
“Drums”: a Middleware-Aware Distributed Robot Monitoring
System

Valiallah (Mani) Monajjemi, Jens Wawerla and Richard Vaughan
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

{mmonajje, jwawerla, vaughan}@sfu.ca

Abstract—We introduce Drums, a new tool for monitoring
and debugging distributed robot systems, and a complement
to robot middleware systems. Drums provides online time-
series monitoring of the underlying resources that are par-
tially abstracted away by middleware like ROS. Interfacing
with the middleware, Drums provides de-abstraction and de-
multiplexing of middleware services to reveal the system-level
interactions of your controller code, the middleware, OS and
the robot(s) environment. We show worked examples of Drums’
utility for debugging realistic problems, and propose it as a tool
for quality of service monitoring and introspection for robust
autonomous systems.

Keywords-Robot Monitoring System; Distributed Monitor-
ing; Fault Detection and Diagnosis

I. INTRODUCTION

This paper describes Drums, a new tool for monitoring
and debugging distributed robot systems. We describe the
need for such a tool as a complement to robot middleware
systems, and show examples of its use in the real-world
scenarios that motivated us to develop it. Our group develops
distributed multi-robot systems, and Drums provides us an
important component for testing, debugging and run-time
quality-of-service monitoring that was previously missing.
The name “Drums” is nearly an acronym of Distributed
Robot Monitoring System. It is freely available from
http://autonomylab.org/drums/.

A. Background and motivation

The last decade has seen the rise of robot middleware.
Many or most researchers and robot developers now take
for granted the existence of a few well-known platforms,
exemplified by ROS [1], for rapidly assembling robot sys-
tems based on mature, well-designed interfaces and a catalog
of high-quality Open Source components. No doubt this has
increased the productivity of the research community, and
there is a current effort to transfer these benefits to industrial
robotics1.

Much of the benefit of these middleware systems is
obtained from the abstractions they provide. For example
in ROS, communication between components is by logical

1http://rosindustrial.org/

publish-subscribe channels called “topics”. Internal to ROS,
topics are usually implemented using pairs of TCP sockets
and a central directory service (the “master”) for establishing
connections. Assuming the ROS platform is working prop-
erly, the user does not need to think about the details of
networking: it just works transparently.

However these usually-useful abstractions have an impor-
tant disadvantage, in that failures and resource constraints in
the underlying mechanisms are not apparent. An abstraction
layer that hides the existence of a bundle of underlying TCP
socket pairs is not well suited to letting you know when one
socket pair is suffering lots of dropped packets.

Whether robots are experimental or intended for deploy-
ment, failures and glitches in the underlying systems are a
reality [2], [3]. In the lab experimental setting, such failures
are often the result of misconfiguration of a component, an
unplugged cable, or a bad wireless network connection. One
aim of Drums is to help you find these bugs more quickly.

In a more long term vision, robust robot controllers should
be able to reason about the state of underlying resources and
modify their behavior accordingly. Drums aims to provide
easy-to-use and low-running-cost infrastructure for resource
introspection in distributed robot systems. We argue below
that no system existed with the required functionality in a
convenient form.
Drums is designed to integrate with and work alongside

your robot middleware, to make apparent to the user what the
interaction of user code, middleware, robot devices and the
environment is actually doing to your networked computer
system.
Drums provides these key functionalities:
• monitoring of the computation graph created by robot

middleware, including run-time changes to the graph
• de-abstraction/de-multiplexing of abstract services and

communication channels into native processes and net-
work channels

• dynamic monitoring of these native resources, plus per-
host resources such as CPU load, free RAM and disk
space.

• low-cost aggregation of these data into a central time-
series database.



The output from Drums can readily be visualized and
mined with third-party tools based on queries on the time-
series database. This helps to increase the operational aware-
ness of the human operator, supervisor or engineer of the
robot system. In addition, Drums can be used as a low-
cost data collection layer for fault detection and diagnosis
systems.

B. Observing Faults in Robot Systems

The general approach to detecting and diagnosing faults
is to observe (monitor) components of the system and
detect deviations from expected behavior. Deviations can
be found using quantitative or qualitative models (model
based approach) or by comparing observations with data
collected during the system’s nominal operating conditions
(data driven approach).

