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Fig. 1: Our system in action during two of outdoor experiments (Section IV-B). The flying robot’s view from left to right: (i) The user initiates the
interaction with the UAV using a dual-arm waving gesture in the presence of other humans (distance is ≈ 30m) (ii) The UAV approaches the user using
an appearance based tracker and a custom cascade controller (iii) The user asks the UAV to take a picture of her using a single hand waving gesture (iv)
The resulting portrait (v) The user terminates the interaction by performing a dual hand waving gesture.

Abstract— We present the first demonstration of end-to-end
far-to-near situated interaction between an uninstrumented
human user and an initially distant outdoor autonomous
Unmanned Aerial Vehicle (UAV). The user uses an arm-waving
gesture as a signal to attract the UAV’s attention from a
distance. Once this signal is detected, the UAV approaches the
user using appearance-based tracking until it is close enough
to detect the human’s face. Once in this close-range interaction
setting, the user is able to use hand gestures to communicate
its commands to the UAV. Throughout the interaction, the
UAV uses colored-light-based feedback to communicate its
intent to the user. We developed this system to work reliably
with a low-cost consumer UAV, with only computation off-
board. We describe each component of this interaction system,
giving details of the depth estimation strategy and the cascade
predictive flight controller for approaching the user. We also
present experimental results on the performance of the complete
system and its individual components.

I. INTRODUCTION

The rapid development of low-cost Unmanned Air Ve-
hicles (UAVs) is enabling many valuable applications and
new industries are growing around them. In particular small
multi-rotor vehicles are relatively safe to operate around
humans, so we have recently been able to consider situated
and embodied human-UAV interactions as an alternative to
conventional remote-control systems. We have previously ar-
gued that hands-free, embodied, sensor-mediated interaction
could be useful in some UAV applications [1], [2].

In this paper we show the first realized Human-Robot
Interaction system whereby an uninstrumented user can
attract the attention of a distant (20 to 30 meters) autonomous
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outdoor flying robot, the robot then approaches the user to
close range (≈ 2 meters), hovers facing the user, then re-
sponds appropriately to a small vocabulary of hand gestures.

The main contributions of the paper are (i) the first
demonstration of end-to-end interaction with a distant flying
robot over multiple scales (ii) a description of a robust
integrated visual servo and predictive cascade controller
design for smooth approach towards a human and (iii) a
case study in outdoor situated HRI with UAVs over multiple
scales. Below we briefly survey work in situated interaction
with UAVs, then describe the components of our end-to-end
situated interaction system. We describe how we use fast
computer vision methods to detect the user’s intention from
distance using a monocular camera, how we estimate depth
when approaching the user, a predictive cascade controller to
follow a smooth trajectory towards the user despite the high
latency of our off-board vision via WiFi link, our close-range
interaction system for the communication of commands from
the user to the UAV and our colored-light-based feedback
system for communicating the UAV’s state to the user. We
present experimental results of this system in action, where
an uninstrumented user can summon a Parrot Bebop Drone
from distances over 20m and have the robot take a close
range portrait photo - a selfie - of her. The scale change is
such that the person initially appears around 15 pixels high
in the UAV’s 640×368 camera image, but the portrait taken
features the person’s torso and head in the center of the image
(Figure 1).

II. BACKGROUND

We previously presented systems that enable uninstru-
mented humans to perform close range situated interaction



with UAVs through gaze and hand gestures [1], [3], [4] and
obtain a distant UAV’s attention using stationary periodic
gestures while the UAV is in flight [2]. In this work, we
build upon those systems to provide an end-to-end interaction
system for human-flying robot interaction. Motivated by
Wilderness Search And Rescue (WiSAR) and personal film-
ing drone application domains, we identify the components
of an end-to-end interaction system as (i) explicit interaction
initiation; (ii) approach and re-positioning to facilitate close-
range interaction; (iii) communication of commands and
intents from the human to the UAV; and (iv) communication
of intents from the UAV to the human.

Uninstrumented interaction initiation between co-located
humans and UAVs mostly happens in two forms. In the first
form, the UAV utilizes vision-based human feature detectors
to find potential interaction partners. Alternatively the user
may try to attract the UAV’s attention by using active stimuli
such as gestures, sound or body movements.

