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Abstract

As the application domain of Unmanned Aerial Vehicles (UAV) expands to the consumer
market and with recent advances in robot autonomy and ubiquitous computing, a new
paradigm for human-UAV interaction has started to form. In this new paradigm, humans
and UAV(s) are co-located (situated) and use natural and embodied interfaces to share au-
tonomy and communicate. This is in contrast to the traditional paradigm in Human-UAV
interaction in which the focus is on designing control interfaces for remotely operated UAVs
and sharing autonomy among Human-UAV teams. Motivated by application domains such
as wilderness search and rescue and personal filming, we define the required components
of end-to-end interaction between a human and a flying robot as interaction initiation (ii)
approach and re-positioning to facilitate the interaction and (iii) communication of intent
and commands from the human to the UAV and vice versa. In this thesis we introduce the
components we designed for creating an end-to-end Human-Flying Robot Interaction sys-
tem. Mainly (i) a fast monocular computer vision pipeline for localizing stationary periodic
motions in the field of view of a moving camera; (ii) a cascade approach controller that
combines appearance based tracking and visual servo control to approach a human using
a forward-facing monocular camera; (iii) a close-range gaze and gesture based interaction
system for communication of commands from a human to multiple flying UAVs using their
on-board monocular camera; and (iv) a light-based feedback system for continuous commu-
nication of intents from a flying robot to its interaction partner. We provide experimental
results for the performance of each individual component as well as the final integrated sys-
tem in real-world Human-UAV Interaction tests. Our interaction system, which integrates
all these components, is the first realized end-to-end Human-Flying Robot Interaction sys-
tem whereby an uninstrumented user can attract the attention of a distant (20 to 30m)
autonomous outdoor flying robot. Once interaction is initiated, the robot approaches the
user to close range (≈ 2m), hovers facing the user, then responds appropriately to a small
vocabulary of hand gestures, while constantly communicating its states to the user through
its embodied feedback system. All the software produced for this thesis is Open Source.
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Introduction
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An Unmanned Aerial Vehicle (UAV) is a recoverable aerial vehicle that does not carry
a human operator and is either remotely piloted or operates autonomously [127]. Histor-
ically, UAVs have been extensively used by military and governmental organizations for
reconnaissance and surveillance missions, pilot training and offensive operations. In that
context, UAVs are also known as Unmanned Aerial Systems (UAS) and Unmanned Combat
Aerial Vehicles (UCAV). Since their early days, remotely operated UAVs have also been
popular recreational vehicles. With recent advances in sensing, manufacturing and com-
puting technologies, UAVs are becoming more affordable, capable and ubiquitous. These
have led to introduction of new designs, capabilities and application domains for UAVs.
Multi-rotor configurations, smaller form factors, improved flight autonomy and advanced
on-board sensing capabilities are some examples of such new designs and capabilities. The
new application domains include environmental and hazard monitoring, Wilderness Search
And Rescue (WiSAR), aerial photography and filming, safety and infrastructure inspection,
personal training, crop monitoring for agriculture, goods transportation and manufacturing.

There has been considerable interest in UAVs among researchers in the robotics and
intelligent systems communities over the past two decades. Flight control, autonomous
navigation, state estimation, intelligent sensing, vision based control and Simultaneous Lo-
calization and Mapping (SLAM) have been among the most popular research topics studied
by UAV researchers. The goal is to make UAVs autonomous and self-contained, essentially
turning them into flying robots. Commercial companies have also shown considerable in-
terest in manufacturing UAVs, transferring knowledge from the research community and
fostering of adoption of UAVs in the aforementioned application domains in recent years.
Major technology powerhouses such as Amazon [1], Google [8,72] and Facebook [155] have
been trying to introduce UAVs to goods transportation and information distribution do-
mains. Multi-rotor small form factor UAVs with high fidelity cameras are among the most
popular consumer UAVs (also known as drones). During the most recent Consumer Elec-
tronics Show (CES 2016), 17 companies introduced 22 new UAV models [66], almost all of
them fitting this category. In addition, there have been substantial investments in robotic
companies that deal with drone related technologies in recent years. One recent study
estimates the total amount of such investments in 2015 alone as $361.8 million (USD) [41].

We believe that interaction with humans is one of the new research opportunities that
arise with widespread adaption of UAVs (and flying robots) to new application domains. In
some of these new application domains such as infrastructure inspection, search and rescue,
goods transportation, personal training and aerial photography, UAVs fly close to humans
and may interact with users that are not necessarily their operators. The goal of this thesis is
to identify the challenges associated with Human-Flying Robot Interaction (a subcategory
of Human-Robot Interaction (HRI)) in these emerging application domains and provide
solutions for them with the ultimate goal of designing end-to-end systems for situated
and direct Human-Flying Robot interaction. Goodrich and Schultz [68] define, Human
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Robot Interaction as “a field of study dedicated to understanding, designing, and evaluating
robotic systems for use by or with humans”. Traditionally, Human-UAV interaction happens
remotely and in the form of human supervisory control. In that context UAVs are remotely
controlled devices that extend the sensing capabilities of their fellow human teammates.
Sharing the autonomy between humans and UAVs, managing the cognitive workload of
human operators and designing effective remote interaction interfaces for human operators
are among the active research topics in traditional Human-UAV interaction literature.

With the increasing level of UAVs’ autonomy and the emergence of new application do-
mains such as search and rescue, and goods transportation, proximate (situated) interaction
with UAVs is becoming a topic of interest in the robotics and UAV research communities.
As an example, imagine a WiSAR scenario in which autonomous UAVs search an area for
missing people, probably injured, alongside a ground search crew. Situated Human-Flying
Robot interaction in this setting may happen in different forms. UAVs and their human
teammates may communicate information and commands, UAVs may act as tele-presence
robots for the ground crew to examine a victim or they may deliver first aid or supplies to
victims or their human teammates. These types of situated interaction resemble the inter-
action scheme that is used by social living creatures (i.e. human-human or human-animal
interaction). Interfaces that support such natural interaction schemes require naturalistic
embodiment [191] and should preferably work when humans are not instrumented, i.e no
operator control unit is required and the person carries no other dedicated equipment or
clothing. For example, consider the UAV in the search and rescue scenario again. Requir-
ing user instrumentation might limit the ability of the UAV to interact with people. This
might be acceptable when the interaction happens with teammates, however it will make
it impossible for a human that does not carry the instrumentation (such as the person in
need) to interact with the UAV.

We can break down the main components of a situated interaction between a human
and a UAV into (i) interaction initiation; (ii) approach and re-positioning to facilitate the
interaction; and (iii) communication of intent and commands from the human to the UAV
and vice versa. We define a Human-Flying Robot interaction system that implements all
these three components as an end-to-end interaction system.

Definition 1. A Human-Flying Robot interaction system is considered end-to-end if it
includes all of the following components (i) interaction initiation; (ii) approach and re-
positioning to facilitate the interaction; and (iii) communication of intent and commands
from the human to the UAV and vice versa.

Considering the search and rescue scenario again, the interaction between the UAV and
the person of interest can be initiated actively by the human using an active stimuli such
as gestures (e.g. body pose or movements) or auditory signals. Alternatively the UAV
may always be running a human feature detector to find potential human partners. The
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UAV may provide feedback to the user in forms of spatial maneuvers, auditory signals or
visual feedback (i.e. using lights). In addition, the UAV may communicate her readiness
for interaction by approaching the user or tracking her movements. At this state, mutual
attention is created between the UAV and the human. The UAV may also approach the
human to facilitate further close-range interaction with her.

Throughout the interaction session, the human may want to communicate its intents
or commands to the UAV for execution. Example tasks in the context of the search and
rescue scenario include commands to explore a certain area by the human teammate to
the UAV or requests to deliver medical aid by the person in need. Feedback from the
UAV to the user may also be useful to ensure that the human is fully aware of the current
state and the next actions of the UAV. This is to improve the situational awareness of
the UAV’s interaction partner and to increase safety. For example, the UAV may provide
visual, auditory or motion based feedback to the user upon receiving a command. It may
also constantly communicate its next flying direction via visual or auditory signals so any
human that shares the same workspace is aware of its existence and its next movement.

In what is to follow, we first survey the literature on state of the art in human-flying
robot interaction. In Section 2.1, we provide an overview of related work in traditional
human-UAV interaction research. In Section 2.2, we discuss related literature on situated
Human-Flying Robot interaction, covering both human studies and practical systems.

In Chapters 3 to 5, we introduce methods and systems we developed for situated and
direct interaction with flying robots and present experimental results. In Chapter 3, we
introduce a close-range interaction system that enables a human to select and command a
team of flying robots using gaze and hand gestures. The system described in this chapter is
the first demonstration of un-instrumented and direct Human-flying robot interaction using
on-board sensing. Next, in Chapter 4, we introduce a realtime computer vision pipeline
that runs on-board a UAV that detects stationary periodic motions in UAV’s field of view.
We then describe how we use this pipeline to detect dual-arm waving gesture while a UAV is
in flight to explicitly initiate the interaction with a flying robot. In Chapter 5, we describe
our end-to-end human-flying robot interaction system that combines the components from
Chapter 3 and 4 with a visual tracker, a cascade visual servo controller and a light based
embodied feedback system. Using this system, a flying robot detects a human’s explicit
interaction initiation signal from distance, smoothly approach her and respond to her ges-
tural commands while constantly communicating its intents and state to her. Finally, in
Chapter 6 we conclude this thesis by discussing shortcomings of our proposed systems and
providing possible solutions and ideas for future research.
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Chapter 2

State of The Art in Human-Flying
Robot Interaction
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This chapter presents a review of current research within the field of Human-UAV (Un-
manned Aerial Vehicle) interaction. We categorize the Human-UAV interaction systems
based on the level of autonomy of the UAV system and the proximity of interaction part-
ners into two general categories of remote and situated interaction. First, we study human
factors and user interface designs for remote interaction with UAVs in Section 2.1. We
introduce the common patterns for designing interfaces for remote interaction with UAVs
(Section 2.1.2) as well as major human factor concerns for supervisory control of UAVs
(Section 2.1.1). As the application domain of UAVs expands to the consumer market and
with recent advances in UAV autonomy and ubiquitous computing, a new paradigm for
Human-UAV Interaction has started to form. In this new paradigm, humans and UAV(s)
are co-located (situated) and use natural and embodied interfaces to share autonomy and
communicate.

The main focus of this chapter is to survey the literature on situated interaction with
UAVs that exhibit high level of autonomy: Flying Robots. In Section 2.2 we introduce the
three main components of situated Human-Flying Robot Systems: (i) interaction initia-
tion; (ii) approach and repositioning to facilitate the interaction; and (iii) communication
of commands from humans to flying robots and communication of intent from flying robots
to humans. Interaction is initiated between humans and UAVs either implicitly, through hu-
man feature detectors, or explicitly, through active stimuli such as gestures. In Section 2.2.1
we survey related work that deal with these two types of interaction initiation and intro-
duce major techniques for human and moving object detection from flying platforms. Once
interaction is initiated, UAVs and humans are ready to communicate commands, state and
intents. In Sections 2.2.2 and 2.2.3 we survey the literature and introduce notable tech-
niques for such mutual communication between humans and UAVs. Our main focus is on
techniques and systems that enable flying robots to interact naturally with humans using
embodied sensing and preferably on-board computing. Natural interaction in this context,
refers to interaction methods that resemble human-human and human-animal interaction
and do not require any instrumentation of the human. Gaze, gestures and auditory signals
(human to UAV) and visual or motion-based feedback (UAV to human) are some of the
modalities commonly used in the literature for natural interaction between humans and
UAVs. In Section 2.3 we provide a brief overview of challenges regarding approach and
repositioning in Human-Flying Robot Interaction. We first introduce similarities between
this task and target relative navigation in UAVs. Then we survey the state of the art
systems that enable a UAV to follow a human and discuss their limitations.

