
“Drums”: a Middleware-Aware Distributed Robot
Monitoring System

Mani Monajjemi
School of Computing Science,

Simon Fraser University
Burnaby, BC, Canada
mmonajje@sfu.ca

Jens Wawerla
School of Computing Science,

Simon Fraser University
Burnaby, BC, Canada
jwawerla@sfu.ca

Richard Vaughan
School of Computing Science,

Simon Fraser University
Burnaby, BC, Canada
vaughan@sfu.ca

ABSTRACT
We introduce Drums, a new tool for monitoring and debug-
ging distributed robot systems, and a complement to robot
middleware systems. Drums provides online time-series mon-
itoring of the underlying resources that are partially ab-
stracted away by middleware like the Robot Operating Sys-
tem (ROS). Interfacing with the middleware, Drums provides
de-abstraction and de-multiplexing of middleware services to
reveal the system-level interactions of your controller code,
the middleware, OS and the robot(s) environment. We show
a worked example of Drums’ utility for debugging realistic
problems, and propose it as a tool for quality of service mon-
itoring and introspection for robust autonomous systems.

Keywords
Robot Monitoring System; Distributed Monitoring; Fault
Detection and Diagnosis

1. SCOPE AND MOTIVATION
The last decade has seen the rise of robot middleware.

Many or most researchers and robot developers now take
for granted the existence of a few well-known platforms, ex-
emplified by ROS[7], for rapidly assembling robot systems
based on mature, well-designed interfaces and a catalog of
high-quality Open Source components. No doubt this has
increased the productivity of the research community, and
there is a current effort to transfer these benefits to indus-
trial robotics1.

Much of the benefit of these middleware systems is ob-
tained from the abstractions they provide. For example
in ROS, communication between components is by logical
publish-subscribe channels called “topics”. Internal to ROS,
topics are usually implemented using pairs of TCP sockets
and a central directory service (the “master”) for establish-
ing connections. Assuming the ROS platform is working

1http://rosindustrial.org/
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware Doctoral Symposium ’15, December 07-11 2015, Vancouver,
BC, Canada
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3728-1/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2843966.2843974

properly, the user does not need to think about the details
of networking: it just works transparently.

However these usually-useful abstractions have an impor-
tant disadvantage, in that failures and resource constraints
in the underlying mechanisms are not apparent. An abstrac-
tion layer that hides the existence of a bundle of underlying
TCP socket pairs is not well suited to letting you know when
one socket pair is suffering lots of dropped packets.

Whether robots are experimental or intended for deploy-
ment, failures and glitches in the underlying systems are a
reality [2, 8]. In the lab experimental setting, such failures
are often the result of misconfiguration of a component, an
unplugged cable, or a bad wireless network connection. One
aim of Drums is to help you find these bugs more quickly.

In a more long term vision, robust robot controllers should
be able to reason about the state of underlying resources and
modify their behavior accordingly. Drums aims to provide
easy-to-use and low-running-cost infrastructure for resource
introspection in distributed robot systems.

2. ACHIEVEMENTS
Drums is designed to integrate with and work alongside

your robot middleware, to make apparent to the user what
the interaction of user code, middleware, robot devices and
the environment is actually doing to your networked com-
puter system.
Drums in its current form provides these key functionali-

ties:

• monitoring of the computation graph created by robot
middleware, including run-time changes to the graph

• de-abstraction/de-multiplexing of abstract services and
communication channels into native processes and net-
work channels

• dynamic monitoring of these native resources, plus per-
host resources such as CPU load, free RAM and disk
space

• low-cost aggregation of these data into a central time-
series database

The output from Drums can readily be visualized and mined
with third-party tools based on queries on the time-series
database. This helps to increase the operational awareness
of the human operator, supervisor or engineer of the robot
system. In addition, Drums can be used as a low-cost data
collection layer for fault detection and diagnosis systems.