Using vision-based human detectors on-board a UAV
poses multiple challenges. First, when the UAV is flying
far from the humans, features are either hard to detect or
require high computational resources to be detected in real-
time. Some researchers use extra sensors such as thermal
cameras [5], scene information such as saliency maps [6] or
the prior on the height of the human combined with ground
plane estimation [7] to identify regions of interest in the
image plane before executing vision-based human detection.

Most existing human detectors assume an upright human
view [5]. The violation of this assumption caused by time-
varying and different vantage point of UAVs causes the
second issue for performing on-board pedestrian detection.
In [6] the authors show that the performance of a con-
ventional pedestrian detector can be improved by retraining
it using a dataset that is recorded from a UAV and with
synthetic variations of camera roll and pitch angles. In [8],
the authors propose to compensate for this time-varying
vantage point by estimating the ground plane using UAV’s
telemetry data and cancel out the distortion by projecting
the image to the ground plane prior to using a pedestrian
detector. Although none of the aforementioned methods
were explicitly used for human-UAV interaction, they are
applicable for implicit interaction initiation or as a building
block for explicit interaction initiation. The same is true for
methods such as [9] that utilize moving object detection to
find regions of interest and potential interaction partners in
the UAV’s Field Of View (FOV).

Once the interaction between a human and a UAV (or
a team of UAVs) is initiated, the human and the UAV(s)
can interact more directly by communicating their intents.
Uninstrumented, natural and situated communication of com-
mands from humans to UAVs have been recently explored
by researchers in form of human studies and practical sys-
tems. Example human studies include [10] and [11] that
investigate natural commanding modalities for collocated
interaction between a human and a flock or a single UAV
respectively.

To approach towards the user, the UAV should first track

the location of the user, then constantly control its flight
trajectory to reach the person. Recently, researchers have
applied state of the art long-term appearance-based visual
trackers and Image Based Visual Servo (IBVS) control
for following an uninstrumented human with a UAV [12],
[13]. We use the same long-term visual tracker developed
by [13] in our system. Similar to [12], we use a visual servo
controller to generate approach trajectories for our target
platform. However, since our system performs approaching
towards the user, rather than following her, depth estimation
of the target becomes more critical, thus we provide a
solution to estimate depth of the tracked object using UAV’s
telemetry data and the intrinsic parameters of the camera.
Furthermore, unlike [12], our system is not initialized by a
human operator, instead it uses explicit interaction signals
from the human to initialize the appearance-based tracker.
Most relevant to our work is [14] in which the authors de-
signed a self-contained person follower UAV that implements
implicit interaction initiation through pedestrian detection,
appearance based tracking, depth estimation and trajectory
controller. As mentioned, we use explicit interaction initia-
tion signals that helps the UAV steer its attention to a single
person when multiple users are in its FOV. In addition, we
explicitly address the two-way communication of intents and
commands between a human and a UAV.

Practical systems for situated interaction with UAVs in
the literature mainly utilize sound and gestural interfaces for
communication of commands from humans to UAVs. In the
prototype environment of [15], the authors use a Microsoft
Kinect sensor on-board a hovering UAV to transmit gestural
commands to a team of flying robots in an indoor environ-
ment. In [16], the authors propose a solution for canceling
the ego-motion of an RGB-D camera attached to a flying
UAV and use the stabilized depth image to perform gesture
recognition and person following in an indoor environment.
In [17], the authors applied transfer learning to develop a
person-specific gestural interface to command a UAV.

As argued in [18] being able to “talk” is as important
requirement as being able to “listen” for an autonomous
agent. Through proper feedback, the user can understand if
the UAV correctly understands her intents and if the UAV
is functioning properly. These in turn decrease the user’s
cognitive workload and improve her awareness and safety.
Recently, a few different modalities for communication of
intent and affects from a UAV to its collocated human
partners have been studied. These modalities include flight
path manipulation [19], [20] and light-based feedback sys-
tems [21]. To the best of our knowledge, we are the first
to demonstrate an end-to-end human-flying robot interaction
system that implements all these components in outdoor
settings and bring a robot from relatively long distances to
a proximate distance to the user.