Various types of observations have been proposed: Verma
et.al [4] used sensor measurements as observations and
particle filters as estimators to track the robot state and
detect faults in the drive system of a simulated Mars rover.
Steinbauer et. al. monitored [5] the frequency of method
invocations and the order and timing of service calls in
a mobile robot’s control software using model based rea-
soning [6]. Using the same diagnosis technique, Kleiner et.
al. [7] observed communication patterns between software
components of a robot navigation software to detect faults.
Similarly, Golombek et. al. [8] used kernel density estima-
tion to fit a probabilistic model on temporal communication
patterns among components of a robot systems under normal
operating conditions. During runtime, the fitness of new
observations is assessed according the model to detect faults.

While promising, these methods are not in wide use.
One issue is that these ad-hoc implementations are not
easily portable to new robot systems. Drums provides a
portable substrate on which to base observers for fault
detection or other introspection systems. Data collected by
Drums can be used directly as observations, or indirectly
as basis to design sophisticated observers. Zaman et. al.
[9] addressed this portability issue by designing a set of
observers for ROS to monitor hardware drivers, the state
of nodes, publication frequency, and the resource usage of
hosts. The latter two are similar in concept to our monitoring
system. However in its current implementation, Zaman’s
system does not support individual process monitoring and
dynamic discovery of the underlying computation graph
(as defined below). Furthermore, in contrast to our passive
socket monitoring (Sec. III-B), Zaman’s topic observers
gather statistics actively by subscribing to corresponding
publishers in the ROS network. In the worst case this
increases the number of edges in the computation graph
(section II-A) by the factor of 2.

N1

N2

N4

N3

N5

N6

H1

H2

H3

C1

C2

C3 C4

C5

C6

Figure 1. Computation graph extracted from cooperating middleware

II. APPROACH

A. Common Representation Model

We first define a generic model of robot systems in-
dependent of the choice of middleware. The model maps
closely to native OS resources, and our distributed mon-
itoring infrastructure will gather information from various
sources to describe the state of the model over time. This
way, the monitoring infrastructure and the middleware are
loosely coupled through the common model. To support a
particular middleware, the mapping from the middleware to
the elements of common model must be defined.

We define the common representation model by removing
the abstraction imposed by the middleware architecture, then
define a computation graph consisting of operating entities
only. The computation graph G consists of a set of n
processing nodes N = {N1, N2, · · · , Nn} and a set of k
directed connections between nodes, C = {C1, C2, · · · , Ck}
(Fig. 1). Nodes can vary from low level hardware interfaces
to high level decision making units and from individual
software modules to entire processes. Each connection Ci

is a communication link (asynchronous or synchronous,
memory based or network based) between two or multiple
nodes. Nodes are hosted on a set of m computation units
H = {H1, H2, · · · , Hm}. Each node is hosted by exactly
one host.

The granularity level of node definition and the type of
connections between them defines the type and level of
instrumentation needed to monitor the graph. For example
if nodes are defined as operating system processes, they
can be monitored using the operating system’s monitoring
facilities, without any extra instrumentation. On the other
hand if nodes are defined as programming modules (classes,
subroutines, etc), nodes are required to be instrumented at
code level. This will change the design of the monitoring
infrastructure. Similarly the type of instrumentation differs



between monitoring physical network sockets and monitor-
ing data exchange over shared memory.

The granularity level of the computation graph thus de-
pends on the design specifications of the monitoring tool.
For Drums these specifications are: 1) Low overhead in
terms of resource consumption 2) Ease of deployment 3)
No instrumentation beyond what the host operating system
and target middleware can provide. To satisfy (3) we chose
to limit the granularity level of nodes to operating system
processes and network sockets.

B. Monitoring the Computation Graph

Distributed monitoring software is widely used to monitor
distributed computing platforms such as IT infrastructures
[10], computing clusters [11], grids [12] and clouds [13],
[14]. However, none of the available distributed monitoring
architectures support the process and socket granularity level
required to monitor the proposed computation graph. The
problem with most of these systems is that the lowest
supported level of granularity is at the host level and the
network connections between hosts. The latter is important
because robot control software is often a data-intensive
distributed application [15] and monitoring the connections
in the graph is important to observe the health of the
data flow. For extensible systems such as Ganglia [11],
Nagios [10] or Collectd2 , it is possible to develop custom
monitoring plugins for finer levels of granularity. However
monitoring the computation graph for robot systems has
one characteristic that is not met by these systems: the
graph created by the middleware is different between each
execution, and may change during runtime. For example
a publish/subscribe or an event channel managed by the
middleware may use different TCP/UDP port numbers be-
tween successive executions. New nodes may be spawned
or new communication channels may be created during the
execution by the middleware. Previously mentioned systems
rely on static configuration files that are not designed to be
configurable during runtime.

