and Residual layers. We chose YOLOv2 as the
basis of our system due to its combination of speed and
accuracy.

B. Hand and Face Detection

Hand detection and hand pose recovery are important
problems because of the importance of hands in communi-
cation and many other applications. Hand detectors are less
successful than face detectors because of the difficulty of the
problem. State-of-the-art hand detectors are mostly multi-
modal methods that combine several different features. Skin
color is a substantial module in most methods, which makes
them vulnerable to illumination changes. Gloves and extreme
differences in skin color are also challenging for these
approaches. Most of these methods are too slow [18], [19] to
be used for real-time purposes. Spruyt et al. have designed
a near-real-time multi-modal method for hand detection and
tracking [20] which only works from very close-range, in
a controlled environment at 10-14 FPS. The closest work to
ours is [19], but their choice of the R-CNN for hand detection
makes it too slow for real-time use, and [21] which focuses
on very close range hands in egocentric first-person views.

Face detection in RGB images is very well explored in
the literature using both now-classical and CNN methods.
The structure of faces make them relatively easy to see,
and several methods detect faces well. However only a
few methods achieve the combination of high-accuracy and
real-time performance required for HRI. The OpenCV face
detector1 is fast and widely used in robotics, however it
suffers from many false positives that make it hard to use
for robust HRI. dlib2 is another open source face detector
which uses Deep Metric Learning [22] method and HOG
features for face detection. dlib is more accurate but slower
than the OpenCV detector. Most of these methods can not
be repurposed for hand detection.

C. Situated Human-UAV Interaction

Using gestural interfaces for communicating humans’
intent to a UAV has become popular. In [23] and [24]
authors use a Microsoft Kinect on-board a flying UAV
to perform gesture detection and human following. These
sensors are improving, but RGB-D sensors have frustrating
problems, e.g. poor results in direct sunlight, large data
size, low resolution and limited range. In [25] the authors
apply transfer learning to develop a person-specific gestural
interface to command a UAV. Monajjemi et al. [2], [26] use
hand waving (i.e. motion-based) detection to create a small
vocabulary of gestures (right, left, and dual hand waving) to
give commands to a UAV. In [27] the authors argue that in
order to increase the visibility of the hand and reduce the
effect of environment, they use arm gestures instead of hand
gestures, using skin detection. Other authors simplify the task
by having the user wear brightly-colored gloves [28].

1https://sourceforge.net/projects/opencvlibrary/
2dlib, Author: King, DE, Access on: http://dlib.net
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III. METHOD

As in our previous work [26] our simple hardware setup is
a consumer Parrot Bebop2 UAV with a commodity gaming
laptop with GPU for offboard computation3. The UAV has a
rolling shutter camera, so fast camera and subject movement
distorts the shape of objects. The UAV streams compressed
video and telemetry to the laptop by WiFi, and control
commands are sent back. Our detector must therefore be
robust to rolling shutter and video compression distortions.
The lightweight plastic UAV is safe to use close to people.
At any time a safety pilot can take control using a dedicated
hardware controller.

Our system starts with the UAV on the ground and its
motors disabled, waiting for the take-off command. The
laptop computer processes every frame of the streamed video
to locate hands and faces using our CNN hands-and-face
detector. Given these detections, which may come from
several people, we use Autonomy Human4 [2] to choose
a single interaction partner in front of the robot as in
[26]. Our new detector was a drop-in replacement for the
OpenCV Viola-Jones face detector we previously used. The
detected hands and face of the interaction partner are fed
to our gesture recognizer at frame-rate (30Hz) in the form
of regions of interest (ROIs) with class ids and confidence.
The gesture detector considers proposed ROIs above some
confidence threshold and attempts to classify a static gesture
from our vocabulary (Figure 2) based on the user’s relative
hands and face positions. A behaviour state-machine module
maps detected gestures to low-level commands (e.g. velocity
commands, take a picture, take-off/land) and transmits them
to the UAV for execution. Thus we detect gestures in a single
frame. While incorrect gesture detections are rare, we were
very cautious for safety reasons since gestures were directly
flying the robot. Gestures were only accepted as commands
after identical detection in three consectutive frames, giving
a response time of ≈ 100ms in 30Hz transmitted video.
Also for safety our gestures are only for lateral and vertical
movements: we don’t allow gestures to control the forward
motion of the UAV, which might collide with the user. An
independent controller with depth estimation based on the
apparent size of the user tries to keep the UAV within
configurable constant safety distance bounds from the user
[26]. We used 2.5m to 10m.