III. METHOD

Our proposed system consists of three hardware compo-
nents and five major software blocks. We use the Parrot
Bebop, a lightweight quad-rotor consumer UAV as our
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Fig. 2: The block diagram of the system

platform. The UAV transmits the live video stream of its
front facing camera and flight telemetry data to an off-
board computer over WiFi. This computer runs the core
software components of the interaction system and sends
the desired control commands over the same WiFi link to
the UAV. A small form factor computer is mounted on top
of the UAV to drive an array of 11 high intensity RGB
LEDs mounted on the front side of the UAV and generates
feedback signals (Figure 3). The off-board computer com-
municates the desired feedback to the embedded computer
over a separate WiFi link based on the current state of the
interaction. The five major components of the software stack
are the behavior generator and coordinator, the long-range
periodic motion detector for initiating the interaction, the
appearance-based object tracker, the cascade controller used
for approach towards the user, the face engagement detector
and motion based gesture recognizer for the close-range
interaction phase. Figure 2 shows the overall architecture of
our interaction system.

The system starts in the searching state, where it looks
for periodic but net-stationary motions in camera’s FOV.
When a periodic signal is detected, the corresponding region
of the image is fed into a long-term visual tracker which
simultaneously tracks the object in the image plane and
refines its appearance model. The track is piped into a
cascade controller, which first estimates the distance of the
target with respect to the image plane, then controls the flight
of the UAV towards the target. The approach towards the
target ends either when the target is in the center of the
image plane and the UAV is within a pre-defined distance
with respect to the target, or a human face detector finds a
human face inside the target’s bounding box in the image
plane. In the latter case, the system transitions into close-
range interaction state, where the UAV maintains the user’s
face in the center of its FOV and at a fixed distance from its
camera (using the same cascade controller). In this state, a
motion based gesture detector detects the left hand and right
hand waving gesture of the human which is consequently
used to command the vehicle to perform a certain action.
As mentioned earlier, the UAV constantly communicates its
state and intentions to the user using its front facing colored-
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Fig. 3: Our platform. Parrot Bebop Drone and color-light-based feedback
system. The UAV is executing the Gaze feedback (Section III-F).

light-based feedback system. In the remainder of this section
we describe each component of this system in more details.

A. Hardware Platform

One of the difficulties faced during the development of
this system was to choose a UAV platform suitable for close-
range situated interaction with a human. The main criteria
for this platform were safety around the interaction partner,
being able to perform stable hovering and carrying enough
payload for sensing, feedback and computation. Most con-
sumer UAVs available in the market nowadays are multi-rotor
flying platforms that are able to perform stable hovering.
Many of these platforms are also powerful enough to carry
small form factor sensing devices and computational units.
However, not many of these UAVs provide the minimum
safety measures to fly in close proximity of people. We
believe any UAV platform that enters the social space (≈
3−4m) [22] of a human or closer should be at least equipped
with physical propeller guards and provide an automatic
shutdown systems in case of contact between any of its
propellers and an object.

We chose the Parrot Bebop Drone1 as our UAV platform.
Although this UAV provides the required minimum safety
measures, its on-board flight controller computer is not
powerful enough to execute our CPU intensive software
stack. Due to its limited payload carrying capabilities, it is
also not capable of carrying powerful computing devices.
For these reasons we opted to control the UAV off-board
over WiFi. Bebop is a lightweight consumer quad-rotor UAV
with an on-board high definition camera and a Fisheye lens
with the FOV of 180 degrees. The video stream of this
camera is digitally stabilized and rectified on-board prior to
being transmitted over WiFi with the reduced resolution of
640px × 368px at 30 frames per second. The rectification
target is limited to the FOV of ≈ 80◦ (horizontal) and ≈ 50◦

(vertical), essentially simulating a virtual pan/tilt camera with
a stabilized gimbal. The desired pan and tilt of this camera
is also controllable over WiFi. Bebop transmits its telemetry
data (i.e. altitude and attitude) over WiFi to the off-board
computer at the rate of 5 Hz.