To best of our knowledge none of the current robotic
middleware provide a distributed way to monitor resource
usage of their computation graphs. Some robotic middleware
provide ad-hoc monitoring tools for a subset of their com-
putation graph elements. However these tools are either not
distributed or do not cover all elements of the computation
graph. Examples are ROS’s internal statistics about topics
and sockets, ROS’s third party single computer resource
monitoring tool 3 and Urbi’s [16] object resource utilization
observer.

The rest of this paper is organized as follows. We will
present the distributed monitoring architecture and its techni-
cal details in section III. Section IV describes applications of

2http://collectd.org/
3http://wiki.ros.org/rqt top

Drums in two robot scenarios. Finally we discuss possible
extensions and future directions in section V.

III. METHOD

A. Architecture

Drums consists of a statistics collector process and a
client library for aggregation. The collector process runs on
each host of the computation graph and collects statistics
about elements of the graph accessible from the host. It
provides a HTTP based interface for runtime configuration
of monitoring jobs. In addition, the collector pushes the
collected data to the client library for aggregation over a
publisher/subscriber channel. To utilize Drums, an adapter
needs to be written for each target middleware to translate
the state of the middleware into a computation graph.
Fig. 2(a) depicts the architecture. Drums is written mostly in
Python and tested on Linux. Some performance critical tasks
such as socket monitoring are implemented as C libraries.

B. Drums Collector

The Drums collector process is a Python daemon applica-
tion that collects statistics from elements of the computation
graph running on each host. The data are collected using
multiple monitoring modules. Each monitoring module runs
in a separate process with a configurable sampling interval.
Currently there are four types of monitoring modules imple-
mented. New monitoring modules can be written as plugins.
The existing modules are:

Process Monitor: The process monitor collects informa-
tion about specific operating system processes running on
the host. Information such as CPU and RAM utilization of
the process and its spawned threads. The process monitor
maintains a list of Process IDs that need to be monitored.
This list is modifiable during runtime upon request from
the client. The process monitor uses the cross platform
psutil4 library to collect the data.

Host Monitor: The host monitor collects aggregate re-
source utilization data about the host computer. Information
such as CPU, RAM, I/O and network utilization. Similar to
process monitor, this data is collected using psutil.

Socket Monitor: The socket monitor is built on
top of libpcap [17], a packet capture library. Mon-
itoring jobs are specified by the client as tuples
of < protocol, direction, port > (e.g. < tcp, src, 8000 >)
which will be converted to libpcap’s filters. Packets that
match any of these filters are captured. The captured packet
headers are then analyzed to retrieve the packet length. For
each filter, the total number of packet lengths are stored and
passed to client once per interval.

Latency Monitor: The latency monitor is a multi-target
ping program. The process maintains a list of target hosts
to monitor. Once per interval the latency monitor sends a

4https://code.google.com/p/psutil/



Collector
Host

Collector
Host

Collector
Host

The Computation Graph of The System (Middleware)

Drums Client 
Library

Timeseries 
Database

Middleware Adapter 

Host Monitor

Process 
Monitor

Socket 
Monitor

Latency 
Monitor

Event Loop & API

Shared Pipe

C
allbacks

HTTP 
Server

Publisher
Collector Modules

Collector Process
Ø

M
Q

 Socket
R

ESTful API

Figure 2. Overall architecture of Drums (left) Architecture of Collector Process (right)

number of ICMP packets to specified hosts to calculate the
round-trip delay between the host and targets. The average,
minimum and maximum of the measured ping times are
stored for each target. The number of packets sent and the
intervals between them are configurable.

The collector includes a server that provides an HTTP
based API to register or remove monitoring tasks. For
example clients can send a POST HTTP request to
http://host:8001/drums/monitor/pid/344 to regis-
ter a process monitoring task on host for the process with
PID of 344. The returned HTTP response code determines
if the task registration was successful. Sending a DELETE
request to the same URI removes the monitoring job. There
is a well defined API for all monitoring modules.