The behaviour module also adjusts the tilt angle of the
UAV’s camera based on altitude to keep the interaction
partner roughly at the center of the camera’s vertical field
of view.

The UAV constantly communicates its state and intents to
the user with its front facing colored-light-based feedback
system [26], with a new set of animations. When no user
command is detected, the UAV enters the idle state and
hovers stationary in front of the user (unless landed).

3Dell Alienware 15 with NVIDIA GeForce GTX 1060/6GB
4https://github.com/AutonomyLab/autonomy_hri/

tree/master/autonomy_human

A. CNN Model

YOLOv2 [3] is a generic object detection system, in which
a CNN predicts bounding boxes and label probabilities for
objects. This model produces state-of-the-art results in terms
of both accuracy and speed by outperforming other near-real-
time CNN object detectors such as Faster R-CNN [13] and
SSD [10]. The main idea behind YOLO is that the model
can predict object bounds by a single forward pass on the
image while exploiting global context from the whole image.
This behavior is ideal for our application, since it reduces
the false-positive rate as hand and face locations and mutual
appearance are correlated with each other and with those of
other body parts.

We used the Darknet19 object classifier model as our
feature extractor. In order to use YOLOv2 for detecting just
our two object classes - hands and faces - we changed the
number of filters in the last convolutional layer of the model
before performing the object classification in the region layer.

Redmon et al. showed since their model uses only con-
volution and pooling layers, it can be resized on-the-fly for
multi-scale training as well as running at varying sizes. This
offers an easy trade-off between speed and accuracy [3].
Following their suggestion, we scaled our model for the
second set of training to take 736 × 736 pixel images as
input, and after down-sampling by a factor of 32 it will divide
the image to 23 × 23 regions to predict the anchor boxes.
The original YOLOv2 model is designed such that their
smallest option is 320×320 and the largest is 608×608. Our
motivation for scaling up the model is that hands and faces
are tiny in an image at the distances used for applications
like mobile robot HRI. We selected 736 × 736 because it
was the largest size that the model could run at 60 FPS on
our NVIDIA GeForce Titan Xp GPU. However the model
can still be resized to process smaller images at higher frame
rates or on smaller GPUs at runtime.

B. Training

For the first round of training on the first set of data, we
used the Darknet19 448 model pretrained on the ImageNet
1000-class dataset as the initial weights for the first 23-
layer feature extraction part of the model. The bounding box
regressor and classification layers weights were initialized
randomly. Using our novel human-UAV HRI dataset de-
scribed below, we trained the modified model for 80 epochs
with a starting learning rate of 10−3, dividing it by 10 at the
40th and 60th epochs. We used a weight decay of 0.0005 and
momentum of 0.9. We used the same method in YOLOv2
for multi-scale training.

In a bootstrap approach, we take the trained model and use
it to annotate larger third-party generic hand datasets and face
datasets, correct any errors by hand, then fine-tune the model
with a combination of all datasets. Dataset engineering is
discussed further in Section IV. For training the final model,
as discussed above we resized it to accept 736×736 (23×23
grid) pixel images as input instead of 416 × 416 (13 × 13
grid). To retain the useful multi-scale feature of YOLOv2
we occasionally randomly resized the model during training
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from 320 × 320 (10 × 10 grid: the fastest model) to 960 ×
960 (30× 30 grid: highest accuracy). For the last epoch we
disabled the resizing and kept the input size as 736 × 736
which was our preferred model. We trained the network for
90 epochs with an initial learning rate of 10−3, dividing it
by 10 at the 30th, 45th, and 60th epochs. We used a weight
decay of 0.0005 and momentum of 0.9.

The Darknet5 framework supports a set of pre-defined
dataset augmentations. We added some more augmentation
methods to increase the number of training images and
cover a larger part of the appearance space. We randomly
crop up to 40% of the image’s height and width separately,
then scale the resulting image randomly between 25% to
200%, arbitrarily flip the image horizontally and/or vertically,
change the saturation and exposure of the image up to
50% and the hue up to 10% also at random, convert 6%
of the images to gray-scale, and add a random rotational
augmentation in the range of −30◦ to 30◦.