N1

N2

N4

N3

N5

N6

H1

H2

H3

C1

C2

C3 C4

C5

C6

Figure 1: Computation graph extracted from cooperating
middleware

A paper describing Drums in details and demonstrating
some of its applications was presented at the 2014 Canadian
conference on Computer and Robot Vision [5]. This report
provides a short overview of that paper. The source code of
Drums is freely available at http://autonomylab.org/drums/.

3. APPROACH

3.1 Common Representation Model
We first define a generic model of robot systems indepen-

dent of the choice of middleware. The model maps closely
to native OS resources, and our distributed monitoring in-
frastructure will gather information from various sources to
describe the state of the model over time.

We define the common representation model by remov-
ing the abstraction imposed by the middleware architecture,
then define a computation graph consisting of operating en-
tities only. The computation graph G consists of a set of
n processing nodes N = {N1, N2, · · · , Nn} and a set of k
directed connections between nodes, C = {C1, C2, · · · , Ck}
(Fig. 1). Nodes can vary from low level hardware inter-
faces to high level decision making units and from individ-
ual software modules to entire processes. Each connection
Ci is a communication link (asynchronous or synchronous,
memory based or network based) between two or multiple
nodes. Nodes are hosted on a set of m computation units
H = {H1, H2, · · · , Hm}. Each node is hosted by exactly one
host. The granularity level of node definition and the type
of connections between them defines the type and level of
instrumentation needed to monitor the graph.

The granularity level of the computation graph thus de-
pends on the design specifications of the monitoring tool.
For Drums these specifications are: 1) Low overhead in terms
of resource consumption 2) Ease of deployment 3) No instru-
mentation beyond what the host operating system and tar-
get middleware can provide. To satisfy (3) we chose to limit
the granularity level of nodes to operating system processes
and network sockets.

To best of our knowledge none of the current robotic mid-
dleware platforms provide a distributed way to monitor re-
source usage of their computation graphs. Some robotic
middleware provide ad-hoc monitoring tools for a subset of

their computation graph elements. However these tools are
either not distributed or do not cover all elements of the
computation graph. Examples are ROS’s internal statistics
about topics and sockets, ROS’s third party single computer
resource monitoring tool 2 and Urbi’s [1] object resource uti-
lization observer.

3.2 Architecture
Drums consists of a statistics collector process and a client

library for aggregation. The collector process runs on each
host of the computation graph and collects statistics about
elements of the graph accessible from the host. It pro-
vides an HTTP based interface for runtime configuration of
monitoring jobs. In addition, the collector pushes the col-
lected data to the client library for aggregation over a pub-
lish/subscribe channel. To utilize Drums, an adapter needs
to be written for each target middleware to translate the
state of the middleware into a computation graph. Fig. 2(a)
depicts the architecture. Drums is written mostly in Python
and tested on Linux. Some performance critical tasks such
as socket monitoring are implemented as C libraries.

3.2.1 Drums Collector
The Drums collector process is a Python daemon applica-

tion that collects statistics from elements of the computation
graph running on each host. The data are collected using
multiple monitoring modules. Each monitoring module runs
in a separate process with a configurable sampling interval.
Currently there are four types of monitoring modules imple-
mented. New monitoring modules can be written as plugins.
The existing modules are: Process Monitor which collect
information about specific operating system processes run-
ning on the host, Host Monitor that aggregates resource
utilization data about the host computer, Socket Monitor
which monitors quality of service for each specified socket
and Latency Monitor which is a multi-target ping pro-
gram to measure host-to-host latency. The collector embeds
a server that provides an HTTP based API to register or
remove monitoring tasks with a well-defined API for access-
ing monitoring data both synchronously and asynchronously
(through ZeroMQ [4] publish/subscribe sockets).

3.2.2 Drums Client Library
The Drums client library is a Python library that stream-

lines the process of registering tasks with multiple collectors
over the network and subscribe to their publish channels.
The client library provides an API to dispatch monitoring
jobs to multiple collectors over the network. It aggregates
the data collected and published by collectors and relays
that data back to its corresponding clients (Fig. 2(a)).