The collector provides both synchronous and asyn-
chronous data retrieval methods. Clients can poll the daemon
to retrieve the latest measurements by making HTTP GET
requests at the URI associated with each job. The returned
data is serialized into JavaScript Object Notation (JSON)
format. The daemon also publishes data over a ZeroMQ
publish socket. ZeroMQ [18] is a cross-platform, lightweight
and high performance message passing middleware for dis-
tributed applications (See [19] for a performance compar-
ison with other message passing middleware). Clients can
connect to this publish socket to subscribe to particular
measurement sources. Data is pushed to subscribers when
it is received from the collector, serialized in “msgpack”5

binary serialization format. The address of the publisher
socket and the key for each monitoring task is provided to
clients via the HTTP response sent back by the server when
a job is first initiated.

5http://msgpack.org/

C. Drums Client Library

ZeroMQ and msgpack both have bindings for almost all
modern programming languages and mature libraries are
available for using HTTP APIs and JSON-encoded data.
Hence, it is straightforward to develop applications that use
Drums collector services. As a reference implementation,
we developed a Python client library that streamlines the
process of registering tasks with multiple collectors over
the network and subscribe to their publish channels. The
client library provides an API to dispatch monitoring jobs
to multiple collectors over the network. It aggregates the
data collected and published by collectors and relays that
data back to its corresponding clients (Fig. 2(a)).

The client library also provides an API to export the
aggregated data. Currently the aggregated data is ex-
ported to “Whisper”6, a time-series database. Whisper
is a fixed-size time-series database system with flexible
and configurable retention policy. Each time-series is re-
ferred to by a key. Keys are expressed hierarchically e.g
drums.host.process_name.get_cpu_percent. Time-
series are stored in Whisper for a configurable duration (e.g
days).

D. Drums ROS Adapter

The collector process and the client library provide the in-
frastructure needed for monitoring a distributed computation
graph. The last piece of the architecture is the middleware
adapter. The middleware adapter is a program that monitors
the state of the middleware (hosts, processes and communi-
cation links) to maintain a computation graph. The adapter

6http://graphite.wikidot.com/whisper



Table I
AVERAGE RESOURCE USAGE OF DRUMS COMPONENTS DURING THE

DEMONSTRATIONS.

Faulty Router (243 metrics)
Module CPU Util. Mem Util. Bandwidth
Collector API <1% 2MB 150-160 Kbps
Process Monitor <1% 13MB -
Host Monitor <1% 13MB -
Latency Monitor <1% 12MB -
Socket Monitor 1%-2% 19MB -
ROS Adapter 1%-2% 22MB -

Resource Usage (392 metrics)
Collector API <1% 9MB 290-310 Kbps
Process Monitor <1% 12MB -
Host Monitor <1% 11MB -
Latency Monitor <1% 12MB -
Socket Monitor <1% 14MB -
ROS Adapter 4%-5% 24MB -

initiates/removes the monitoring jobs for new/deleted ele-
ments of the graph by contacting Drums collector(s) that
are local to that element of the graph. The adapter acts as
a bridge between the middleware and Drums infrastructure.
It translates the dynamic abstract state of the middleware
into Drums monitoring jobs. For robot middleware with
directory services such as ROS and YARP [20], data are
obtained directly from the directory service (e.g ROS master
or YARP name server). Optionally the adapter can make the
data collected by Drums available to the middleware, allow-
ing system-level introspection from within the middleware.

We developed an adapter for the popular robot mid-
dleware, ROS. The adapter wraps Drums client library
and monitors the ROS computation graph periodically (by
default every 15 seconds) by querying the master. Pro-
cesses (nodes) spawned by ROS and their host platforms
are identified by querying the master. For each host its
hostname and/or IP address is determined. This information
is used to contact Drums collectors and to initiate host,
process (node) and latency monitoring tasks. Information
about the sockets used by ROS is obtained directly from the
nodes using an extended ROS client API7. The aggregated
information is published as hierarchical key-value pairs via
ROS diagnostic topic which is monitored by ROS’s
diagnostics infrastructure. The data can be viewed using the
graphical user interface provided by ROS or be analyzed
using plugins.