B. Interaction Initiation using Periodic Gestures

To initiate the interaction with a distant human and while
the UAV is in flight, we use the system previously developed
to detect periodic salient motions on-board a UAV [2]. The

1http://www.parrot.com/products/bebop-drone/
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Fig. 4: The block diagram of the cascade controller.

main software component of this system (Freely available
at http://autonomylab.org/obzerver/) is a real-
time computer vision pipeline that detects salient moving
objects that exhibit periodic motion patterns in a moving
camera’s FOV. The dual-arm waving of a human is a periodic
signal (with a dominant frequency of 1 to 4 Hz) which is
detected by this component to initiate the interaction. In [2]
we provided a detailed description of this computer vision
pipeline.

C. Visual Tracker

To track the location of the target detected by interaction
initiation module in the image plane, we use the long-
term visual tracker of [13]. This appearance-based tracker
combines correlation filters [23] for short-term tracking with
tracking-learning-detection (TLD) framework [24] for long-
term tracking, target re-detection and loss detection.

D. Cascade Controller for Approaching the User

The task of the approach controller is to bring the UAV to
a pre-defined distance of the user while keeping her in the
center of its FOV. We designed a cascade controller in order
to achieve this task. The input to the cascade controller is
the current location of the tracked object in the image plane
and the outputs are the desired set-point velocities for the
on-board flight controller of the UAV. As a quad-rotor UAV,
the Bebop has four controllable Degrees Of Freedom (DOF):
roll, pitch, yaw and altitude. The on-board flight controller
of Bebop offers velocity control for the latter two DOF.
However, roll and pitch - which control the acceleration of
the UAV in lateral and forward directions - are set directly.
The Bebop performs on-board visual-inertial state estimation
and reports the estimated values for its attitude and velocity
at 5 Hz. The high level controller in this cascade is an IBVS
controller that receives the current position of the tracked
Region Of Interest (ROI) in the camera plane, estimates its
depth based on the current state of the UAV, then calculates a
set of reference velocities that would bring the camera to the
desired location in front of the user. The angular and vertical
velocity components of the IBVS controller’s output are sent
directly to the UAV, while the lateral and forward velocity
components are fed into a velocity controller which deals
with the latency and slow update rate of the feedback signal.
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Fig. 5: The proposed method for estimating the depth of the tracked object.
Refer to the text (Section III-D.1) for details.

Figure 4 shows the architecture of the approach controller.
Internally this controller uses the dynamic model of the UAV
to compensate the delay and predict the feedback signal as
well as a PI controller to track the reference velocity. We
provide more details about this controller in the following
sections.

1) Depth Estimation: Similar to the approach proposed
in [14], we use camera intrinsic parameters (specifically β,
its vertical FOV), the prior on the size of the tracked object
(H1), the prior on the distance of the object from the ground
plane (H2), current tilt of the camera with respect to the
inertial frame of the UAV (α), and the vertical pixel location
of the ROI in the image plane (hc) to estimate the distance of
the center of the object (Z) from the image plane, under the
assumptions that the ground plane is flat (horizontal) and the
user’s ROI is perpendicular to the ground plane (Figure 5).
Using simple geometry we can derive Z as:

Z =
A−H2 − H1

2

sin(π2 − α−
β
2 )
· cos(hc −

hI

2

hI
· β) (1)

2) Visual Servo Control: Once the depth of the tracked
bounding box is estimated, we use a classical IBVS con-
troller [25] to calculate the desired velocity of the camera to
approach the target. We use the four corners of a rectangle
formed by projecting a rectangular target with the size of
H × W and desired depth of Zd to the camera plane as
the desired visual features of the IBVS. We consider the
four corners of the tracked bounding box in the image plane
as observations and augment these feature points with the
estimated depth of the center of the bounding box (Z).
These feature points represent a rectangle parallel to the
image plane and provide only three independent constraints
to the IBVS controller to calculate the desired velocity of
the camera (cv). This implies that one DOF of the UAV
is not controllable. We chose the lateral movement of the
UAV (bvy) as the non-controllable DOF and map cv to
Bebop’s DOFs as follows. We transform cvx and cvz to the
forward (bvx) and vertical (bvz) DOFs through the tilt angle
of the camera ([bvx, bvz]T = <(α)[cvz, cvx]), set (bvy) to 0
and control the angular velocity (ω) directly from the error
between the horizontal center of the bounding box and the
horizontal center of the image plane.