2.1 Human Factors and Remote Interaction with UAVs

Military organizations were among the first users of Unmanned Aerial Vehicles. Since the
early days of their utilization in surveillance, border control, reconnaissance and offensive
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Figure 2.1: Hierarchical model for human supervisory control of UAVs [67] ( c© 2015,
Springer Science)

military operations, UAVs have been almost exclusively operated remotely by humans.
This trend continued when UAVs started to emerge as a tool in other applications such as
wilderness search and rescue, disaster damage assessment and environmental monitoring. In
such settings, UAVs are tools to reduce operational risk and extend a human team’s remote-
sensing capabilities. In this context, this compound team of human operators, support staff
and UAVs are called Unmanned Aerial Systems (UAS).

One of the key factors that affect the performance of any UAS and the success of
its mission is how human operators and their remote flying teammates interact. This
interaction has been the focus of “Human Factors Analysis” for UAS. Historically, this has
been the first line of research to study Human-UAV interaction.

Parsons and Kearsley [132] summarize the main issues in human factors analysis of
robotic systems as the devision of labor between robots and humans, the role of each part-
ner for task execution, how they interact in the workplace and the general question of how
machine (robot) and human should be combined. Wilson [185] identifies the goal of human
factors analysis as defining design guidelines for human-UAV interfaces with the ultimate
goal of improving a UAV operator’s capabilities to control and supervise such vehicles.
As suggested by Wilson [185], a good interface should increase an operator’s situational
awareness and manages her workload. Mouloua et al. [117] also identifies situational aware-
ness, workload management and teaming concerns as the three key human factors’ issues
in development of UAS. Endsley [53] defines situational awareness as “the perception of the
elements in the environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future”.

2.1.1 Human Supervisory Control of UAVs

The way that humans and UAVs interact and the role of human operators in a UAS depends
on the level of autonomy of a UAV. As this autonomy increases, the role of its operator(s)
shifts from direct (low-level) control towards monitoring and supervision [24] also known as
Human Supervisory Control (HSC) [164].
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Goodrich and Cummings [67] propose a hierarchical model for human supervisory con-
trol of UAVs as represented in Figure 2.1. The control loops that govern guidance and
motion of the UAV exist at the lowest level of this model (flight control and piloting). The
operator’s action at this level is short term, local and focused on keeping the UAV in a stable
flight. At the next level, a navigation loop executes actions to satisfy mission constraints
such as passing through specific way-points, obstacle and no-fly zone avoidance and target
tracking. At the highest level, the mission and payload management control loop deals with
decisions that need to be made to meet high level goals of the mission. The authors argue
that since this level of decision making requires knowledge based reasoning and judgment,
it can not be automated. The system health and status monitoring loop is the outermost
loop in this model which represents the persistent supervision job that must occur when
UAS is in operation, either by a human, an automated system or both.

As mentioned earlier, the level of autonomy of a UAS determines the role of the human
operator, her mental workload and the interface required to interact with the UAV. As
an example, if a UAV is only capable of performing basic flight control, the role of the
human operator becomes guidance and motion control which is a demanding cognitive task
and leaves the operator little room to interact with any higher level control loops. The
interaction interface in this setting should provide the operator with low level and precise
control over the UAV.

Goodrich and Cummings argue that increasing the level of autonomy in those three
control loops boosts the effectiveness of human operators in UAS by reducing their workload.
This would pave the way for cutting down the number of human operators in a UAS and
increasing the number of UAVs that can be controlled simultaneously by a single operator.
The challenging problem is “how, when, where, and what level of automation should be
introduced” [67].

Two major strategies for managing the level of shared autonomy in UAS are manage-
ment by consent and management by exemption [13]. In the management by exemption
schema, the autonomous part of a UAS is allowed to make decisions and perform actions
on its own. In this scheme, an operator may be given a short time window to veto this
decision. In contrast, the management by consent requires that a human operator explicitly
approves any decision made by the autonomous part(s) of the UAS prior to its execution.
The management by exemption strategy requires less active human-UAV interaction but it
demands constant monitoring by the human operator and may result in poor situational
awareness. The management by consent on the other hand increases an operator’s situ-
ational awareness while demanding more active communication between human operators
and UAVs [130].

By surveying different studies on the effect of these two management strategies, Goodrich
and Cummings [67] conclude the following results about the level of automation and where
to apply those in a UAS:
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• Intermediate levels of management by consent are preferred over fully manual or fully
autonomous behaviors in a UAS [154]

• Operator performance can degrade under a management by consent strategy when
the workload increases [35]

• For high level tasks, management by exemption can improve the performance of an
operator [34]

• Under a management by exemption scheme, operators are more likely to become over-
dependent on automation, thus fail to check the correctness of the decision made by
the system. This is called Automation Bias [116].

• In case of controlling multiple UAVs, management by consent outperforms manage-
ment by exemption by providing better situational awareness [153,154]

In a meta analysis on previous studies on multiple UAV control by a single human
operator, Goodrich and Cummings further investigate the question of what level of auton-
omy (LOA) should be introduced in a UAS. The authors first introduce a scale similar
to SV-LOA scale by Sheridan and Verplank [165] for characterization of the LOA in the
different control loops of their proposed Human Supervisory Control models (Figure 2.1).
This scale consist of six levels, from full manual control by a human operator (level I) to
fully autonomous control loops (level IV). At level II of this scale, the computer suggests
a complete set of action/decision alternatives, while at level III, the computer is able to
prune this set to include only decision/action candidates that meet a certain criteria. Level
IV and V of this scale represent management by consent and management by exemption
respectively.

According to this meta-analysis, the authors conclude that:

• Controlling more than one vehicle by a single operator requires a fully autonomous
inner motion control loop (Level VI)

• The operator capacity to control multiple UAVs converges to 4-5 vehicles given some
sort of assistance (level II/III) or management by consent (level IV) in the navi-
gation/autopilot loop. This number jumps to 8-12 vehicles when management by
exemption is introduced in this loop.

The authors anticipate that when the LOA is at the highest level for the motion and
autopilot control loops, the control architecture shifts from centralized and per vehicle
to decentralized and task based. This will put an operator solely in charge of mission
management and supervisory monitoring, which should increase the number of vehicles
that can be controlled by a single operator.
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2.1.2 Interfaces for Remote Interaction with UAVs

As mentioned in the previous section, the payload and mission management loop requires
knowledge based reasoning and judgment, thus it demands a high mental workload from the
operator, especially in case of multiple UAVs [75]. In a UAS with low level of autonomy in
lower level control loops, this task is off-loaded to a separate operator known as the sensor
operator. A considerable body of research in human factors of Unmanned Aerial Systems
investigates methods that can reduce this mental workload, mainly through improving how
information about the flight, the mission and the environment is presented to an operator
and how commands from an operator are perceived. This can be particularly beneficial in
application domains in which operating UAVs with the minimum number of operators is
critical. As an example, in Wilderness Search And Rescue (WiSAR), it is desirable to have
as many well-trained staff as possible in the ground search task due to the size of the area
that needs to be covered [30].

In an effort to combine the role of the pilot and the sensor operator in WiSAR scenarios,
Cooper and Goodrich [30] designed an integrated information display system for piloting and
monitoring a UAV. The authors classify the three main paradigms in designing information
display systems for UASs as pilot centered, traditional and integrated. The pilot centered
paradigm tries to simulate the cockpit environment of a manned aircraft for the remote pilot.
The traditional display consists of multiple windows each dedicated to visualize a certain
type of information such as maps, the mission, live video feeds and raw sensory information.
Integrated displays on the other hand, are mixed-reality displays that integrate satellite
imagery, the state of the of the UAV, sensor footprints and live video feeds all together and
project them onto a simulated three dimensional terrain.

In a series of informal user studies, Cooper and Goodrich first showed that localizing
targets with respect to the UAV is a quite challenging task for sensor operators when the
information display system is traditional. This task is one of the main duties of sensor
operators in WiSAR scenarios and is crucial to the success of the whole mission. The
authors hypothesize that an integrated information display system can reduce this mental
workload to the level that the pilot can perform this task.

They also found out that even when the information is displayed in an integrated manner
to the sensor operator, they are mostly unaware of the flight path and can not recover that
reliably. In search and rescue missions, effective execution of the search strategy depends on
an operator’s awareness of the flight path. The authors’ second hypothesis was combining
the role of the pilot and the sensor operator will increase the awareness of the flight path
since the sensor operator is now in charge of generating the flight path as well.

In a series of experiments in a medium fidelity flight simulator and with an integrated
information display system (Figure 2.2), Cooper and Goodrich studied the performance of
minimally trained operators performing a simulated search task. The UAS provides a high
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Figure 2.2: Integrated mixed-reality interface of Cooper and Goodrich [30] ( c© 2008, IEEE)

level of autonomy for all the flight control loops (Figure 2.1) so the pilot could control the
UAV by changing its target location (projected to the world) using a computer mouse. The
task was to identify and localize colored objects distributed randomly in the world in the
presence of random distracting objects. They evaluated their integrated display system
under four control perspectives (chase, north-up, track-up and split) and subject to three
distributions for objects: uniform, Gaussian and rectangular pattern.

In the chase perspective, the user sees the UAV and the integrated virtual world from
behind and above the UAV, similar to the perspective used commonly in first person shooter
video games. The north-up and track-up perspectives similarly show the UAV from directly
above it. The difference is how the map is oriented. While the north-up always orients
the map towards north, the track-up orients the map such that the heading of the UAV is
always towards to the top of the screen. The split perspective is similar to the north-up but
renders the UAV from much more distance. This implies that the operator needs to rely on
a secondary video display since the integrated video contains few details.

The results of the experiments do not strongly suggest that using integrated displays
will enable the roles to be combined for this task. That is mainly due to the high LOA
in the control loops which simplifies the piloting task, the medium fidelity nature of the
simulator and the low complexity of the identification task. However the results suggest
that if a UAS can afford to provide these capabilities, this might become an achievable
goal. In addition, the experiments show that the chase, north-up and track-up perspectives
exhibit almost the same level of performance while the split display performs significantly
worse. They also indicate that the performance of those three perspectives varies under
different distributions of objects. This implies that the choice of perspective depends on
the search scenario. For example, the chase perspective is well suited for reactive (hasty)
search while the north-up perspective is better suited for exhaustive searches.

Mixed reality interfaces are similar in concept and design to interfaces used to interact
with virtual worlds in video games. A taxonomy for classification of UAV interfaces by
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(a) Physical Icon: The operator controls
the UAV by manipulating the model air-
plane (Physical Icon) of the UAV

(b) Mixed reality interface: The interface shows the
world-centeric view of UAVs video stream. Two super-
imposed blue and red icons show the current and desired
state of the UAV respectively

Figure 2.3: Physical Icon mixed-reality interface of Quigley et al. [146] ( c© 2004, IEEE)

analogies to video game interfaces has been proposed by Richer and Dury [94]. Based on
this taxonomy, the chase perspective is a camera of type “external attachment to a primary
object”. The special case when the operator looks through a UAV’s camera is defined
as “internal attachment to a primary object”. In the north-up and track-up perspectives,
the camera is categorized as “not attached to a primary object” with “free” or “fixed”
movement constraints. According to Richer and Dury’s taxonomy, the Split display consist
of two views, a camera “not attached to a primary object” and a camera with “internal
attachment to a primary object”.

Another notable example of mixed-reality interfaces is the interface proposed by Quigley
et al. [146] for remote operation of UAVs in WiSAR scenarios. Their system consists of a so-
called Physical Icon (Figure 2.3a) for direct manipulation of UAV’s attitude through inertial
sensors and a chase-perspective mixed reality interface that superimposes the desired and
actual state of the UAV on the stabilized live video feed from the vehicle (Figure 2.3b).
The interface tries to reduce the operator’s mental workload by stabilizing the video feed
with respect to the ground plane such that even when the UAV banks, the image is aligned
with the horizon. The authors were the first to combine direct manipulation with mixed
reality for single user operation of UAVs, the idea which has became popular in designing
interfaces for remote interaction with consumer UAVs. Such interfaces utilize inertial sensors
and touch screen of consumer smart-phones and tablets as physical interfaces to control
the UAV and/or their on-board cameras and use their display for real-time mixed-reality
visualization of video and telemetry data (Figure 2.4).
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(a) Parrot R©FreeFlight3 Interface (Piloting
Mode)

(b) DJI R©Go Interface

Figure 2.4: Example consumer UAV interfaces that run on smart-phones and tablets. These
mixed reality physical interfaces take advantage of the rich set of input and output modal-
ities offered by such devices.