IV. DEMONSTRATION

In this section we show how Drums can assist in detecting
problems in two ROS-based robot systems. In the first
demonstration we show how Drums can be used to isolate
a fault in network equipment. In the second, we demonstrate

7We extended the ROS client API to include low level socket information.
The extended API has been scheduled to be included in the next ROS
release.

Figure 3. An example realtime web-based dashboard used during resource
usage demonstration.

how to detect excessive resource usage caused by elements
of the computation graph.

Since Drums produces too much raw data for users to
easily apprehend, we must filter and visualize it before it
becomes useful for debugging. For visualization we use a
realtime time-series dashboard called “Graphite”8. Graphite
is a web based front-end to the Whisper database that
generates graphs based on customizable queries. Fig. 3
shows an example resource-monitoring dashboard, where
important measurements are chosen manually for near-real-
time display. The user can explore the data by entering
queries in this GUI.

But we do not always know in advance which metrics
are important, so we employed the data-driven anomaly
detection software “Skyline”9 to watch all metrics at once.
Skyline uses the consensus of multiple statistical tests to
find discrepancies between recent data points and the recent
history for each time series. For accumulative measurements
such as counters (bytes, packets, errors) the derivative of the
time-series is also fed into Skyline. For all the following
experiments, the collector process was configured to collect
metrics at 1 second intervals. The anomaly detector was
configured to run every 5 seconds.

A. Faulty Router

In this demonstration we use Drums to detect and isolate
a fault in network equipment. This was an actual fault that
interfered with a human-multi-robot interaction experiment
[21]. Finding this fault without Drums required many hours
of skilled debugging effort.

Three AR-Drone quadrocopters were connected via Wifi
(802.11n) to a wireless router. From this router, the network
connection passed through gigabit Ethernet to a dedicated
computer (Intel Core i7 CPU with 8GB of RAM) for
each drone. On every computer, realtime vision software
subscribed to a high definition video stream of one drone
to detect a human and her gestures. In addition, software

8http://graphite.wikidot.com/
9https://github.com/etsy/skyline



Figure 4. Stacked graph of anomaly breakdown over time for the faulty
router demonstration. Time is in minutes past 13:00. The major peaks at
41:09, 42:09, 43:09 and 44:09 are caused by adding and removing robots
from the network. The peaks at 42:29 – 42:39 are suspicious.

was running on each computer to control the behavior of
the corresponding robot. During the initial experiments we
observed that the system was not scaling well from two
to three robots. The symptom was unresponsiveness of the
system when three hosts were running at the same time.
A large debugging effort was required to track down the
course of the problem. In this demonstration we perform
the original experiment with the same hardware. In addition
we use Drums to see if we can detect any anomaly and
isolate the fault. After all three robots are powered, we start
the vision and control software on each host one by one with
a 60 seconds delay in between. We terminate the software
after 300 seconds of execution time. The total number of
monitored performance parameters was 243. From these
metrics we exclude 102 host related metrics from fault
detection. The reason for that is host related metrics such
as host’s CPU/RAM usage may be affected by entities
outside the monitoring system, therefor they may cause false
positives.

Fig. 4 shows the number of anomalies detected over the
course of the trial. The metrics are broken down into three
categories for CPU, memory and I/O related metrics at node
(process) level.

There are six major peaks in Fig 4. The peaks at 13:41:09
and 13:42:09 correspond to the start of the execution of
the second and third host’s software respectively. The major
peaks at 13:43:09, 13:44:09 and 13:45:09 correspond to the
shutdown time of the first, second and third host’s software
respectively. However the major peak at time 13:42:29 is
suspicious. The peak mainly consist of I/O related anomalies
at process level. Checking the anomaly detector’s log file for
the period of 13:42:24 to 13:42:39 reveals that there are mul-
tiple anomalies in the AR-Drone driver’s image publishing
sockets for all three hosts. Fig. 5(a) shows the bandwidth
usage graph by these sockets generated by Graphite. The
graph shows that when all three software stacks are running
simultaneously the traffic of the image publisher’s socket

Figure 6. Stacked graph of anomaly breakdown over time for the resource
usage demonstration. Time is in minutes past 16:00. Robot enters the
“follow the human” at 53:08 and “emergency stop” at 53:28.

drops significantly for all three robots. With this knowledge
we can narrow down the search for the root of the problem
to two possible cases: wireless interference between robots
or a problem with the router. We replaced the router with a
similar model from a different manufacturer and repeated
the experiment. Fig. 5(b) shows the resulting bandwidth
utilization graph on image publishers’ sockets for the new
experiment. Comparing these two figures, we can conclude
that the router was the source of the problem.