This control schema flies the UAV to a semi-sphere with
radius Zd in front of the target in a configuration that keeps
the object at the center of its FOV. If α is 0, the altitude of the
UAV at the end of the approach trajectory will be H2+H1/2.



Although the semi-spherical shape of the final location with
respect to the target might not be suitable for applications
such as perching or landing on a moving platform, for HRI
applications it is not a major concern since the user can re-
position herself (changes her yaw or gaze direction) towards
the UAV when the robot is flying towards her.

3) Velocity Controller: As mentioned in Section III-D, bvz
and ω are directly sent to the on-board flight controller of the
Bebop for execution. For lateral and forward velocities, we
designed a velocity controller to control the roll and pitch
angles of the UAV such that it tracks the desired velocity
vector. Our objective was to design a controller that generates
a smooth trajectory towards the user. The major challenges
towards designing such a controller are the latency and low
update rate of the feedback signal. Our proposed controller
uses a dynamic model of the UAV to compensate for this
latency and predict the feedback signal. The dynamic model
we used is a first-order non-linear system that relates the
roll and pitch angles of the Bebop to its lateral and forward
velocities respectively (Equation 2).

v̇bx = Cxv
b
x + g tan(pitch)

v̇by = Cyv
b
y − g tan(roll)

(2)

In this equation, g is the gravitational constant (≈
9.81s−2) and Cx and Cy are the free parameters. We
performed a system identification step to find Cx and Cy
by flying the UAV indoors and measuring true values for
pitch, roll, bvx and bvy using a high precision and fre-
quency (≈ 120 Hz) motion capture system. The estimated
values for these parameters are Cx = 0.576 s−1 and
Cy = 0.585 s−1. By minimizing the squared error between
measured velocities and feedback velocities over different
time offsets, we estimated the latency of the feedback as
td ≈ 262 milliseconds. This latency is mainly caused by the
WiFi transport delay as well as the down-sampling/buffering
step performed by Bebop’s firmware prior to sending the
feedback over WiFi.

As shown in Figure 4, once the feedback is received,
the controller utilizes the dynamic model of the UAV to
predict the state of the system (bv̂x and bv̂y) from the
feedback signals (bvfx , bvfy , rollf and pitchf ) which are td
seconds delayed. The PI controllers calculate the desired
control values of the system (pitchd and rolld) by calculating
the error between the feedback velocity and the desired
velocity (coming from the visual servo controller). Instead of
relying on the low-frequency feedback to generate the control
signal which would either decrease the output rate to 5 Hz
or increase its jerk because of the periodically increasing
delay between the last feedback signal and the true state of
the system, the controller again utilizes the dynamic model
of the UAV to predict the state of the system from the
last received feedback signal and the latest desired control
command. Once a new feedback signal is received, it resets
the state of the predictor. This way, the predictor fills the 200
milliseconds gap between two feedback readings to provide
a 30 Hz estimation of this signal for the PI controller.

Feedback Animation State Metaphor
Search Searching Radar Scanner
Approach Approaching Pointing
Engaged Close-range Gaze
Selfie Close-range Camera Timer
Bye Close-range Iris
Bad Video Any -
Lost Approach & Close-range Radar Scanner

TABLE I: Animations used for providing light-based feedback to the user,
their corresponding state and metaphors.