With increased LOA in the higher level control loops in Figure 2.1, the need for interfaces
that support higher level of controls for UAVs emerges. For example, if the UAV is capable of
autonomously flying to certain GPS way-points, the interface has to provide efficient means
for systematic navigation, mission manipulation, and monitoring to the human operator.
Such interfaces usually provide some sort of map-based perspective in plain or mixed-reality
manner. Interfaces similar to Cooper and Goodrich [30] in north-up configuration can also
be considered as a special form of map-based perspectives. Goodrich and Cummings [67]
identify the main benefit of using map-based perspectives as the ability to localize the UAV
with respect to the world’s landmark.

Jenner and Alvarez [76] developed a cross-platform interface to command, control and
monitor a fleet of unmanned aerial/ground/underwater vehicles. The navigation part of
this interface provides a map-based view of all vehicles’ missions (Figure 2.5a). It also
provides context-based information such as the current location, the target way-points and
their associated tasks, the planned flight path and the actual flight trajectory. The user is
able to modify the mission parameters, the target way-points and their associated actions
through a touch screen interface. This is the concept that is used by many similar off-
the-shelf ground control software for consumer UAVs, such as QGroundControl 1, APM
Planner 2 and Parrot FreeFlight3 3 (Figure 2.5). For technical details on available software
technologies for developing such integrated interfaces with map and chase views, see the
work by Perez et al. [133].

Based on the findings by Fong and Thorpe [59] which indicate that in complex and
dynamic environments, tele-operation interfaces need to be multi-modal and provide sup-
port for high level navigation and command generation, Crescenzio et al. [33] designed an
end-to-end multi-modal ground control station for remote operation of a single UAV. The

1http://qgroundcontrol.org/
2http://planner.ardupilot.com/
3http://www.parrot.com/ca/apps/
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(a) Interface of Jenner and Alvarez [76]
( c© 2014, IEEE)

(b) QGroundControl ( c© 2016, QGroundCon-
trol Dev Team CC BY-SA 3.0)

(c) APM Mission Planner ( c© 2016, ArduPilot
Dev Team CC BY-SA 3.0)

Figure 2.5: Example map-based interfaces

system consist of two main components: a command panel running on a touch screen en-
abled computer and a stereoscopic visualization projected to a big screen in front of the
operator.

The command panel provides a north-up oriented map based navigational display with
touch based controls to manipulate high level mission parameters such as tasks (survey or
monitor), way-points and priorities (Figure 2.6b). The interface provides a management
by consent planning engine which generates a plan based on the operator’s inputs, then
gives her the option to accept, reject or modify the plan. The stereoscopic visualization is
a 3D virtual reality display that integrates data coming from multiple sources and projects
them to a virtual train map (similar to the interface of Cooper and Goodrich [30]). The
video feed from the vehicle in chase or external perspective, the telemetry data, weather
information, the mission and the flight path are all integrated in this display (Figure 2.6c).
The interface provides audio feedback to the user when a command is sent to the vehicle,
when there is an unexpected change in the data coming from the UAV and to communicate
the general state and the progress of the mission.

Crescenzio et al. evaluated their ground control station design by performing a user
study with 12 participant under three different LOA for the mission (re)planning compo-
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(a) The overall design of the
Ground Control Station

(b) The command panel (c) The 3D virtual reality display

Figure 2.6: The Multi-modal ground control station of Crescenzio et al. [33] ( c© 2009, MIT
Press)

nent. The users were asked to operate the UAV in a dynamic environment in which random
obstacles were being added to the environment. The re-planning strategy was subject to
three different autonomy levels: manual (no automatic re-planning), management by con-
sent and fully autonomous (no control from the user). The study shows in general that
the system provides a satisfactory level of situational awareness using its integrated virtual
reality display and auditory feedback. The users found the command panel a good tool
to manage the mission. However the most important finding has been that the manage-
ment by consent schema for shared autonomy provides the best balance between situational
awareness and operator’s workload. This result is in agreement with conclusion made by
Ruff et al. [154] and Goodrich and Cummings [67].

The multi-modal design paradigm for Ground Control Stations has been further studied
by Maza et al. [103]. In their study, the authors examined the effect of different modalities
on reaction time of users operating a ground control station for UAVs. The abstract task
was to select random “yes” buttons that show up on three monitors emulating a ground
control station while ignoring “no” buttons. The study evaluated the reaction time of users
and the percentage of their right and wrong actions when under different combination of
control (input) and feedback modalities. The system could receive input from a computer
mouse or a touch screen and could provide feedback about the presence of new buttons to
the users using speech synthesis, 3D audio interface and tactile interface. For the latter two,
the feedback indirectly includes positional feedback about the location of the button with
respect to the user. The results indicate that, compared to baseline of a tablet interface
without any feedback, multi-modal feedback increases the mean response time of the users
by about 14%. The best result was obtained using all three feedback modalities.

Most interfaces we have surveyed in this section deal with remote interaction of UAVs
under human supervisory control. Some consensus has emerged in the design of the user
interfaces, into either vehicle-centered (pilot-like) modes, or world-centered modes, both
augmented with a variety of sensor data. As the application domain of UAVs expands to
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the consumer market and with advances in robot autonomy and ubiquitous computing,
a new paradigm for human-UAV interaction has started to form. In this new paradigm,
humans and UAV(s) are co-located (situated) and use natural and embodied interfaces to
share autonomy and provide feedback. We will discuss this new paradigm in the following
section.

2.2 Situated Interaction With UAVs

We introduced the common patterns for designing interfaces for remote interaction with
Unmanned Aerial Vehicles as well as major human factor concerns for supervisory control
of UAVs using these remote interaction systems in the previous section (Section 2.1).

In this section we focus on proximate interaction between humans and UAVs mainly
outside the scope of human supervisory control. This type of interaction happens when
humans and UAVs are co-located (situated) and UAVs exhibit the level of autonomy that
makes them operate under minimal or no remote control. As an example, consider an
autonomous UAV in a search and rescue scenario which surveys an area, locates the person
in need, communicates its location, provide tele-presence for first responders and provides
first aid kit or food to her upon request. The same UAV may also be summoned by ground
search crew and commanded to modify its mission. In case that the UAV requires help
(e.g. battery replacement or maintenance), it may look for a human team member for
assistance.

These types of situated interaction resemble the interaction scheme that is used by
social living creatures (i.e. human-human or human-animal interaction). Interfaces that
support such natural interaction schemes require naturalistic embodiment [191] and should
preferably work when humans are not instrumented, i.e no operator control unit is required
and the person carries no other dedicated equipment or clothing. For example, consider
the UAV in the search and rescue scenario again. We argued earlier that requiring user
instrumentation may greatly limit the ability of the UAV to interact with people. This
might be acceptable when the interaction happens with the teammates, however it will
make it impossible for a human that does not carry the instrumentation (such as the person
in need) to interact with the UAV. In this section, we survey situated interaction with UAVs
and corresponding challenges. Our focus will be mainly towards the methods and systems
that facilitate situated, natural, embodied and un-instrumented interaction with UAVs.

We can break down the main components of a situated interaction between a human
and a UAV into (i) interaction initiation, (ii) approach and re-positioning to facilitate the
interaction and (iii) communication of intent and commands from the human to the UAV
and vice versa. Considering the scenario introduced earlier, the interaction between the
UAV and the person of interest can be initiated actively by the human using an active
stimuli such as gestures (e.g. body pose or movements) or auditory signals. Alternatively
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the UAV may always be running a human feature detector to find potential human partners.
The UAV may provide feedback to the user in forms of special maneuvers, auditory signals
or visual feedback (i.e. using lights). In addition, the UAV may communicate her readiness
for interaction by approaching the user or tracking her movements. At this state, mutual
attention is created between the UAV and the human. The UAV may also approach the
human to facilitate further close-range interaction with her.

Throughout the interaction session, the human may want to communicate her intents
or commands to the UAV for execution. Example tasks in the context of the search and
rescue scenario include commands to explore a certain area by the human teammate to
the UAV or request to deliver medical aid by the person in need. Feedback from the UAV
to the user may also be useful to ensure that the human is fully aware of the current
state and the next actions of the UAV. This is to improve the situational awareness of
the UAV’s interaction partner and to increase safety. For example, the UAV may provide
visual, auditory or motion based feedback to the user upon receiving a command. It may
also constantly communicate its next flying direction via visual or auditory signals so any
human that shares the same workspace is aware of its existence and its next movement.

The rest of this section surveys the literature in situated, natural, embodied and un-
instrumented interaction between humans and UAVs. For each work, we will identify how
it is related to the components we introduced earlier, the challenges it tries to solve and its
technical contribution. When necessary we will provide an introduction to major techniques
used by the paper and a quick survey about that.

2.2.1 Interaction Initiation

Interaction initiation between humans and UAVs mostly happens in two forms in the lit-
erature. In the first class of methods, the UAV utilizes human feature detectors to find
potential interaction partners. Alternatively the user may try to attract the UAV’s atten-
tion by using active stimuli such as gestures or body movements. Due to practical and
safety considerations, most studied human-UAV interaction systems use micro or small-
sized aerial multi-rotors with the ability to perform Vertical TakeOff and Landing (VTOL)
and in-place hovering. These platforms are well-suited for research purposes in this area
because they are easier to operate and control compared to fixed-wing vehicles and require
less workspace. Furthermore their small form factor and ability to hover in place allows
them to perform close-range interaction with humans. This comes at the cost of limited
payload capability and less energy-efficient flying compared to fixed wing UAVs.

The limited payload carrying capacities of small form factor UAVs restricts the number
and type of sensors and computational devices they can carry. Although some researchers
opt to do computing off-board, any practical system requires on-board (and real-time)
computing capabilities to truly perform embodied and situated interaction with humans.
Due to these limitations, most interaction initiation techniques proposed in literature rely
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on light-weight sensing devices, mainly color or thermal cameras for sensing. Self-contained
systems with on-board computing usually rely on fast computer vision techniques to find
or detect a potential interaction partner. Before reviewing these papers, we briefly survey
common techniques for pedestrian (human) detection using computer vision.

2.2.1.1 Vision based Pedestrian Detection

Pedestrian detection from visual data is studied under the general domain of object detection
in computer vision research. In addition to human-robot and human-computer interaction,
human detectors are used in surveillance, human activity recognition systems such as sports
analytics and autonomous vehicles. The latter has been the main driving force of pedestrian
detection for moving cameras research in recent years.

In general, contemporary vision based pedestrian detectors share the following compo-
nents and steps. First, visual features to represent a human are selected. A model that
represents the human (as the target object class) based on these visual features is then
defined and trained using a usually large set of positive (human) and negative (non-human,
background) examples. Machine learning algorithms commonly used in the literature to
train this model are Boosting (mainly Adaptive Boosting (AdaBoost)) and Support Vector
Machines (SVM) [12]. Human models are either monolothic meaning that they represent
the human body (or upper body) as a whole or part based which model the human as a
set of distinct parts. For part based models, the model captures the visual appearance of
the parts in the feature space as well as their spatial or topological relationships. Once
the model is defined and trained, the resulting classifier is applied to different locations of
an input image, usually in a sliding window manner. Since the classifier is trained for a
certain [pixel] size of humans, the input image is first up and/or down sampled to generate
a pyramid of images of different sizes. Each layer of this pyramid, which corresponds to a
certain size of a human, is searched for matches using the pre-trained classifier. Using the
sliding window and multi-scale search, the classifier usually fires multiple times around a
candidate detection. A non-maximal suppression post-processing step filters these results
to form the output list of pedestrians. For most of the state of the art human detectors,
the features are hand crafted prior to training. Recently, Deep Learning techniques such
as Convolutional Neural Networks (CNNs) have been applied to automatically select the
features during the training phase [161].