C. Gesture Detection

Researchers have been working on defining efficient ges-
tural vocabularies for natural interaction with UAVs for the
last decade. In [29], [30], [31] authors have defined different
sets of gestural vocabularies with a user study in the Wizard
of Oz manner. However none of these methods have been
implemented successfully on an autonomous flying robot.
The literature on practical and autonomous systems that
allow direct, situated, and un-instrumented communication of
intents and commands to the UAVs using monocular cameras
is very limited. [25] is one of the first successful attempts,
however they need a data gathering and training phase for
each user. The waving-based gestures in [2] and [26] are
motion-based, using the FFT to detect periodic hand motion
for gesture detection. These gestures are rather slow to pick
up, vulnerable to losing some frames in the video stream
and only three gestures have been shown. Relying on skin
detection enabled detection of a user’s arms and to generate
richer commands for the drone [27], but skin detection lacks
robustness and is not always feasible.

Rautaray et al. [1] propose that gesture recognition tech-
niques consist of three phases: detection, tracking, and
recognition. However our detector is so robust that we do
not need the tracking phase. We detect the static gestures
directly from the detection results (with an optional 3-frame
agreement policy for extreme confidence).

We consider a set of eight static hand gestures (i.e. take-
off, land, move up, move down, move left, move right, flip,
and take a picture) for controlling a drone as illustrated in
Figure 2. In order to recognize these gestures, we consider
two rectangular regions on both sides of the body at the torso
level relative to the face bounding box’s position and size.
These two regions work as home-zones for positional gesture
detection as illustrated in Figure 3. We detect a gesture based
on each hand’s position relative to their corresponding dead-
zones and the face bounding box. Although for directional

5Open source neural networks in C. http://pjreddie.com/
darknet

Fig. 2: Our hand gesture vocabulary for Human-UAV inter-
action. From left to right:� Take-off, á Move up, à Move
left, Î Flip, � Land, Þ Move down, ß Move right, and
ù Take a picture.

Fig. 3: Our static gesture detection works based on the
position of the interaction partner’s hands relative to her face.
This shows the dead-zone rectangles which are anchored
relative to the detected face position and size.

gestures only one hand is needed, we hold the other hand
as a safety dead-man switch inside its home-zone region for
these commands while giving the move direction using the
free hand. Actively using the second hand as a dead-man
switch is logically optional, but we recommend it as a safety
feature when deliberately maneuvering the UAV close to a
user.

IV. DATASET ENGINEERING

This paper is accompanied by the unique data used for
training our model.

For the first round of training, we created a dataset from 69
drone camera videos we recorded in previous Human-UAV
interaction work [26]. In the videos a flying UAV hovers
in front of a human as its interaction partner. The human
shows different motion-based hand gestures such as single
or dual hands waving, swiping horizontally or vertically,
and drawing different geometric shapes. They also include
some static hand gestures like pointing to different directions.
The resulting dataset consists of 16, 883 selected frames. We
hand labeled 34, 588 hands and 18, 838 faces in the selected
images.

We define our standard annotation format inspired by
the Pascal VOC [32] detection challenge. Our annotation
format is a tight axis-aligned bounding box around each
object of interest in the image, for which at least 50% of
the object is visible. To train the model using the Darknet
framework, we needed to change the annotation so that each
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Fig. 4: Sample images from Mittal et al.’s hands dataset
with bounding boxes overlaid. Red annotation rectangles
are the original dataset annotation, in which rectangle sides
are ordered so that the wrist is along the first side marked
with a yellow line. Cyan bounding boxes are our converted
annotations so that they enclose the original annotation, and
magenta bounding boxes are hand-labeled faces.

image has a single annotation text file, which includes one
line per bounding box in the image. Each bounding box
has a class ID ∈ {0, 1} specifying {Hand, Face}, followed
by four numbers in the range of [0.0, 1.0]. These numbers
indicate the normalized value of the center position of the
bounding box and its height and width based on the image’s
dimensions respectively.