E. Close-range Interaction

When the UAV enters the Approaching State, the behavior
coordinator enables the close-range interaction component
of the software stack. This component consists of a human
face detector and an optical flow based gesture detector. We
previously used this component for close-range interaction
with a group of flying robots [1]. The UAV uses the cascade
classifier of Viola and Jones [26] to detect human faces in
the image plane. It only considers the faces which their cor-
responding bounding boxes overlap with the tracked object’s
region in the image. It also uses the so called face score [27]
to filter out the faces that the classifier is not confident about.
Once a candidate face is detected, it is internally tracked with
a Kalman filter and its bounding box is continuously fed into
the cascade controller, replacing the input from the visual
tracker. Compared to the output of the tracker, the tracked
bounding box of the face region is more consistent with
the prior on its size. Therefor, in case the face is detected,
the resulting depth estimation will be more accurate which
subsequently leads to a more precise positioning in front of
the user. The UAV maintains its position on a semi-sphere
around the user while keeping her face in the center of its
FOV.

While tracking the face, the close-range interaction com-
ponent calculates the dense optical flow inside two regions
around the human face. The size of these regions are linearly
dependent on the size of the face and are placed such
that they capture hand/arm movements. In order to cancel
out the effect of ego-motion of the UAV, the median of
magnitude of optical flow vectors inside the human face and
the background regions are subtracted from all optical flow
vectors inside the two gesture regions. A post processing
step smooths the time variations of average flow per pixel
inside the gesture regions, then applies a median filter and
thresholding to decide if there is substantial motion in any of
those regions. These motions are considered as left/right hand
waving gestures by this component and used to communicate
commands from the human to the UAV.

F. Communication of Intents from the UAV to the User

To communicate the state of the UAV and its intents to
the user, we developed a custom color-light-based feedback
system. This feedback systems consists of 11 individually
addressable RGB LEDs mounted on the front side of the
UAV, a AVR-based driver board and an Intel Edison embed-
ded computer that executes the feedback generation software
(Figure 3). The high level behavior coordinator (which runs



on the off-board computer), communicates over WiFi to this
embedded computer to request the execution of any of pre-
defined animations based on the current state of the UAV
and its next command. A custom key-frame-based animation
engine runs on-board the Edison computer to generate the
feedback signals. The total weight overhead of this feedback
system is 55 grams.

As shown in [21], using light feedback helps co-located
humans deduce the flying intent of a UAV faster and more ac-
curately. We believe this feedback modality is advantageous
to other modalities previously used in this context such as
sound [3] over long distances, specifically for small form
factor UAVs. In [21], the authors showed that animations
based on Gaze and car blinker metaphors perform well
to communicate the flying intention of a UAV. Inspired
by these results, we designed a set of feedback signals to
communicate the intent of the UAV to the user during each
phase of the interaction process. These designed signals use
colors and motion to convey the intent to the user. Table I
provides a summary for all these feedback signals and their
corresponding metaphors. Please refer to the supplementary
video for the visualization of these signals.

IV. EXPERIMENTS

For all the experiments we used the platform described
in Section III-A. Except for the LED animation generator,
all the software ran on a notebook computer with a specifi-
cation matching the small form factor embedded computer
we previously used for self-contained Human-UAV interac-
tion2 [2]. For the data intensive communication with the UAV
over WiFi, we used a long-range IEEE 802.11ac external
network card with a high gain antenna. We extensively
used ROS [28] to integrate different software and hardware
components of this system. The cascade controller internally
uses the ViSP library [29] to perform IBVS. More details
about our platform, as well as the source code for various
components of this system (including the details about the
light-feedback hardware, the ROS driver for Parrot Bebop
Drone, ROS bindings for the long-term visual tracker, the
cascade controller and the animation generator engine) is
available at autonomylab.org/bebop_hri/.

A. Approach Controller

The goal of this experiment was to validate the approach
controller and assess its depth estimation accuracy as well
as the resulting approach trajectories. We performed this
experiment in a 7m × 11m × 3m indoor environment,
equipped with a Vicon motion capture system. We put an
augmented reality marker of size 56 × 56 centimeters in a
fixed location of the arena (marked with X in Figures 6).
The height of the center of the target from the ground was
1.175m. The augmented reality marker was used to bootstrap
the long-range interaction initiation part of the system and
to replace the visual tracker for one leg of the experiments,
therefor we did not use the 6 DOF localization data these

2Intel 5th generation Core i5 CPU, 8GB of RAM, SSD Storage

Fig. 6: The indoor approach trajectories for leg 1 [continuous detection]
(left) and leg 2 [detect, then track] (right)

Fig. 7: The indoor approach location error for leg 1 [continuous detection]
(left) and leg 2 [detect, then track] (right)

markers provide. Instead, we use the axis-aligned bounding
box of detected marker in the image plane to initiate or
replace the tracker.