Viola and Jones’s seminal work on face detection [179] was among the first papers to
utilize the aforementioned pipeline to successfully detect human faces in real-time. In their
work, Viola and Jones propose using Haar-like features to represent a face and a cascade of
classifiers to perform the detection. Each classifier is a boosted classifier which aggregates
the output of a set of weak classifiers. The weak classifiers are one level decision trees asso-
ciated with a specific feature. They use AdaBoost algorithm to select the most distinctive
examples from training set, adjust the weights of weak classifier and train the cascade. The
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authors later applied the same technique for detecting pedestrians by incorporating motion
features into their model [180]. The next breakthrough came when Dalal and Triggs [38]
proposed using the Histogram of Oriented Gradients (HOG) as the feature descriptor and
linear SVM as the classifier for detecting humans. The proposed model consists of a vec-
tor of normalized HOG values calculated by concatenating overlapping HOG vectors over
8 × 8 cells across a fixed size template. Felzenszwalb et al. [57] introduced a deformable
parts based multi-scale HOG model to represent objects. The proposed model consists of
a root and a series of parts. The HOG pyramid is first formed by calculating HOG feature
vectors over the entire image at different levels of the image pyramid. The root defines
the boundaries of the human (object) within the coarser levels of the pyramid. Parts are
defined with respect to the root and inside its boundaries at finer levels of the pyramid.
Both the root and parts are so called filters that weigh the overlapping HOG feature vector
at their corresponding pyramid level. Felzenszwalb et al. used a Latent SVM classifier to
train the filters, their pyramid level and the placement of the parts with respect to the root
for different classes of objects, including people.

In a recent evaluation by Beneson et al. [12], the authors studied 40 pedestrian de-
tection methods and identify three main solution families: methods based on ensemble
classifiers (boosted decision forests) similar to Viola and Jones’s [179], methods based on
Deep Networks and methods based on Felzenszwalb et al.’s Deformable Parts Model [57].
By evaluating the performance of these families of methods on the Caltech-USA pedestrian
dataset [46], they conclude that all three families can reach current top performance in
pedestrian detection. By analyzing the main approaches used by each detector to improve
its performance, the authors deduced that, between the two most utilized classifiers (Sup-
port Vector Machines and decision forests), neither is believed to have an edge over the
other in terms of improving the overall performance. Beneson et al. [12] also note that, in
the context of pedestrian detection, DPM and Deep Learning based methods do not provide
an advantage over decision forest based methods, except for better handling of occlusion by
DPM based methods. The authors however found that better visual features by far are the
largest contributing factor to improving pedestrian detection performance over the years.

We briefly survey some notable recent works that have enhanced pedestrian detection
by mainly enriching features and designing better classifiers. Dollar et al. [45] proposed
generating channels from linear or non-linear transformation of the image and use the sum
of regions in different channels as features. These summations can be computed efficiently
using integral images. Their Integral Channel Feature (ICF) classifier, combines Dalal and
Triggs’s HOG features, gradient magnitudes and LUV color channels (10 channels in total).
Their ICF detector (also known as ChnFtr in the literature) utilizes AdaBoost for feature
selection and soft cascades, a variation of Viola and Jones’s cascade to perform the detection.
Benenson et al. [11] extensively analyzed every step of the ICF detector and made various
optimizations to improve its performance. Their final classifier, named Roerei detector is
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one of the best performing classifiers on the Caltech-USA dataset. The authors proposed
using all possible square rectangles inside the detection window instead of random pooling
during the training process. Motion features [12, 131] and scene contexts [12] are further
feature enhancements proposed by researchers to improve the ICF framework.

Pedestrian detectors based on monolithic models reach higher detection speeds compared
to part based detectors. However the original CPU implementations of the ICF detector
or HOG+SVM detector of Dalal and Triggs still do not run at framerate on VGA and
higher resolution video streams. To speed up the original ICF detector, Dollar et al. [44]
proposed generating coarser image pyramids at the detection time with N

k levels instead
of N levels. Features computed at these N

k levels are used to approximate features at
other N − N

k levels. This detector is named as Fastest Pedestrian Detector in the West
(FPDW) by the authors. Dollar et al. [43] further improved this detector by exploiting the
correlation between responses of the detector when applied to neighboring sliding windows.
The resulting detector, called CrossTalk Cascade, achieves 4× to 32× speedup over FPDW
depending on the tolerable miss rate increase. Similar to FPDW’s idea, Benenson et al. [10]
proposed generating N classifiers for each scale at training time and use only one image
scale during the detection phase. To speed up the training, they derived a method to train
classifiers for N

k scales and approximate classifiers for other scales. This classifier is known
as VeryFast in the literature. By combining VeryFast with other enhancements such as
GPU implementation and exploiting scene geometry through ground plane approximation,
their detector achieves detection speed of 100+ frames per second on 640× 480px frames.

2.2.1.2 Interaction Initiation Through Pedestrian Detection on UAVs

Doherty and Rudol [42, 152] designed a UAV based system for autonomous detection of
victims in a search and rescue operation. The goal of their system is to create a saliency
map of the victims in a target area and then plan a path for the efficient delivery of medical
services to the salient points in the map using multiple unmanned helicopters. The UAVs
in this work look for human features in the data received from both a thermal camera and a
color camera. The interaction in this work is implicit and is initiated via human detection
by the UAV. The authors divide the mission into two legs. In the first leg, the saliency map
is created by multiple UAVs. In the second leg, this saliency map is used to generate plans
for delivering food or medical aid to the victims.

The assumption in this paper is that both camera planes are parallel to the ground
and the victims are lying on a flat ground. This assumption allows the authors to use the
cascade classifier of Viola and Jones [179] that is trained on frontal human bodies directly
to detect the human. In order to speed up the detection, the authors employ a layered
focus of attention system. The image from the thermal camera is first thresholded to find
regions of human body temperature. A post processing step filters blobs based on their
size and aspect ratio. Corresponding regions in the color image frame are then searched
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(a) Sample images from Doherty and Rudol [42, 152]’s experiments. The odd rows show
RGB images, while even rows show corresponding thermal images.

(b) Focus of attention system of Flynn and
Cameron [58] thresholds the thermal camera’s
image to find regions of interest.

(c) Pedestrian detection applied to regions of
interests of Figure 2.7b ( [58])

Figure 2.7: Using thermal images to find regions of interest prior to running pedestrian
detection (a) c© 2007, Springer Verlag (b, c) c© 2013, Springer International

with the cascade classifier to find a human body. The authors propose using the state of
the UAV to find the corresponding image regions instead of performing image or feature
matching between two frames. More specifically, the proposed technique first estimates the
projection of the centroid of a blob in the thermal image in the world coordinate system
by intersecting the ray that passes through the camera’s center and the centroid with the
(flat) ground plane and by employing camera intrinsic parameters, the attitude (roll, pitch
and yaw) of the UAV and the orientation of the thermal camera. The point is then back
projected to the image plane of the color camera. If the classifier fires a positive detection
in that region, the world coordinate of the area is saved to a saliency map. The authors
validated their system by doing a single large scale outdoor experiment with two helicopters.
The experiment showed 100% success on finding 11 victims with the average geo-localization
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error of 2.5 meters in a 290× 185m area. Unfortunately the paper lacks more experiments
to asses the performance of this vision pipeline. Figure 2.7a shows a few sample images
from their experiments.

The idea of using thermal cameras to find regions of interest prior to applying human
detection algorithms has also been studied by Flynn and Cameron [58]. Similar to Doherty
and Rudol [42,152], the proposed method first thresholds the thermal image to find regions
of interest. Since the camera is stationary and the scene is static in this study, the method
applies a pre-calibrated homography transform to project each region of interest in the
thermal camera’s image plane to its corresponding location in the color camera’s image
plane. The parts based pedestrian detection method of Felzenszwalb [57] is then applied
to these ROIs to find potential humans. Unsurprisingly, these focus of attention methods
improved the speed of human detection algorithms (specifically slow ones such as DPM)
substantially. For example, on the 1280× 960px frames of the dataset used by the authors,
the processing time was reduced from 15 seconds per frame to approximately 4 seconds per
frame.

Blondel et al. [14] identify two major application domains that existing human detectors
are trained for: security monitoring and driver assistance, both assuming an upright human
view. This assumption is not well suited for detecting people from UAVs, since the vantage
point is different and time varying. Furthermore, the configuration of the camera is coupled
to degrees of freedom of the UAV, specifically its roll and pitch, both changing over time.
To compensate for these effects, Blondel et al. [14] propose to modify the training phase
for ICF classifier to include variations in people’s appearance caused by roll and pitch of
the camera. In an earlier work by the same authors [15], they showed that a classifier that
is trained only on frontal human bodies, starts to fail to correctly classify human images
when the elevation angle (pitch) of the camera exceeds 40 degrees.

Similar to [42,58,61,152] the system of Blondel et al. uses a thermal and a color camera
in stereo configuration, and utilizes thresholding of the thermal camera’s image to narrow
down regions of interest. To project from the thermal camera’s image plane to the color
camera’s, they assume an infinite homography transform between these planes (Equations
2.1, 2.2)), which is a reasonable assumption when the human is far from the stereo rig
(> 10m). In these equations K1 and K2 are matrices of intrinsic parameters of cameras, T
is the rigid body transformation between them and u, v are pixel coordinates.

Hinf = K2 × T ×K−1
1 (2.1)


u2

v2

w2

 = Hinf ×


u1

v1

1

 (2.2)
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To accommodate the roll and pitch of the camera, the authors generated a dataset4 of
3846 images taken from different pitch angles and rotated those images from −90 degrees
to 90 degrees with 5 degrees steps to generate roll variations. The resulting dataset is then
used to train a boosting classifier based on ICF. They name their classifier Pitch and Roll-
trained Detector (PRD). In a series of tests on a testing dataset recorded from an Asctec
Pelican UAV, the authors first show that the classic ICF approach fails on this dataset
mainly due to variations in viewpoint as well as pitch and roll of the camera, while the
PRD classifier shows reasonable performance when applied directly to the color image. The
full pipeline also shows good performance on detecting people, while reducing computation
time by 60%. Unfortunately the authors do not report the absolute timing measurements
for their pipeline. In their earlier similar work [15], the authors explored the idea of using
visual saliency maps instead of a thermal camera to reduce the search space of a human
detector. They showed that saliency maps when combined with careful tuning of classifier
parameters during training can help to increase the speed of HOG based human detector
from 18.87 seconds per frame to 2.286 seconds for a 640× 480px frame.

In a study by Andriluka et al. [7], the performance of state of the art pedestrian detectors
for detecting victims lying on the ground was evaluated. The authors generated a dataset of
people lying on the ground in an office setting (220 images in total), some of them partially
occluded by objects in the environments. Although the distance from the UAV to the
victims is small (Figure 2.8), the results from this study are still applicable to more realistic
scenarios. The authors first evaluated the performance of HOG based monolithic full and
upper body detectors on this dataset with part based models. All classifiers were using
their original trained model for human detection. In general, the part based models show
better performance compared to monolithic models. As an example, the best performing
monolithic model, upper body HOG, achieves 21.9% equal error rate (EER), while the best
parts based model’s EER is 51.5%. Although all classifiers are under-performing because
they are exposed to images that are affected by roll and pitch of the UAV, the authors
argue that part based models are performing better because they handle articulated poses
and occlusions better.

Similar to Blondel et al. [14], the authors propose to use telemetry data (pitch and
height from ground) coming from the UAV to improve the classification performance. Their
method is based on compensating the distortion caused by pitch of the camera by back
projecting the image to the ground plane, assuming that this plane is flat (Figure 2.8).
This not only removes the distortion due to the perspective, but also provides a prior on
the size of the person in the image plane. The authors use this prior to improve the accuracy
of the Pictorial Structures detector [6], a part based pedestrian detector.