Summarizing the utility of Drums in this scenario:
Drums automatically enables monitoring of every process,
network connection and host involved in maintaining the
ROS abstraction of networked services communicating over
topics. Due to the robustness of the ROS design, the topics
continued to work when the router faults were encountered
and ROS reported no errors. Yet the underlying network
performance changed on individual socket pairs, and this
anomaly was automatically detected by Skyline watching
Drums data, drawing the user’s attention to the relevant
system parameters.

We also measured the overhead of different components
of the monitoring system during this experiment. Table I in-
cludes the average CPU, memory and bandwidth utilization
of various components of the monitoring system. We can
see that Drums adds only marginal overhead.

B. Monitoring Resource Usage

In the second demonstration, we show how data collected
by Drums can be used to detect excessive and anomalous
resource consumption. The testbed is a Husky A200 ground
robot equipped with camera, inertial measurement unit, GPS
and a laser scanner. The task of the robot is to detect a human
and follow her while doing safe navigation. We injected a
memory leak bug in the person following code to simulate
a software bug that degrades the performance of the whole
system by excessive memory consumption. We also added a
number of logging statements in a tight control loop of the
emergency stop routine. In ROS, log messages aggregate in



Figure 5. Faulty Router - Excerpt of Drums data from the faulty router demonstration. 5(a) shows the socket traffic with the defective router. 5(b) shows
the same data for the nominal router.

Figure 7. Resource Usage - Excerpt of Drums data for the resource usage demonstration. 7(a) show the memory usage of the people_follow node.
At time 16:53:10, the sub routine with a memory leak is triggered. at 16:53:40 the routine is exited. 7(b) shows the bandwidth usage of the logging topic
during the excessive logging demo.

a central process called rosout. Although log messages are
helpful tools for debugging, unnecessary log messages or log
messages with high publication frequency cause unnecessary
network overhead.

Figure 6 shows the breakdown of detected anomalies
over the course of a human following scenario. The robot is
initially in “waiting for human” state until the human enters
the field of view at time 16:53:08. This triggers a change
in the robot’s behavior and it starts the “follow the human”
subroutine. The robot follows the human for 20 seconds
until the human stops walking and the robot comes too
close at time 16:53:28. This triggers the “emergency stop”
mode. As shown in Fig. 6, the number of anomalies start
to rise as the robot enters the “follow the human” state.
There are two major process specific anomalies during
this state. The first one at 16:53:13 is mostly memory

related. Log files reveal anomalies in memory usage of
the people_follow node. Figure 7(a) shows the graph
for the people_follow resident memory usage which
clearly shows a memory leak during the “follow the human”
period. The second peak at 16:53:23 shows I/O related
anomalies. Investigating the log files shows that anomalies
were caused mainly by nodes involved in safe navigation of
the robot. There is also a major process I/O peak during the
“emergency stop” state at time 16:53:38. Anomalies logged
for that time period include anomalies related to messages
published from people_follow node to rosout such as
socket.rosout.topic.rosout.from.people_follow

(shown in Fig. 7(b)).

The total number of recorded metrics in this demonstra-
tion was 392. From these we exclude 68 host level metrics.
All nodes except the ROS adapter were running on the



Husky’s internal Intel Core i7 computer with 8GB of RAM.
The adapter was running on a similar computer connected
over Wifi to the Husky. Table I summarizes the average
overhead of Drums components during this demonstration.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced a lightweight distributed
monitoring tool for robots and demonstrated its applications
in two practical demonstrations. Drums unpacks the ab-
straction layer presented by the middleware and maintains
a corresponding graph that maps into monitorable system
entities. We showed that by monitoring the computation
graph we can detect excessive resource usage, anomalies
and faults in robot systems. We used a generic data-driven
anomaly detector to draw the user’s attention to fewer than
10 suspicious time series of around 300 recorded. Of course,
anomalous behavior of a metric is not necessarily due
to a fault: false positives can occur. Furthermore, metrics
with anomalies only provide clues about possible faults
in the system. Future work includes developing a custom
visualization and fault detectors for distributed robot systems
that take full advantage of Drums. A long term interesting
research direction is to use Drums as an introspection tool
inside robot controllers, adapting robot behavior to internal
system conditions that have previously been difficult to
observe across the network.