In the first part of the experiment, the UAV was placed in
one of 5 pre-defined starting locations in the room (Marked
with * in Figure 6), either looking towards the target or
looking forward (aligned with y-axis of the room). After
takeoff, when the UAV first detects the marker, it transitions
to the approaching mode and constantly uses the consequent
detections to feed the approach controller, replacing the
visual tracker. The desired depth of the UAV with respect
to the target and the camera tilt was set to 2.5m and 0◦

respectively. Once the sum of the velocity errors were below
a certain threshold, the UAV would land. The second leg
of the experiment was similar in design with the first leg.
The only difference was that the marker detection was only
used once to initiate the visual tracker which would provide
the reference bounding box to the approach controller. We
repeated each leg of this experiment four times from each
location (two for each orientation), resulting in total of 20
experiments for each leg.

Figure 7 shows the 2D top-down view of the ground-truth
locations where the UAV decided to land relative to the target
for both legs of the experiments. Since the camera was not
tilted during these experiments (α = 0, the target altitude
of the UAV is expected to converge to the aforementioned
height of the target center (1.175m). The root mean squared
(RMS) error of distance and altitude error of the UAV for
the first leg of the experiment was 0.242m and 0.064m
respectively. The same errors measured for the second leg
of the experiment (with the visual tracker in the loop) were
0.392m and 0.076m. The RMS depth estimation error for



Fig. 8: 3D rendering of two outdoor approach trajectories from actual GPS
log data

the two legs of the experiment were 0.665m and 0.793m
respectively. Figure 6 shows the trajectories the UAV flew to
reach the target in 2D for each leg of the experiment.

Since in leg 1 the detection happens in every frame, the
input to the approach controller more accurately corresponds
to the true location of the target in the image plane, therefore
the depth estimation accuracy is higher and the final location
error is less for the first leg of the experiments. This means
when an object detector is used to drive the approach
controller or when the tracker does not drift much, and when
the prior on the object size is precise, the final location of
the UAV with respect to the target is more accurate.

B. Outdoor Experiments

To demonstrate and validate the proposed end-to-end
Human-UAV interaction system, we performed a series of
outdoor experiments with the platform and the setup pre-
viously described in Sections III-A and IV. The tilt angle
of the virtual camera was set to 45◦ and this value was
dynamically and independently being controlled by the be-
havior coordinator to smoothly tilt it to 0◦ towards the end
of approach trajectory. We tested the interaction system in
three different locations, at three different times of the day
(noon, early and late afternoon) and with 9 users. All the
users were from our own research group, but not necessarily
familiar with the details of the interaction system in advance.
In each experiment, the UAV would take off from a fixed
location and towards a pre-defined direction. A safety pilot
would correct the direction of the UAV after take-off to
cancel out the yaw error during takeoff, then would put the
UAV in autonomous mode. The UAV’s search behavior was
to hover at the fixed altitude of 12m and tilt its camera
down to 45◦. During each experiment, one user would try
to attract the UAV’s attention by using dual arm waving
gestures. The other user(s) would act as distractors either
by walking or standing in the FOV of the UAV. The UAV
would execute the behavior described in Section III-A to
find its interaction partner, approach and engage in close-
range interaction with her, while constantly provide light-
based feedback as described in Section III-F. In close-range
interaction mode, the single hand waving gesture of the
user would cause the UAV to take a close-range portrait

State Attempts Success Count (%)
Search 52 42 (80%)
Approach 42 40 (95%)
Close-range tracking 40 38 (95%)
Selfie Gesture 40 38 (95%)
Terminate Gesture 38 37 (97%)
Feedback System 52 51 (98%)
Total 52 37 (71%)

TABLE II: The summary of failures in the end-to-end outdoor experiments

photo - a selfie - of her. The user then would ask the
UAV to terminate the interaction and leave by performing
a double hand waving gesture (Bye Bye). Upon receiving
this command, the UAV would turn away, ascend and restart
its behavior from the searching state. We briefed each user
once in advance about the interpretation of each feedback
signal. For the outdoor experiments we set the prior on the
size of the region of the periodic motion (H1) to 1.5m and
the prior on its distance from the ground (H2) to 1m.