De Smedt et al. [169] propose to use the prior on the target object’s height to reduce
the search space of human detectors running on-board the UAVs. The idea is inspired by

4http://mis.u-picardie.fr/~p-blondel/papers/data
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(a) Original image (b) Ground-plane projected image

Figure 2.8: An example of using orientation estimation and telemetry data to compensate
for UAV or camera’s pitch variations by projecting the image to the ground plane, prior to
using pedestrian detectors (from Andriluka et al. [7] c© 2010, IEEE)

the method proposed in [172] which describes how the height of the object in the image
plane can be estimated given the homography of the ground plane and a prior on its size.
Instead of directly using the homography, De Smedt et al. adopt a data driven approach.
Using annotated data from Caltech dataset [47], they estimate the boundaries of ground
plane indirectly by fitting a linear function to the height of pedestrians with respect to the
position of their feet in the image plane (Figure 2.9). This function is used to predict the
horizontal boundaries of the search region in an image for a given target height.

The Caltech dataset is recorded with a camera mounted on a moving car. In this setting,
the pitch, roll and altitude of the camera from the ground plane is almost fixed. This is not
the case for a camera mounted on a UAV. As mentioned earlier, the roll, pitch and altitude
of the camera all affect the ground plane estimation. Smedt et al. propose the following
to take these parameters into consideration. Dealing with the roll of the camera is trivial,
since the image can be rotated back with the inverse angle of the roll. The effect of the pitch
and altitude on the location of the pedestrian in the UAV’s field of view is shown in Figures
2.10a and 2.10b. The flat ground assumption (at zero pitch), imposes that the y-position
of the horizon to be at the center of the image, thus the y position of the pedestrian feet
will be at:

y = him
2 + a

A
B (2.3)

In the above equation, him, a, A and B refer to the height of the human in pixels
(unknown), the real world size of the pedestrian (the prior) and the height of the UAV from
the ground (measured), respectively. Setting y = 0 and solving the equation for minimum
and maximum height of the pedestrian will result in the minimum and maximum height
of the pedestrian in the image plane. These values are then passed to the linear mapping
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(a) A linear model (black line) is fitted to es-
timate the y-position of pedestrian feet with
respect to their height. Red lines are lower
and upper boundaries on the y-position of the
ground plane.

(b) Blue lines indicate the y boundaries of
ground plane for 150px pedestrians. The red
line indicates the upper boundary when the
height itself is considered.

Figure 2.9: Using object height and ground plane estimation to reduce the search space for
pedestrian detection (Smedt et al. [169] c© 2015, IEEE)

(a) The effect of altitude of the
UAV on pedestrian’s location
on image plane

(b) The effect of altitude of the
UAV on pedestrian’s location
on image plane

(c) The parameters used in
Equation 2.4 to cancel out the
effect of camera’s pitch

Figure 2.10: Using telemetry data (altitude and pitch) received from the UAV to refine the
ground plane boundaries (Smedt et al. [169] c© 2015, IEEE))

function of 2.9a to obtain the region of interest. To cancel out the pitch, the authors provide
the following formula based on the pinhole camera model and the estimated pitch angle (α)
(Figure 2.10c):

y2 = f
fsin(α) + y1cos(α)
fcos(α)− y1sin(α) (2.4)

One of the most related works to the task of pedestrian detection on-board UAVs is
the recent work by Lim and Sinha [96]. In this work, the authors combine a feature based
monocular SLAM pipeline with the ICF pedestrian detector [45] and an adaptive appearance
based visual tracker [71] to reconstruct the 3D trajectory of a moving person from a flying
camera. This system tracks the motion of the forward-facing monocular camera of the
UAV using a standard feature based visual SLAM pipeline. The direction of the gravity
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Figure 2.11: The outdoor open-loop experiments of Lim and Sinha [96] (a,b) Two snapshots
from camera’s FOV and the corresponding reconstructed trajectories (c) The top-view of
the final trajectory (d) The ground truth trajectories of the pedestrian from GPS+INS
tracker (GPS1) and GPS tracker (GPS2) ( c© 2015, IEEE))

vector reported by the on-board IMU is used by the system to detect the ground plane from
the tracked 3D feature points. This is subsequently used to recover the absolute scale of
camera’s motion and the map.

The system runs ICF (pedestrian detector) and Struck (visual tracker) in parallel. Struck
is initialized by the system using a heuristic policy based on the confidence of the pedestrian
detector. The authors propose a dynamic programming based approach to combine the
output bounding boxes of these two components and to decrease the overall false positive
rate. To reconstruct the full 6 DOF trajectory of the detected person, the system back
projects roll-corrected rays that correspond to the head and feet of the tracked person from
feature points in the pedestrian bounding box to the image plane. Assuming that the height
of the person is known and the person is in upright position, the system recovers the depth
of the head and feet of the tracked person using simple geometry. The 3D pose of the head
and feet location are tracked in the acquired map of the environment using a Kalman Filter.

Lim and Sinha performed a series of tests5 on 9 video sequences acquired either by
moving the UAV in indoor and outdoor settings by hand or by manually piloting the UAV.
The authors show that their pedestrian detection and tracking hybrid performs better on
average compared to the baseline tracker and detector. In addition, the authors examined
the accuracy of the pedestrian trajectory in two open loop outdoor experiments in which
a UAV was manually piloted to follow a person while the full trajectory reconstruction
pipeline was running on-board the UAV (Figure 2.11). The mean 2D Euclidean error of
two trajectories compared to ground truth data from a GPS Inertial-based tracker carried
by the target was 2.57± 1.87 meters and 3.6± 3.22 respectively. The average framerate of
the system during these experiments were 15 and 17 FPS respectively (640× 480px image,
Intel 4th generation Core i7 CPU).

5Dataset and demonstration video available at http://research.microsoft.com/en-us/um/redmond/
groups/ivm/mavloc/
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2.2.1.3 Interaction Initiation Through Moving Object Detection

One of the main concerns regarding executing machine learning based approaches on-board
the UAV is the computational resources that these methods require. Even on fast desktop
machines, state of the art CPU-only implementations do not run at frame-rate, particularly
over long distances when pedestrians are smaller in size (approx. 50px in height) [47]. Using
Graphical Processing Units (GPU) can speed up the processing time by at least one order of
magnitude [44], however state-of-the art embedded computing platforms applicable to UAVs
either do not include a powerful GPU or their Application Programming Interface (API)
does not provide access to the GPU. As noted by Dollar et al. [47], when these pipelines
are part of a larger system, ground-plane estimation or Region Of Interest (ROI) selection
can be employed to speed up the detection. We have shown in this section that region of
interest selection (focus of attention) methods based on additional sensory information are
widely used by UAV researchers for detecting humans (e.g. [7, 42,58,169])

An alternative way to find regions of interest in an image is to use motion information
to detect moving objects. Although the moving object based ROI selection filters out ROIs
with potential stationary humans inside, they are still of great interest to the methods that
detect movement based interaction initiation signals (i.e. hand gestures or follow-me when I
move). Since the camera is attached to a moving platform, classical background subtraction
methods [138] which assume a static environment are not applicable. Before concluding this
section, we survey methods for detecting moving objects on-board a UAV. This problem
is closely related to foreground-background segmentation in dynamic environments and
camera ego-motion estimation and cancellation.

The pipeline proposed by Jung and Sukhatme [79,80] deals with detection and tracking
of independent motion on-board moving platforms in real-time using a monocular camera.
The authors identify two main challenges for motion tracking from a mobile platform. The
first challenge is canceling out the motion induced by the movement of the platform, known
as the ego-motion. The second challenge is dealing with various types of noise caused by
poor lighting conditions, camera distortions and the unstructured environment.

To compensate for the ego-motion, Jung and Sukhatme’s pipeline selects a set of salient
feature points [166] (F t−1) in each frame (It−1) and tracks them using KLT optical-flow
tracking method [18] to the next frame (It) to find the corresponding feature points (F t).
Once the correspondence is found, a bilinear motion model is fitted to the data using a
least-squares method to recover the inter-frame motion of the camera (T tt−1):[

f tx

f ty

]
=

[
a0f

t−1
x + a1f

t−1
y + a2 + a3f

t−1
x f t−1

y

a4f
t−1
x + a5f

t−1
y + a6 + a7f

t−1
x f t−1

y

]
(2.5)

To deal with outliers caused by features located on moving objects, a simple thresholding
based outliers rejection method is employed. In the first pass, the full feature set is used
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(a) The input image (b) The initial stabilized image (c) The tracked feature points
(red: outlier, green: inlier)

(d) The refined stabilized im-
age using estimation from in-
liers feature points

(e) The difference image (f) The posterior probability

Figure 2.12: The different steps of Jung and Sukhatme [80]’s pipeline for detecting moving
objects from a moving platform ( c© 2009, Springer Science & Business Media BV)

to find T tt−1. In the second pass, feature correspondences that show large re-projection
error6 are removed from the set as outliers. The motion of the camera is estimated again
solely based on inlier correspondences. The input frame (It−1) is then warped using the
inverse of the estimated transform (Ic(x, y) = It−1T tt−1

−1(x, y)). Finally, the pixel-wise
intensity difference of the stabilized frame and the consecutive frame is calculated (Id(x, y) =
|Ix(x, y)− It(x, y)|) (Figure 2.12e).

The resulting difference image is not perfect due to the noise sources mentioned earlier
(systematic errors) and also due to errors in camera ego-motion cancellation step (transient
errors). The authors propose using an adaptive particle filter approach [60] to deal with the
transient errors. The state of each moving object is defined as its position and velocity on
the image plane. The posterior probability of these states are calculated recursively using
an observation model defined over Id assuming a constant velocity motion model.

Figure 2.12 shows the effect of different steps in the proposed pipeline and the resulting
posterior probability. The particles are finally clustered into objects using a density based
clustering algorithm. To track multiple objects, the pipeline maintains a particle filter for
each moving object. Filters are initiated once all particles converge to an object and are
destroyed when they diverge due to an object’s disappearance. To prevent particle filters

6The threshold for detecting outliers is manually defined
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Figure 2.13: Single moving object detection and tracking on-board an autonomous he-
licopter using a downward facing monocular camera (Jung and Sukhatme [80] c© 2009,
Springer Science & Business Media BV)

converging on a single object, once a filter is updated, the difference image is modified to
clear the motion of the tracked object.

The authors performed various types of experiments to evaluate different components
of their proposed system. One experiment in particular evaluated the accuracy of single
moving object detection and tracking on-board an autonomous helicopter using a downward
facing monocular camera (Figure 2.13). The proposed pipeline achieved an 80% detection
rate with an average tracking error of 11.9 pixels on a (rather short) dataset of 43 frames
with an approximate computation speed of 5 frames per second7. The results on non-flying
platforms were more promising, especially for the case of detecting and tracking pedestrians
on-board a Segway RMP robot, which achieved a 96.15% detection rate on a dataset of 141
frames.

A similar framework is proposed by Siam and ElHelw [168] for detecting and tracking
moving objects from UAV imagery. Similar to the previous work, this pipeline detects
and tracks salient feature points between consecutive frames using the KLT optical flow
method. Assuming a downward facing camera at relatively high altitude looking towards
a flat ground, the tracked feature points can be approximated to be on the same plane.
Under this assumption, the corresponding motion between two consecutive images can be
approximated by a homography transform.