The client library also provides an API to export the ag-
gregated data. Currently the aggregated data is exported
to “Whisper”3. Whisper is a fixed-size time series database
system with flexible and configurable retention policy. Each
time series is referred to by a key. Keys are expressed hierar-
chically e.g drums.host.process_name.get_cpu_percent.

The collector process and the client library provide the
infrastructure needed for monitoring a distributed compu-
tation graph. The last piece of the architecture is the mid-
dleware adapter. The middleware adapter is a program
that monitors the state of the middleware (hosts, processes

2http://wiki.ros.org/rqt top
3http://graphite.wikidot.com/whisper

Collector
Host

Collector
Host

Collector
Host

The Computation Graph of The System (Middleware)

Drums Client
Library

Timeseries
Database

Middleware Adapter

Host Monitor

Process
Monitor

Socket
Monitor

Latency
Monitor

Event Loop & API

Shared Pipe

C
allbacks

HTTP
Server

Publisher

Collector Modules

Collector Process

Ø
M

Q
 Socket

R
ESTful API

Figure 2: Overall architecture of Drums (left) Architecture of Collector Process (right)

and communication links) to maintain a computation graph.
The adapter initiates/removes monitoring jobs for new/deleted
elements of the graph by contacting Drums collector(s) that
are local to that element of the graph. The adapter acts
as a bridge between the middleware and Drums infrastruc-
ture. It translates the dynamic abstract state of the mid-
dleware into Drums monitoring jobs. For robot middleware
with directory services such as ROS and YARP[3], data are
obtained directly from the directory service (e.g ROS master
or YARP name server). Optionally the adapter can make
data collected by Drums available to the middleware, allow-
ing system-level introspection from within the middleware.
We developed an adapter for the popular robot middleware,
ROS. The adapter wraps Drums client library and monitors
the ROS computation graph periodically (by default every
15 seconds) by querying the master.

3.3 Visualization and Anomaly Detection
Since Drums produces too much raw data for users to eas-

ily apprehend, we must filter and visualize it before it be-
comes useful for debugging. For visualization we use a real-
time time-series dashboard called“Graphite”4. Graphite is a
web based front-end to the Whisper database that generates
graphs based on customizable queries.

As we do not always know in advance which metrics are
important, we employed the data-driven anomaly detection
software“Skyline”5 to watch all metrics at once. Skyline uses
the consensus of multiple statistical tests to find discrepan-
cies between recent data points and the recent history for
each time series. For accumulative measurements such as
counters (bytes, packets, errors) the derivative of the time-
series is also fed into Skyline. For the following experiment,
the collector process was configured to collect metrics at 1
second intervals. The anomaly detector was configured to
run every 5 seconds.

4. FAULTY ROUTER EXPERIMENT
In this demonstration we use Drums to detect and isolate

4http://graphite.wikidot.com/
5https://github.com/etsy/skyline

a fault in network equipment. This was an actual fault that
interfered with a human-multi-robot interaction experiment
[6]. Finding this fault without Drums required many hours
of skilled debugging effort.

Three AR-Drone quadcopters were connected via Wifi
(802.11n) to a wireless router. From this router, the net-
work connection passed through gigabit Ethernet to a ded-
icated computer (Intel Core i7 CPU with 8GB of RAM) for
each drone. On each computer, realtime vision software sub-
scribed to a high definition video stream from one drone to
detect a human and her gestures. In addition, software ran
on each computer to control the behavior of the correspond-
ing robot. During initial experiments we observed that the
system was not scaling well from two to three robots. The
symptom was unresponsiveness of the system when three
hosts were running at the same time. A large debugging
effort was required to track down the course of the problem.
In this demonstration we perform the original experiment
with the same hardware. In addition we use Drums to see if
we can detect any anomaly and isolate the fault.

After all three robots are powered, we start the vision and
control software on each host in turn with a 60 seconds delay
in between. We terminate the software after 300 seconds of
execution time. The total number of monitored performance
parameters was 243. From these metrics we exclude 102 host
related metrics such as host’s CPU/RAM usage since these
may be affected by entities outside the monitoring system
and can cause false positives.