To increase the amount and variety of data for training,
we also made use of some third party datasets, most of
which needed some modification to their annotation so that
they could be used for our purpose. Mittal et al. provide
one of the best publicly available hand detection datasets
[18]. The provided annotation files are in standard Matlab
format which contain annotations for the four end-points of
the hand bounding boxes. The original annotation bounding
boxes are not axis-aligned, thus we selected new axis-aligned
bounding boxes enclosing the original annotations, Figure 4
illustrates this difference. Spruyt et al. also provide a small
hand tracking dataset [20] under challenging illuminations.
We mixed these two datasets and hand annotated the faces
in them. A small portion of the Pascal VOC dataset, called
“Person Layout”, is annotated for the body parts (head, hand,
and foot) detection. They have provided bounding boxes for
these body parts in a portion of their dataset; we extracted the
head and hand annotations from the ‘.xml’ files, and removed
the images in which annotated heads were not frontal faces.
A combination of these four datasets was used for the first
round of training.

We used our first trained model to annotate more images
for creating a much larger labeled dataset than was previously
available, in order to use them for training smaller models
from scratch in the future. For annotating the rest of the
data, we predicted the hands and faces in the images using
our trained model, with the human annotator only adding
the missing labels as well as fixing the infrequent errors in
the labels generated by the model. The remaining datasets
were annotated using this method, which made the labeling
procedure an order of magnitude faster.

The Helen dataset [33] is a face landmark detection

Dataset Frames Hands Faces
Autonomy Hands and Faces 16, 883 34, 588 18, 838
Mittal 5, 628 13, 050 11, 045
Sensors 1, 251 2, 502 1, 251
Pascal VOC 582 1, 532 1, 055
Helen 2, 330 700 2, 909
VIVA 5, 500 13, 229 296
EgoHands 4, 800 15, 053 1, 033
Faces in the Wild 13, 391 14, 200 21, 783

50,365 94,854 58,210

TABLE I: Datasets we have annotated and used for training
our models. The first four datasets were used in our first
iteration of training, while the latter four are added for fine-
tuning our second model.

dataset, which consists of 2, 330 very close-range images of
faces. If there is more than one face in the image, the authors
have annotated only the dominant face. We wrapped the
landmarks in the image labels with an axis-aligned rectangle
to convert the original annotations to our standard bounding
boxes, then used our model to label the hands and the rest
of the missing faces in the images.

The VIVA hand detection challenge’s training dataset
[34] consists of 2D bounding boxes around drivers’ and
passengers’ hands from 54 videos collected in naturalistic
driving settings. These data are recorded under large illu-
mination variations, large hand movements, and common
occlusion with 7 possible viewpoints. In a similar setup,
the EgoHands dataset [21] contains 48 Google Glass videos
of complex, first-person interactions between two people
with pixel level segmentation of the hands. We used these
two datasets by converting their hands annotations to our
standard bounding box annotation format and also labeling
the occasional appearances of faces in the data.

Finally, the Faces in the Wild dataset [35], is a huge
collection of faces from news photographs. The original
annotation of these pictures only indicates who appears in
the picture, without any information about the position of
the face in the image. We picked half of the images in the
dataset and labeled all the occurrence of hands and faces
in those images. Table I shows the number of frames and
annotated hands and faces in our datasets.

All our original labelled video and annotations for
third-party datasets are freely available from http://
autonomylab.org/hands_and_faces.

V. EXPERIMENTS

To the best of our knowledge there is no other work in
the literature for dedicated simultaneous hand and face de-
tection with which to compare. Thus, to empirically evaluate
performance, we compare hand and face detection separately
with their respective benchmarks and datasets. Later we
demonstrate the detector’s suitability for practical HRI by
using it to directly control a UAV in flight.

A. Hand Detection

To evaluate our hand detector, we used the benchmarking
tool provided by the VIVA hand detection challenge [34].
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Simple Hard
Method AP AR AP AR FPS
Auto. H&F 736× 736 96.1 94.9 93.7 87.8 60
MS-RFCN 95.1 94.5 86.0 83.4 4.65
SCUT Aug. FRCNN 93.9 91.5 85.2 77.8 6.32
MS-RFCN 94.2 91.1 86.9 77.3 4.65
YOLOv2 93.4 91.0 84.0 74.4 123
Multi-scale fast RCNN 92.8 82.8 84.7 66.5 0.3
MS-FRCNN 90.8 84.1 77.6 65.1
SCUT Aug. FRCNN 89.5 86.0 73.4 64.4 4.9
FRCNN 90.7 55.9 86.5 53.3
Modified Faster-RCNN 81.7 59.2 72.8 47.2
ACF Depth4 70.1 53.8 60.1 40.4
YOLO 76.4 46.0 69.5 39.1 35
Auto. H&F 160× 160 74.6 53.6 62.1 38.6 200
SRS CNN 66.8 48.1 57.8 36.6 0.783
ACF 62.4 36.9 52.3 27.5 11.6

TABLE II: VIVA hand detection challenge results AP/AR
for the Simple and Hard evaluation settings. For both of the
evaluation metrics, higher is better. The results are sorted by
AR on Hard setting.