7Pentium III 1.0 GHz, 320px × 240px frames
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(a) Outlier feature points and initial cluster of
objects

(b) Final list of objects after data association
step

Figure 2.14: Moving object detector of Siam and ElHelw [168] ( c© 2012, IEEE)
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Siam and ElHelw [168] adopted the LMedS (Least Median Square Estimator) [192] to
estimate the homography between consecutive frames and find outlier feature points. With-
out stabilizing the camera or calculating a difference image, the pipeline directly clusters
outlier features into candidate moving objects with the assumption that the effect of parallax
effect and mismatches are negligible and most of outliers are caused by independent moving
objects and belong to them. The pipeline uses a bank of Kalman filters to track multiple
moving objects. The state vector is similar to what Jung and Sukhatme [79, 80] proposed.
Instead of using a motion model, each object’s neighborhood is searched for the best visual
match in the consecutive frame using a cross correlation template matching approach. To
associate objects (observations) to Kalman filters, Siam and ElHelw propose an overlap-
rate-based data association method. Using a set of hand crafted rules and thresholds, this
approach associates observations to trackers, merges or splits them based on the ratio of in-
tersection area to detection area of each observation and the tracker. The pipeline achieves
the overall average precision rate of 94.7% on the DARPA VIVID dataset [29] (Eglin-I and
II) with average computation rate of 15 frames per second 8 (Figure 2.14).

Van Eekeren et al. [178] adopted a similar approach to the two previous works to detect
moving objects, however they combine it with pedestrian detection. The pipeline consists
of two parallel execution threads. The first thread calculates a stabilized difference image
by tracking feature points between consecutive frames, calculating intra-frame affine trans-
forms (under the same flat plane assumption of Siam and ElHelw [168]) based on feature

82.33 GHz Intel Core 2 CPU, 640 × 320px frame
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correspondences, warping one image to another image plane and differentiating pixel in-
tensities. The second thread runs the Fastest Pedestrian Detector in West (FPDW) [44]
to detect pedestrians on the whole images. The stabilized difference image is then post-
processed to detect objects (regions of interest) using morphological operations. These
objects are finally merged with detected pedestrians based on overlap ratios of bounding
boxes and confidence value of each detected pedestrian. A set of experiments on a subset
of the UCF-ARG dataset [119] which consists of different human activities recorded from
a remotely-controlled blimp, shows that combining these two methods increases both the
accuracy of human detection and the performance of tracking compared to when only one
method is applied.

Rodriguez et al. [150] used the discrepancy between artificial optical flow field caused
by the ego-motion of a camera and actual inter-frame optical flow field to detect moving
objects on-board a UAV. The system simultaneously calculates two optical flow fields (real
and artificial) from the monocular input video stream. The real optical flow field is calcu-
lated by tracking salient feature points over consecutive frames using KLT tracker (Figure
2.15a). The system tracks full 6 Degrees Of Freedom (DOF) of the camera using the Parallel
Tracking and Mapping (PTAM) [87] method. PTAM is a keyframe-based monocular Simul-
taneous Localization and Mapping (SLAM) system that concurrently tracks the movement
of a camera and generates a map of an unknown environment. The system directly employs
the output of the tracking thread, the 6 DOF of the camera pose, as an estimation for
camera’s ego motion. To recover metric scale, PTAM is initialized with a marker of known
size.

To calculate the artificial optical flow field, the proposed method assumes that the cam-
era is downward facing and the scene is mostly flat. Hence, the frame to frame motion
of feature points on the image planes can be approximated with a homography transform
(similar to [178]). The system first reconstructs the homography transform from the es-
timated translation (Tt−1,t) and rotation (Rt−1,t) of the camera from frame t − 1 to t as
well as the distance from the camera plane to the ground (d) as follows: (nT is the vector
perpendicular to the ground plane)

Ht−1,t = Rt−1,t −
Tt−1,tn

T

d
(2.7)

The feature points (from real optical flow field calculation step) are then re-projected
from frame t − 1 to t using the calculated homography Ht−1,t to form the artificial flow
field: (Figure 2.15b) 
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(a) Real (green) and artificial (red) flow vectors (b) Optical flow vectors with high discrepancy

(c) Detected moving objects and their corre-
sponding velocity vector

(d) Moving objects detected on another exam-
ple frame

Figure 2.15: Rodriguez et al. [150]’s method to detect moving objects from discrepancies
between real and artificial optical flow vectors ( c© 2012, MDPI CC BY 4.0)

Up to this stage, two optical flow vectors are associated to each feature point, one real
(r) and one artificial (a). To classify each feature point as static or dynamic (belonging
to a moving object), the angular and modulus discrepancy between these two vectors are
calculated for each feature point. Feature points for which their angular difference |αr−αa|
are less than 20 degrees and their relative magnitude ratios |ma−mr

ma
| greater than ±30% are

considered dynamic (Figure 2.15b).
To group the dynamic feature points, isolated dynamic pixels are removed first (assumed

to be false outliers). The remaining feature points are clustered into groups based on their
positions as well as the magnitudes and angles of their corresponding optical flow vectors
(Figure 2.15c). Finally, objects with small number of associated feature points are discarded.
A bank of Kalman filters with a greedy data association strategy track the position and
size of the objects over time.

In a series of demonstrative experiments, the authors executed the described pipeline
on-board an Asctec Pelican quadrocopter (on a single board computer equipped with a
1.6Ghz Intel Atom Processor and 1GB of RAM) to detect and track moving people. The
UAV and the people were independently moving, meaning that the output of dynamic
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object detection system was not used to control the behavior of the UAV. To amplify the
discrepancies of optical flow fields, the system runs at 1

3 to 1
6 of camera’s 30fps framerate.

The authors does not provide quantitative results about the success rate of the experiments
and the run-time performance of the system. Figure 2.15 shows two sample tracking outputs
of the system during the trials.

2.2.2 Communication of Intent and Commands to UAVs

Once the interaction between a human and a UAV (or a team of UAVs) is initiated, the
human and the UAV(s) can interact more directly by communicating their intents. Yan et
al. [189] defines a social robot as “a robot which can execute designated tasks” and the nec-
essary condition to turn a robot into a social robot as “the ability to interact with humans
by adhering to certain social cues and rules”. We believe that if a UAV exhibits the abilities
we outlined in the example search and rescue scenario by interacting with humans naturally
(adhering to social cues) and maintaining its safety distance while providing naturally un-
derstandable feedback (adhering to social rules) and executing designated commands, then
it can be considered a social robot. As we will see in this section, although the state of the
art in situated and natural interaction with UAVs is still far from introducing true social
UAVs, the overall progress is towards this direction.

2.2.2.1 Human Studies

The four major perception modalities for natural and situated interaction with social robots
are visual signals, audio signals, tactile signals and laser reading as identified by Yan et
al. [189] in their recent survey. In a study by Jones et al. [77], the authors explored the
first two modalities in the context of situated human-UAV interaction in search and rescue
operations. The test-bed consists of a virtual reality environment that simulates a flock of
flying robots in a natural scene populated with landmarks (Figure 2.16a). The task of each
participant was to command the flock (from distance) using gestural (visual) or auditory
commands. The system was not autonomous and the authors performed the study in a
Wizard of Oz manner [149].

In the first part of the study, the participants were asked to command the flock (as a
whole) to search the environment by directing them towards each landmark, simulating a
search and rescue mission. When the flock reaches a landmark, the user is informed if the
missing person is found or not through a message shown on the screen. The goal of this
part of the study was to observe the natural commanding modalities that are preferred by
users and identify the challenges for such an interaction scheme. The results indicate four
major commanding modalities used by participants: high level voice commands such as go
to a landmark, low level voice commands such as go left. herding gesture (moving arms
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(a) The virtual scene and a few of its landmarks (b) UAVs and their projected virtual shadows
as seen by the user

Figure 2.16: Virtual reality environment used by Jones et al. [77] in their study ( c© 2010,
IEEE)

(a) The gesture vocabulary (From 1 to 6): take-
off and land; raise and lower; stop; come; cir-
cle; and find

(b) Communicating commands to a UAV
through gestures

Figure 2.17: Ng and Sharlin [126]’s proposed idea for collocated and direct interaction with
UAVs ( c© 2011, IEEE)

through space as if pushing UAVs in the desired direction) and pointing gesture (Indicating
direction by raising an arm).

Major difficulties reported by the participants were lack of depth perception due to
distance from the flock and lack of feedback from the UAVs, both made it difficult for
the users to understand whether if their command is understood and executed by the
flock. One interesting observation from this study was that herding gestures happened
more frequently with low level voice commands while pointing gestures were associated
with high level commands. In the second study, the authors fixed the depth perception
issue by introducing false shadows (Figure 2.16b) and presented the valid multi-modal
command combinations (pointing gesture/high level voice, herding gesture/low level voice)
to the participants in advance. The results indicate that users significantly preferred the
high level command combination to interact with the flock over the low level combination.

Ng and Sharlin [126] were among the first researchers to explore the idea of collocated
and natural (direct) interaction with real flying robots. Inspired by interaction schemes used
by humans to communicate with birds (e.g falconers and hawks), the authors performed a
preliminary study on how natural interaction with flying robots are perceived by human
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Figure 2.18: Gesture vocabulary designed based on Taralle et al. [175]’s study ( c© 2015,
ACM)

users. Ng and Sharlin first crafted a set of hand and arm gestures to communicate commands
to a UAV. The command set consists of takeoff, land, raise (ascend), lower (descend), stop,
come [to me] (approach), circle and find commands. The gesture vocabulary for executing
each command is shown in Figure 2.17a. The authors then performed a series of Wizard
of Oz experiments with two participants (one adult and one 11 year-old boy). In each
experiment (Figure 2.17b), the participant was asked to command the UAV using the
designed gestures set from close proximity while the UAV was flying. The UAV in use was
Parrot AR-Drone quadrocopter which was being manually controlled by a human operator
to execute participant’s issued commands. The authors observed that participants were
very engaged when performing gesture based interaction with a flying robot and interacted
with it as if it was a pet. They conclude that natural interaction with a flying robot is easy
to understand and perform.

Defining efficient gestural vocabularies for natural interaction with UAVs has been fur-
ther studied both in the context of indirect and non-embedded human machine inter-
faces [136, 137] and direct and embedded human-UAV interfaces [175]. The goal of the
latter work by Taralle et al. [175] is to define an efficient gesture vocabulary for interaction
between infantrymen and their accompanying UAVs in battlefields using a bottom-up ap-
proach. The authors asked a group of 39 volunteers (10 civilian and 29 military personnel,
divided into three groups) to propose, elect and evaluate gestures for the following tasks:
takeoff, land, to next waypoint, to previous waypoint, stop, to base, validate and cancel. The
gestures were required to be one-handed and intuitive, not to contain large movements and
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(a) The getsure-action pairs with the highest
agreement score among participants

(b) The participants’ subjective ratings of their
interaction experience

Figure 2.19: Results from the study by Cauchard et al. [25] ( c© 2015, ACM)

not to be too tiresome. The first group performed the proposal, the second group elected
the most appropriate gesture for each task and the third group evaluated the understand-
ing of each gesture by matching it to an action based on their interpretation. From the
total of 160 proposed gestures, 46 unique ones were presented to the second group. The
final eight elected gestures for each command are shown in Figure 2.18. The association
score calculated based on the matching performed by the third group is 94%. Although the
primary focus of the study was to define gestures to be used in the battlefield, the tasks
are general enough so the proposed gesture vocabulary is applicable to other domains that
involve issuing similar high level commands to UAVs such as search and rescue.

In a recent work by Cauchard et al. [25], the authors studied how users interact nat-
urally with flying robots. Similar to [77], the authors asked a group of 19 participants
to communicate a set of 18 commands naturally to a flying quadrocopter (DJI Phantom 2
with propeller guards) in an outdoor setting9. Similar to the settings of [77] and [126],
the UAV was being controlled by a human operator and the users were aware of this fact.
Tasks were split into five categories: within body frame commands such as fly closer, outside
body frame commands such as fly further away, general motion such as takeoff, relative to
user commands such as follow and photo commands such as take a selfie. Each participant
first performed all the commands in random order, then completed a questionnaire about
their interaction experience and finally performed four of the tasks again. In total, out of
414 valid interactions, 86% of them included a gesture (body, hand or arm gesture), 38%
included a sound and 26% contained both. The authors calculated the agreement score for

9Video demonstration: https://www.youtube.com/watch?v=vrWF3t7a_HU
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every 54 task-modality pair based on the method proposed in [186]. The results indicate
that 44% of task-modality pairs have an agreement score greater than 0.5. This indicates
that for 44% of the pairs, the users agree on using a certain modality for its corresponding
task. Although the authors do not provide a fine-grained gesture and sound vocabulary for
natural interaction with flying robots based on these data, they report four task-gesture
pairs with highest agreement scores among participant (Figure 2.19a).