Fig. 3(a) shows the number of anomalies detected over
the course of the trial. The metrics are broken down into
three categories for CPU, memory and I/O related metrics
at node (process) level.

There are six major peaks in Fig 3(a). The peaks at
13:41:09 and 13:42:09 correspond to the start of the exe-
cution of the second and third host’s software respectively.
The major peaks at 13:43:09, 13:44:09 and 13:45:09 corre-
spond to the shutdown time of the first, second and third
host’s software respectively. However the major peak at
time 13:42:29 is suspicious. The peak mainly consist of I/O
related anomalies at process level. Checking the anomaly de-
tector’s log file for the period of 13:42:24 to 13:42:39 reveals

Figure 3: Faulty Router - Excerpt of Drums data from
the faulty router demonstration. (top) Stacked graph of
anomaly breakdown over time for the faulty router demon-
stration. Time is in minutes past 13:00. The major peaks
at 41:09, 42:09, 43:09 and 44:09 are caused by adding and
removing robots from the network. The peaks at 42:29 –
42:39 are suspicious. (middle) Shows the socket traffic with
the defective router. (bottom) Shows the same data for the
nominal router.

that there are multiple anomalies in the AR-Drone driver’s
image publishing sockets for all three hosts. Fig. 3(b) shows
the bandwidth usage graph by these sockets generated by
Graphite. The graph shows that when all three software
stacks are running simultaneously the traffic of the image
publisher’s socket drops significantly for all three robots.
With this knowledge we can narrow down the search for the

root of the problem to two possible cases: wireless inter-
ference between robots or a problem with the router. We
replaced the router with a similar model from a different
manufacturer and repeated the experiment. Fig. 3(c) shows
the resulting bandwidth utilization graph on image publish-
ers’ sockets for the new experiment. Comparing these two
figures, we can conclude that the router was the source of
the problem.

5. CONCLUSION AND FUTURE WORK
We introduced a lightweight distributed monitoring tool

for robots and demonstrated its applications in a practical
demonstrations. Drums unpacks the abstraction layer pre-
sented by the middleware and maintains a corresponding
graph that maps into monitorable system entities. We used
a generic data-driven anomaly detector to draw user’s at-
tention to fewer metrics. Of course, anomalous behavior of
a metric is not necessarily due to a fault: false positives
can occur. Furthermore, metrics with anomalies only pro-
vide clues about possible faults in the system. Future work
includes developing a custom visualization and fault detec-
tors for distributed robot systems that take full advantage
of Drums. A long term interesting research direction is to
use Drums as an introspection tool inside robot controllers,
adapting robot behavior to internal system conditions that
have previously been difficult to observe across the network.

6. REFERENCES
[1] J.-C. Baillie. Urbi: Towards a universal robotic

low-level programming language. In Intelligent Robots
and Systems (IROS). IEEE/RSJ International
Conference on, pages 820–825. IEEE, 2005.

[2] J. Carlson and R. R. Murphy. How UGVs physically
fail in the field. Robotics, IEEE Transactions on,
21(3):423–437, 2005.

[3] P. Fitzpatrick, G. Metta, and L. Natale. Towards
long-lived robot genes. Robotics and Autonomous
Systems, 56(1):29–45, Jan. 2008.

[4] P. Hintjens. ZeroMQ: Messaging for Many
Applications. O’Reilly, 2013.

[5] V. Monajjemi, J. Wawerla, and R. Vaughan. Drums: A
middleware-aware distributed robot monitoring system.
In Computer and Robot Vision (CRV), 2014 Canadian
Conference on, pages 211–218, May 2014.

[6] V. Monajjemi, J. Wawerla, R. Vaughan, and G. Mori.
HRI in the sky: Creating and commanding teams of
uavs with a vision-mediated gestural interface. In
Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pages 617–623, 2013.

[7] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng. ROS: an
open-source Robot Operating System. ICRA workshop
on open source software, 3(3.2), 2009.

[8] G. Steinbauer. A Survey about Faults of Robots Used
in RoboCup. In 16th Annual RoboCup International
Symposium, pages 344–355, 2013.