This benchmark kit computes the area under the precision-
recall curve (AP) and average recall (AR) rate for evaluation.
AR is calculated over 9 evenly sampled points in log space
between 10−2 and 100 false positives per image. This kit
considers the PASCAL overlap requirement of 50% as true
detections.

The hand detection challenge is evaluated on two levels: (i)
Simple: Hand instances with minimum height of 70 pixels,
only over the shoulder camera view (ii) Hard: Hand instances
with minimum height of 25 pixels, all camera views.

The results in Table II show our method achieves state-of-
the-art scores6 despite being also able to detect faces. The
other methods detect hands only. We carefully engineered
the network architecture to run at 60 frames per second
with good accuracy because typical frame rates in robot
applications are between 27 and 60 FPS. We also trained
the YOLOv2 method out of the box for comparison which
is ranked 5th in the Table II. Another state-of-the-art method
for hand detection is the work by Mittal et el. [18] which
takes approximately two minutes for an image as small as
640×360 pixels and is therefore not suited for real-time HRI
applications.

B. Face Detection

To evaluate the face detector, we used the WIDER [36]
face detection benchmark tool. WIDER also provides a large
and diverse training dataset, organized based on 61 event
classes, some of which were not suitable for HRI purposes.

We compare with previous methods of two kinds: (i)
evaluating the available baseline methods on test and valida-
tion datasets (ii) evaluation on state-of-the-art face detectors
trained on WIDER training data. We evaluate on the WIDER
evaluation data (10% of the dataset). The evaluation data
is divided into three different categories, easy, medium,
and hard. WIDER also adopts the same evaluation metric

6More information on the methods: http://cvrr.ucsd.edu/
vivachallenge/index.php/hands/hand-detection/

employed in the Pascal VOC dataset: If the ratio of the
intersection of a detected region with an annotated face
region is greater than 0.5, a score of 1 is assigned to the
detected region, and 0 otherwise.

Method Easy AP Medium AP Hard AP
Autonomy H&F 0.779 0.700 0.370
Faceness 0.704 0.573 0.273
DPM 0.690 0.448 0.201
ACF 0.642 0.526 0.252
Vila Jones 0.412 0.333 0.137
Face R-FCN 0.943 0.931 0.876
SFD 0.935 0.921 0.858
Face R-CNN 0.932 0.916 0.827
SSH 0.927 0.915 0.844
HR 0.923 0.910 0.819
CMS-RCNN 0.902 0.874 0.643
ScaleFace 0.876 0.866 0.764
Multitask Cascade CNN 0.851 0.820 0.607
LDCF+ 0.797 0.772 0.564
Faceness-WIDER 0.716 0.604 0.315
Multiscale Cascade CNN 0.711 0.636 0.400
ACF-WIDER 0.695 0.588 0.290
Two-stage CNN 0.657 0.598 0.304

TABLE III: Average precision of methods on the WIDER
benchmark. The horizontal line separates methods which
were not (above) and were (below) trained on the WIDER
training data.

As shown in Table III, our model outperforms all other
state of the art methods which were not specifically designed
and trained on the WIDER dataset7. Several methods trained
on WIDER score better than ours, though ours is the fastest.
We expect that training our model on WIDER would improve
its performance.

C. End-to-end Close Range Human-UAV Interaction

Next we demonstrate that our hand-and-face detector is
sufficiently fast and robust to use as the input for real-time
control of a UAV in flight by an un-instrumented user.

We evaluate the system using the hardware setup described
in Section III, with ROS [37] for integration. More details
about our system, as well as the source code for various
components (including hands-and-face detection models, our
datasets, the ROS wrapper for the Darknet framework, and
our gesture detection module) is available from the URL
above.

In order to test the effective range of our detector with a
flying UAV, we performed a set of experiments varying the
distance between the UAV and the user from 2.5 to 10m. We
measured hand and face detection rates and gesture detection
accuracy. These experiments were performed in two indoor
and two outdoor locations with different lighting and against
different backgrounds, shown in Figure 5.