Based on their individual subjective ratings (Figure 2.19b), the participants found their
interaction experience natural, safe and not physically or mentally demanding. Majority
of the users expressed that they felt in total control of the drone. Similar to Ng and
Sharlin [126], the authors observed that users treated the flying robot as if it were an
animate being: a person, a group of people, or even a pet. Finally, preliminary analysis
on proxemics reveal that [surprisingly] all participants felt safe enough to bring the UAV
within 10ft (∼ 3m) of themselves. More specifically, 7, 9 and 3 participants brought the
robot to their intimate (1.5ft), personal (4ft) and social (10ft) space (as defined by Hall [70])
respectively. This is particularly interesting since to best of our knowledge, this is the first
work to provide data on safe approach distance with real flying robots. A previous study
on this topic by Duncan and Morphy [51] does not provide a decisive result.

2.2.2.2 Practical Systems

The literature on practical and autonomous systems that allow direct and situated com-
munication of intent and commands to UAVs is rather sparse. A major challenge in such
systems is to perceive the commands issued by the user using usually limited computational
resources available on-board. As we will show by surveying these works, visual cues such
as gestures are by far the most dominant means of communication followed by audio and
physical cues. In this section, we first briefly introduce common techniques used in human-
computer and human-robot interaction systems to detect human gestures from visual input,
then survey the state of the art on practical, direct and situated communication of intent
from humans to UAVs.

In their survey on gesture recognition techniques, Mitre and Acharya [107] define ges-
tures as “expressive, meaningful body motions involving physical movements of the fingers,
hands, arms, head, face, or body with the intent of: 1) conveying meaningful information
or 2) interacting with the environment.”. Gestures are either static (i.e a fixed posture) or
dynamic (i.e. with temporal variation)10. They can also be broadly categorized as hand
and arm gestures, head and face gestures and [whole] body gestures [107]. Gesture recog-
nition techniques consist of three different phases: detection (of body parts), tracking and
recognition [148]. Similar to what we have discussed so far in this chapter, detection can be
done either through instrumenting the user or more naturally through embodied sensing.

10Please refer to [81] for a comprehensive taxonomy
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(a) The prototyping environment of Lichten-
stern et al. [95] ( c© 2012, IEEE)

(b) The UAV follows a human and responds to
his hand gestures (Naseer et al. [125]) ( c© 2013,
IEEE)

Figure 2.20: Two examples of using on-board RGB-D sensors (i.e. Microsoft Kinect) to
interact with a UAV

Methods based on instrumentation usually rely on tangible interfaces such as gloves, spe-
cial body suits or marker based optical tracking. Natural methods on the other hand rely
on embodied sensors such as cameras to perform the detection. Robustness to body part
occlusions as well as to viewpoint and intra-class variations are most important challenges
for designing vision based gesture recognition systems [31].

Karam [83] found hand gestures as the most common gesture among humans for com-
munication, hence he suggests those as the most natural gesture for human-computer in-
teraction. To detect and recognize hand gestures (and body gestures in general), gestures
can either be represented as 3D models such as 3D skeleton models or as appearance based
models such as silhouettes and motion models [19]. In their recent survey on hand gesture
recognition systems, Rautaray and Agrawal [148] identify color, shape, pixel values, 3D
models and motion as the most common features used for vision based gesture detection
in the literature. Hidden Markov models, Finite State Machines, Dynamic Time Warping
and general classifiers such as K-Nearest Neighbor (KNN) and Support Vector Machines
(SVM) are the most common techniques for the recognition part [107,148].

Lichtenstern et al. [95]’s prototype system is one of the earliest examples of autonomous,
situated and direct interaction with flying robots11. In their setup (Figure 2.20a), a Mi-
crosoft Kinect sensor is mounted on an Asctec Pelican quadrocopter hovering in front of the
user. The skeleton tracking results obtained from Kinect’s RGB-D data is used to detect
and relay commands to a group of three Asctec Hummingbird quadrocopters. All flying
robots use a motion capture system (in an indoor environment) to autonomously hover and
navigate. In this work, interaction initiation is implicit and happens when the robot enters
the field of view of the Kinect sensor (or equivalently the Pelican’s field of view). Based
on the user’s tracked skeleton, her right arm pointing gesture is detected and used to select
a corresponding Hummingbird. The user confirms her selection by touching her right arm

11Online demonstration video: https://www.youtube.com/watch?v=oF3EcwNuO9Y
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with her left hand. When selection is done, the user’s relative right hand movements are
mimicked by all selected robots (e.g lifting the hand causes the robots to takeoff or ascend).
Although the paper does not provide any technical details about the implementation, the
computation is most likely done off-board the Asctec Pelican. Lichtenstern et al.’s work is
similar in nature to bench-top RGB-D based human-machine interfaces that use skeleton
tracking data to control and command a UAV (e.g. [40,128,136,137,158]). However, this is
the first work to demonstrate embodied RGB-D based sensing for Human-UAV Interaction.

In the prototype environment of Lichtenstern et al. [95], the RGB-D sensor is almost
stationary since the robot which carries the sensor is always hovering. Naseer et al. [125]
further studies the problem of person detection, following and gesture recognition on-board
a non-stationary flying platform. Most researchers rely on machine vision software pro-
vided by Microsoft12 or the OpenNI project13 to perform person detection and skeleton
tracking on the data coming from a RGB-D sensor14. Naseer et al. noticed that the static
background assumption made by those libraries (and their underlying algorithms) prevents
them from performing reliable person detection and skeleton tracking when the depth cam-
era is mounted on-board a non-stationary UAV. The solution proposed by Naseer et al. is
to stabilize the depth image using the ego-motion estimation data coming from an on-board
inertial visual navigation system.

The platform used in Naseer’s work is an Asctec Pelican quadcopter equipped with a
forward facing Asus Xtion Pro Live RGB-D sensor and an upward facing monocular camera.
A set of ceiling mounted Augmented Reality markers help the UAV estimate its position in a
world-fixed coordinate system. An Extended Kalman Based sensor fusion framework [184]
fuses these data with inertial readings from the UAV’s on-board sensors to estimate the
position of the camera in world coordinates (T camworld). The position of the depth sensor at
each time step k (T kworld) is calculated using fixed and pre-calibrated transform from the
depth sensor to the mono-camera:

T depthk
world = T camworld × T depthcam (2.9)

To cancel the ego-motion of the depth camera, a virtual static camera is initialized from
its initial position (T staticworld ). At each time step, the corresponding 3D point cloud of the
depth image is re-constructed based on the pinhole camera model:
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12https://dev.windows.com/en-us/kinect
13http://structure.io/openni
14For details about underlying algorithms, please refer to [167]
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In the above equation, pk(i, j) is the corresponding position of an image pixel (i, j) with
the depth of z in the camdepthk

’s coordinate system. fx, fy, cx and cy are camera’s intrinsic
parameters indicating focal lengths and optical centers respectively.

At each time step, the current depth image is used to re-construct the respective 3D
point cloud using camera intrinsics. Given the current transformation between the depth
camera and the static virtual camera (T depthk

static = T staticworld
−1
T depthk
world ), each 3D point is first

transformed into the virtual camera’s frame: pstatic(i, j) = T depthk
static × pk(i, i), then back-

projected into the virtual camera’s image plane:
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The resulting stabilized depth image (static camera’s image) is first smoothed, then fed
into OpenNI’s skeleton tracker to detect a user who is facing toward the quadrocopter. The
interaction is initiated when the UAV detects a person and successfully tracks its joints. At
this point, the position of the torso of the human is transformed (from the static camera’s
frame) into the world coordinates to generate waypoints. These waypoints are tracked by
the UAV’s position controller which generates the follow-the-user behavior. While following
the user, the relative depth between the left/right hand joints and the torso is used to detect
raise left/right hand gestures. In a series of experiments, Naseer et al. [125] show that the
depth stabilization increases OpenNI’s tracking performance from 30% to 95% and 16% to
86% while the UAV is hovering and traveling a rectangular path respectively. The system
was able to achieve a 92.5% gesture recognition rate. In an end-to-end demonstration of
the system15, the UAV would follow a user upon detecting her and respond to her left hand
gesture command by taking a picture of her (Figure 2.20b).

Using RGB-D sensors exemplified by the Microsoft Kinect imposes some limitations on
embodied human-UAV interaction systems. Firstly, the weight of these sensors exceeds
the payload capacity of small UAVs and their accompanying libraries require powerful on-
board computing resources. Secondly, since these types of sensors rely on structured light
to estimate the depth, their performance degrades significantly in outdoor settings and in
direct sunlight. We anticipate that with advances in sensing and computing technologies,
these limitations will be gradually lifted. The second generation of Microsoft Kinect sensor,
Google’s Project Tango16, Intel RealSense technology17, Intel’s Next Unit of Computing
(NUC)18 and NVidia’s Jetson GPGPU computing platforms19 are examples of advances

15https://www.youtube.com/watch?v=iaEKh4JYgqo
16https://www.google.com/atap/project-tango/
17http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.

html
18http://www.intel.com/content/www/us/en/nuc/overview.html
19http://www.nvidia.ca/object/jetson-tk1-embedded-dev-kit.html
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(a) The gesture vocabulary for robot selection.
(a) individual robots, (b) group of robots, (c)
individuals and groups, (d) all robots

(b) The features used to train the individ-
ual/group binary classifier for gesture (a) and
(b) for Figure 2.21a respectively. Top row
shows a few positive examples while bottom
row show a few negative ones.

Figure 2.21: The gestures and features used by Nagi et al. [123] for their Human-multi UAV
interaction system ( c© 2014, IEEE)

in underlying technologies which will benefit embodied sensing and computing on-board
UAVs.

Nevertheless, the use of monocular cameras for human gesture and activity recognition
on-board UAVs has also been explored by researches [31, 108, 123]. However, most of the
state of the art systems simplify the computer vision problem of detecting human gestures
by instrumenting users with tangible devices or special clothing. The prototype system
of Miyoshi et al. [108, 109] is an example of such systems. In this work, the user’s hand,
which is covered with a glove of known color is detected by the UAV on its downward
facing monocular camera video stream. A simple color segmentation based computer vision
pipeline runs on-board the UAV to perform the detection. Another modality, the sound
of a whistle, is used for interaction initiation and sending takeoff and land commands to
the UAV. While hovering, the UAV flies “above the user’s hand” while maintaining a fixed
distance using its ultrasound distance sensor. The UAV also flies in the direction of hand
movements. This way multiple users are able to pass around the UAV among themselves.

When a user is interacting with multiple UAVs, prior to communicating commands, the
user needs to select the target UAV from the group. This selection cannot be made implicit
if the user is in the field of view of multiple UAVs. Selecting, grouping and commanding
multiple UAVs is the subject of a recent study by Nagi et al. [123]. The setup consists of a
group of networked AR-Drone quadcopters with on-board forward facing cameras and off-
board computing in an indoor environment. The UAVs perform color based segmentation
(similar to Miyoshi et al. [108,109]) to detect the human and position of her hands in their
camera feed. In addition to color segmentation, the UAVs employ the cascade classifier of
Viola and Jones [179] to detect the human’s face.

The interaction is initiated when the user is in the field of view of the UAVs and his
body, hands and face are detected by the UAVs. The UAVs actively maintain a human
centric circular formation (uniform distribution, facing the user, fixed altitude) by estimat-
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ing the pose of the human’s face using a non-linear regression algorithm [121]. The gesture
vocabulary for selecting UAVs consists of four static gestures (Figure 2.21a). These gestures
are detected by each UAV independently and only when the motion of the human sensed
by the UAV is negligible. This sensed motion is caused by the movement of the human
and/or the motion of the flying robot. Each UAV maintains a circular buffer of pair-wise
relative distances between the centroid of the gloves and the jacket (three components).
This temporal estimation of optical flow of detected human parts are averaged and normal-
ized by each UAV. The gesture detection pipeline is only executed when this value is below
a certain threshold.