VI. ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and En-
gineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN).

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source
Robot Operating System,” ICRA workshop on open source
software, vol. 3, no. 3.2, 2009.

[2] J. Carlson and R. R. Murphy, “How UGVs physically fail in
the field,” Robotics, IEEE Transactions on, vol. 21, no. 3, pp.
423–437, 2005.

[3] G. Steinbauer, “A Survey about Faults of Robots Used in
RoboCup,” in 16th Annual RoboCup International Sympo-
sium. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 344–355.

[4] V. Verma, G. Gordon, R. Simmons, and S. Thrun, “Real-
time fault diagnosis [robot fault diagnosis],” Robotics &
Automation Magazine, IEEE, vol. 11, no. 2, pp. 56–66, 2004.

[5] G. Steinbauer, M. Mörth, and F. Wotawa, “Real-Time Diagno-
sis and Repair of Faults of Robot Control Software,” Lecture
Notes in Computer Science, vol. 4020, no. 2, pp. 13–23, 2006.

[6] R. Reiter, “A theory of diagnosis from first principles,”
Artificial Intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[7] A. Kleiner, G. Steinbauer, and F. Wotawa, “Towards Au-
tomated Online Diagnosis of Robot Navigation Software,”
in Simulation, Modeling, and Programming for Autonomous
Robots, 2008, pp. 159–170.

[8] R. Golombek, S. Wrede, M. Hanheide, and M. Heckmann,
“Online data-driven fault detection for robotic systems,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Inter-
national Conference on. IEEE, 2011, pp. 3011–3016.

[9] S. Zaman, G. Steinbauer, J. Maurer, P. Lepej, and S. Uran,
“An integrated model-based diagnosis and repair architecture
for ROS-based robot systems,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 482–489.

[10] Nagios core version documentation (v. 3.x). [Online]. Avail-
able: http://nagios.sourceforge.net/docs/nagioscore-3-en.pdf

[11] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation, and
experience,” Parallel Computing, vol. 30, no. 7, pp. 817–840,
Jul. 2004.

[12] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L.
Rubini, G. Tortone, and M. C. Vistoli, “GridICE: a monitor-
ing service for Grid systems,” Future Generation Computer
Systems, vol. 21, no. 4, pp. 559–571, Apr. 2005.

[13] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. An-
toniu, “GMonE: A complete approach to cloud monitoring,”
Future Generation Computer Systems, vol. 29, no. 8, pp.
2026–2040, Oct. 2013.

[14] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler,
A. Corradi, and L. Foschini, “DARGOS: A highly adaptable
and scalable monitoring architecture for multi-tenant Clouds,”
Future Generation Computer Systems, vol. 29, no. 8, pp.
2041–2056, Oct. 2013.

[15] D. Brugali and P. Scandurra, “Component-based robotic en-
gineering (Part I) [Tutorial],” Robotics Automation Magazine,
IEEE, vol. 16, no. 4, pp. 84–96, Dec. 2009.

[16] J.-C. Baillie, “Urbi: Towards a universal robotic low-level
programming language,” in Intelligent Robots and Systems,
2005.(IROS 2005). 2005 IEEE/RSJ International Conference
on. IEEE, 2005, pp. 820–825.

[17] V. Jacobson, C. Leres, and S. McCanne, “libpcap, Lawrence
Berkeley Laboratory,” 1994.

[18] P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly, 2013.

[19] A. Dworak, M. Sobczak, F. Ehm, W. Sliwinski, and P. Char-
rue, “Middleware Trends And Market Leaders 2011,” in 13th
International Conference on Accelerator and Large Experi-
mental Physics Control Systems, 2011, pp. 1334–1337.

[20] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived
robot genes,” Robotics and Autonomous Systems, vol. 56,
no. 1, pp. 29–45, Jan. 2008.

[21] V. Monajjemi, J. Wawerla, R. Vaughan, and G. Mori, “HRI
in the sky: Creating and commanding teams of uavs with a
vision-mediated gestural interface,” in Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on,
Nov 2013, pp. 617–623.