All the experiments were repeated with one male and one
female user. Each user performed all 8 gestures 3 times per
location per distance, resulting in 96 trials for each gesture.
We considered a trial successful if the system could detect
the gesture in less than 1 second (30 frames). The results are

7More information on the methods: http://mmlab.ie.cuhk.edu.
hk/projects/WIDERFace/WiderFace_Results.html
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Fig. 5: Scale, illumination, and background changes in our evaluation.

Distance � � á Þ ß à ù Î Total
2.5m 100 100 100 100 100 100 100 100 100
5.0m 88 100 96 100 100 100 75 92 94
7.5m 54 92 71 75 88 42 25 71 65

10.0m 38 63 25 33 46 4 0 42 31

TABLE IV: Fraction of gestures correctly identified at dif-
ferent ranges, reported as a percentage over 96 repeats for
each. The eight gestures are: Take-off, Land, Move up, Move
down, Move right, Move left, Take a picture, and Flip.

Hands Faces
Distance Frames # % # %

2.5m 16,836 33,431 99.28 16,761 99.55
5.0m 16,592 31,367 94.52 14,827 89.36
7.5m 16,615 20,318 61.14 9,281 55.86

10.0m 16,562 8,586 25.92 6,388 38.57

TABLE V: Results of evaluating the accuracy of individual
hands and faces detection at different ranges. The cumulative
number of frames and the number and percentage of correctly
detected hands and faces are shown.

shown in Table IV. We also counted the number of correctly
detected hands and faces during each scenario to evaluate
our detector’s accuracy as shown in Table V.

The results show that the ‘take a picture’ gesture was the
hardest to detect for our system. It was the first to degrade
with distance, probably because hands could partially overlap
the face and YOLO reports only one object per grid cell.
The ‘landing’ gesture was the easiest to recognize, probably
because this gesture is similar to a normal standing posture
which was very common in the training data. Thus it might
be vulnerable to false positives in practice. We also tested our
system at 20m range with hands and faces detected correctly
in less than 1% of cases, thus we were not able to detect any
gesture at this distance. The false positive detection rate over
all experiments was less than 0.06%.

Based on this data and our observations, and consistent
with our previous experience, the best distance for situated
interaction between an un-instrumented human and a small
form factor UAV is between 2.5 to 5m. At these ranges, the
UAV can see the interaction partner well enough to detect her
hands and face, and also the human is close enough to see
the UAV’s feedback (in our case color-based LED feedback).

At distances further than 5m, the human’s ability to detect
the UAV’s movements and intents properly is degraded, and
control becomes difficult.

All the UAV video and labelled gesture data from these
experiments is released as a test dataset for UAV HRI.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed, demonstrated and provide
for use a CNN-based vision system that can accurately
detect hands and faces for human-robot interaction. A video
using our system in the loop for controlling a flying UAV
accompanies this paper and is available online. Our system
is robust to scale, illumination and background changes
sufficient for practical use indoors and outdoors at ranges
of at least 10m on a cheap commodity UAV. We showed
that an un-instrumented user can control a co-located UAV
using only a monocular camera on-board the UAV with off-
board processing at a ground control station via WiFi. We
examined a set of eight gestures for controlling a situated
UAV, allowing a user to command a drone to take-off,
translate, flip, take pictures and land successfully without
any need for physical interaction with the robot or other
equipment such as a controller. We defined a novel method
for introducing static gestures based on the relative position
of a user’s face and hands, with important safety features.

We have shown our system to be competitive in offline
benchmarks, and demonstrated it in a real robot system in
different environments under challenging illuminations and
backgrounds. Both our hands-and-face detector and gesture
detector give qualitatively and quantitatively good results in
video at 30 FPS on a commodity GPU. Detection is so
reliable that we do not need tracking in our application. Our
system is easily expandable to detect other objects as well
as human hands and faces by adding the extra data to the
dataset. The whole model is also scalable for accuracy/speed
trade-off. All training and test data, the trained CNN model,
and robot source code are freely available from our web site.

Our next goals are (i) to associate hands with correspond-
ing faces in images with multiple people; (ii) to track hands
and faces in video directly using a recurrent network; (iii)
optimize the network size so it can run real-time on CPUs.
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