We consider an experiment to be end-to-end successful
when the human and the UAV perform all steps of the
interaction scenario. The incidents that would fail an exper-
iment were: search behavior does not succeed in less than
45 seconds or detects a false positive, the approach behavior
loses the target over the course of the approach and does
not recover in 30 seconds, the UAV does not detect the
user’s face before getting closer than 0.5m to her, and when
any of gestural commands fail after more than one retries.
Table II provides a summary of the failure points for all the
52 experiments. Taking all these failure points into account,
37 out of 52 experiments (71%) were successful end-to-end.
Figure 1 shows snapshots from the UAV’s FOV during each
phase of the interaction process, except for high resolution
selfie shots, all other images are the actual image inputs
to our system. Figure 8 shows two sample 3D approach
trajectories generated from GPS readings of the UAV.

As the breakdown in Table II shows, the major failure
point of the system was in the search behavior for interaction
initiation (periodic motion detector). Other components of
the system performed with ≥ 95% reliability. We also
observed that for a few experiments the search behavior
took a relatively long time to find the person of interest. We
measured the average and standard deviation of the response
time of this component for successful runs as 34.82 and
17.02 seconds, respectively. From the 10 failures, 6 of them
were due to false positives and 4 were due to the timeout
(false negatives). We further analyzed the failure cases of this
component by looking into the effect of different conditions
on the failure. We observed that the variable frame-rate of
the input video stream, the low contrast between the user
and the background, the MPEG artifacts due to variable bit-
rate control were among the most affecting factors. The low
contrast between the user and the background were mainly
caused by sunlight, failures in automatic white-balancing of
the UAV’s camera and the similarity of the color of user’s
clothes to the background which makes the user a less salient
object in the environment. An immediate direction for future
work is to improve this component’s performance in real-



world settings and decrease its response time. Similar to
indoor trajectories (Figure 6), the outdoor flight trajectories
of the UAV were smooth, and were able to steer the UAV
towards the user at the maximum speed of ≈ 2.5 ms−1. The
appearance based tracker performed well with occasional
positional and scale drift. However, since upon detecting
a face, the system would re-estimate its depth, those drifts
did not cause major failures for the approaching behavior.
We can informally report that the close-range interaction
system was responsive and users found the color-light-based
feedback system informative and intuitive. For future work
we are planning to formally assess the intuitiveness and
usability of this system by performing human user studies.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the first demonstration of end-
to-end human-UAV interaction in outdoor environments that
implements (i) explicit interaction initiation; (ii) approach
and re-positioning towards the user; (iii) close-range com-
munication of commands from the user to the UAV; and
(iv) communication of intents from the UAV to the user. We
show how the user can use dual arm-waving gesture to attract
a flying robot’s attention from distance, how an integrated
visual tracking and servoing system can bring the robot to
the close proximity of the user and how the user can perform
close-range interaction with the UAV after the approach.
Effective velocity control of the UAV based on computer
vision was achieved despite a high latency control loop.
We also describe how the UAV employs color-light-based
feedback to keep the human informed about its intents. We
implemented this system on a low-cost consumer UAV that
we believe meets the minimum safety requirements for the
close-range interaction with a human. In a series of indoor
and outdoor experiments we validated our integrated system,
analyzed the accuracy of our depth estimation and approach
trajectories and identified major failure points of the system.
Future work includes making the interaction initiation more
robust and responsive and performing formal user studies on
the usability and intuitiveness of the end-to-end system and
its individual components. Designing a unified visual servo
controller to simultaneously control the pan and tilt angle
of the camera as the UAV approaches the user is another
possible future research direction.
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