To detect gestures, the system extracts 30 geometrical shape features from the detected
glove blobs for the left and right hands (i.e. convexity, aspect ratio, perimeter, etc). A
multi-class Support Vector Machine (SVM) with non-linear Gaussian kernel classifier is
first trained on a dataset of labeled ground-truth data. Each UAV uses an instance of this
classifier to obtain a probabilistic decision vector that indicates the relative likelihood of
each gesture in the vocabulary. Robots communicate their individually obtained vector with
each other and run a distributed consensus algorithm [62] to agree on the issued gesture by
the human.

As mentioned earlier, in such human-multi UAV setups, UAVs not only should agree on
the issued gesture (command), they also need to agree on to whom (individual or group)
the command is intended. To solve this problem, Nagi et al. trained a separate binary
classifier for each three subset selection gestures of Figure 2.21a to determine if the gesture
is towards an individual UAV or towards the whole group. As shown in Figure 2.21b, each
classifier is trained on a subset of training data with positive examples of hand/palm gesture
from the target robot’s field of view and negative examples from the other robots’ points
of view. When a subset selection gesture is detected by the group, the second classifier
corresponding to that gesture is executed by each UAV. If the individual selection gesture
is detected, UAVs execute a distributed election algorithm based on the results obtained
from the second classifier to agree on the selected UAV. This way the user can incrementally
add UAVs to the selection. Similarly for group selection, the robots distributively agree on
the robots that have the best view of the left and right hands (boundary robots), which
consequently enables the user to simultaneously select all UAVs that are located within the
selection cone.

Most of the experiments presented in the original paper by Nagi et al. [123] are performed
on emulated and pre-recorded data. In general, the system performs well on detecting large
human or scene motions, recognizing gestures and selecting individuals or groups of UAVs
using them. A demonstration video (with an extended gesture vocabulary) is available from
the following link: https://www.youtube.com/watch?v=G2tyV2USjG8.

Pourmehr et al. [142] took a multi-modal approach for selecting an individual or subset
of UAVs from the group and commanding them. Similar to Nagi et al. [122, 123], a team
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Figure 2.22: Multi-modal interaction system of Pourmehr et al. [142] for Human-mutli UAV
interaction ( c© 2013, IEEE)

of multiple AR-Drones utilize their on-board forward facing camera to detect human faces
and to initiate the interaction. In order to agree on which robot is being looked at, the
UAVs communicate their so-called “face scores” distributively and perform a leader selection
algorithm to reach consensus. “Face score”, first introduced by Couture-Beil et al. [32] is
defined as the number of neighboring detected windows by Viola and Jones [179]’s cascade
classifier that cluster into a single face detection. Since the classifier is trained on frontal
faces, when the user is directly looking at a robot, its “Face score” is higher compared to
when she is not. A voice recognition module detects the spoken words from a predefined
vocabulary uttered by the user. The grammar used for selecting the robots, consists of
the word you followed by the desired number of robots. Pourmehr et al. [142] examined
two methods of robot selection: sequential and simultaneous. In sequential selection mode,
after saying the desired number of robots, the user individually looks at each robot and
incrementally adds them to the group. Conversely in simultaneous selection mode, the user
looks in the center of adjacent group of target robots after saying the selection phrase. The
system allows the user to modify her selection by looking at a single robot and saying the
phrase ‘not you’ or ‘and you’. The selected group of robots can be further commanded to
perform a task by subsequent voice commands such as ‘take off ’ (Figure 2.22). In a series
of experiment 20, the authors showed that while incremental selection takes longer than
simultaneous selection, this selection method leads to more accurate selection.

Costante et al. [31] propose a transfer learning approach for detecting and personalizing
gestures for situated human-UAV interaction. Gestures are represented by encoding tem-
poral variations of a Histogram of Optical Flows over region of interests in the input frames
with a Fisher Kernel [106]. For each user, a short data gathering phase is performed to
generate a small set of training data based on a vocabulary of five gestures (Figure 2.23a).
The system uses face detection to define the region of interest in the image and face recog-
nition to uniquely identify the user. Viola and Jones’s face detector [179] and Ahonen et
al. [3]’s Local Binary Patterns + SVM based face recognizer is utilized at this step. The
core idea of the paper is to use a database of labeled and pre-recorded gestures gathered
either from other users’ interaction with the system or from the web to learn a set of user-

20Demonstration video: https://www.youtube.com/watch?v=I8sJud-OApw
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(a) The gesture vocabulary

(b) A sample interaction sequence: First two rows are from UAV’s field,
while the last two shows a third person view. The middle rows are UAV’s
trajectory. The user initiates a circle gesture which commands the UAV to
follow a rectangular trajectory.

Figure 2.23: The transfer learning based gesture recognition system of Costante et al. [31]
( c© 2014, IEEE)

specific and personalized gesture classifiers. To achieve this, once the user is recognized, its
personal training set is used to learn a set of distance functions to all the gestures stored in
the database using a stochastic optimization approach. The user’s novel gestures are then
classified using these distance functions in a nearest neighbor manner.

The authors show that the proposed transfer learning based gesture recognition approach
outperforms linear classifiers that are trained either on the user’s small training set or the
whole or subset of the gesture database excluding the user’s training set. The database in
those experiments consists of pre-recored data from three other users interacting with an
airborne AR-Drone and the Keck 5,9 an 14 gesture recognition dataset [97]. In an end-to-
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end demonstration experiment (Figure 2.23b), the authors show that the system is able to
successfully detect and track the user while responding to her commands.

2.2.3 Communication of Intent from UAVs to a Human

In collocated interaction between humans and UAVs, it is important that humans be aware
of UAVs’ internal state as well as its intents either through implicit or explicit feedback
from the UAV. Jones and Rock [78] identify being able to “talk” as important requirement
as being able to “listen” for an autonomous agent. Through proper feedback, the user can
understand if the UAV correctly understands her intents and if the UAV is functioning
properly. These in turn decrease user’s cognitive workload and improve her awareness and
safety. These requirements are generally true for any human robot interaction system.
However, due to the inherently unstable nature of most UAV designs and their relatively
higher momentum compared to ground or tabletop robots, the safety concerns are more
important. As noted by Szafir et al. [173]:

"Any potential misunderstandings regarding robot intentions may damage human-robot
rapport, prove detrimental to task efficiency, reduce trust in automation, and may even
be dangerous for the human collaborator. Alternatively, being able to understand robot
intentions and predict where, when, how far, and how fast it will move may enable users to
work and collaborate with AAFs [Assistive Flying Robots] more effectively."

Drury et al. [48] define HRI awareness for single Human-Robot Interaction as “Given
one human and one robot working on a task together, HRI awareness is the understanding
that the human has of the location, activities, status, and surroundings of the robot; and
the knowledge that the robot has of the human’s commands necessary to direct its activities
and the constraints under which it must operate.”.

In case of multi-human multi-robot interaction systems, this definition is extended to
cover pairwise human/robot awareness cases as well as human’s overall mission awareness.
When an HRI awareness information that should be provided is not provided by the HRI
system, an HRI awareness violation occurs, as defined by the authors. By observing and
analyzing participating teams at a major international robot search and rescue competition,
Drury et al. conclude that all critical incidents happened during the competitions were
primarily due to a lack of human-robot awareness of location and surroundings. Since the
robots were remotely tele-operated in that setting, awareness of location and surrounding
was crucial to successful and safe execution of the mission. Similarly, we believe that in
the context of collocated and direct human-flying robot interaction, human awareness of
status and activities of UAVs plays an important role in the successful interaction between
humans and UAVs.

Two of the papers we surveyed in the previous section, Pourmehr et al. [142] and Nagi
et al. [123], use LED lights on-board AR-Drone UAVs to communicate feedback (states) to
the user. Others either do not use feedback at all or rely on the UAV’s motion (i.e. when
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Parameter Definition Extreme 1 Extreme 2

Space Movement of
the UAV in
the space

Indirect: the robot
meanders and wanders
more while moving
towards the next
immediate goal

Direct: the robot
moves towards the
next immediate goal
with little deviation
in path

Weight How the
robot uses
the impact of
its body
weight during
a motion

Strong: robot moves
towards the next
immediate goal with
power or force

Light: robot moves
towards the next
goal more
effortlessly, being
less influenced by
gravity

Time Speed-related
aspects of a
robotic
motion

Quick: robot moves
towards the next
immediate goal by
making hurried and
urgent movements that
are less time consuming

Sustained: robot
moves towards the
next immediate goal
by making lingering
(low speed)
movements

Flow The
continuous
and ongoing
aspects of
robotic
motion

Bound: robot moves
through the movements
more carefully to execute
the succession of the
motion precisely

Free: robot moves
through movements
without caring
about the precision

Table 2.1: Parameters of the Laban Effort System proposed by Sharma et al. [163] for
composing communicative flight trajectories ( c© 2013, IEEE)

following the user) as an implicit feedback signal to communicate the status of the UAV to
the user. In a recent paper by Sharma et al. [163], the authors study the communication of
affects from UAVs to humans through flight path decomposition. In this study, Sharma et
al. adopt the Laban Effort Systems to design flight paths for UAVs and study the perceived
affect on humans. Laban Effort System is a component of the Laban Motion Analysis
framework [181] used for human motion analysis in performing arts.

The Laban Effort System uses four parameters, each with two opposing extremes, to
define a motion within space: Space, Weight, Time and Flow. Sharma et al.’s adaptation
of these parameters and their extremes in the context of UAV flight path decomposition is
listed in Table 2.1. The authors asked a Laban trained artist to compose 16 flight trajectories
(all combinations of effort parameters) by moving a UAV by hand. The trajectories of the
UAV was recorded using a motion capture system and were subsequently used to render a
smoothed version of each trajectory (Figure 2.24b). A group of 18 participant then observed
the UAV following each trajectory and measured the perceived affective states (emotions) on
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(a) The experimental setup (b) Example rendered trajectories and their corre-
sponding Laban Effort System’s parameters

Figure 2.24: Communication of affect through flight path decomposition (Sharma et
al. [163]) ( c© 2013, IEEE)

a two dimensional valence (pleasure) and arousal scale (Figure 2.24a21). Valence expresses
how pleasant an emotion is while arousal indicates its energy and intensity. The study
indicates strong correlation between the effort parameters and the perceived emotion by the
participants. Most importantly, performing motions more quickly (space indirect), leads to
increased arousal and vice verse. In addition, indirect use of space (wandering towards the
goal) communicates happiness or excited state while low speed movements (sustained time)
conveys fatigue or sadness.

Szafir et al. [173] examines how manipulation of motion primitives that define the flight
path of UAVs affects the effectiveness of UAV to human communication. The authors define
motion of the UAV as a composition of three components: trajectory, velocity and orienta-
tion. They identify 11 primitive motions for UAVs when they share an environment with
a human. These primitives consist of four core motions: Takeoff, Hover, Cruise, Land and
seven interactive motions: Approach person, Avoid person, Depart person, Approach object,
Avoid object, Depart object and Scan objects. All the motion primitives are categorized as
Exocentric by the authors since they can be perceived by any observer from a third person
view. The three primitives that involve a person are additionally categorized as Egocen-
tric since they can also be observed from the interaction partner’s perspective (first person
view). The motion manipulators used in this study are arc trajectories (curved trajectories
as opposed to going through a straight line), easing in and out of velocity profiles (a velocity

21Demonstration video: https://www.youtube.com/watch?v=44sdnjIUifE
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(a) The four types of motion manipulators (b) The experimental setup for the second ex-
periment

(c) The snapshots from two sample video renderings

Figure 2.25: Communication of intent from UAVs to a human through manipulation of
motion primitives (Szafir et al. [173] c© 2014, ACM)

profile with slow in and out) and performing anticipatory motions (moving in the opposite
direction before starting the motion). These manipulators are shown in Figure 2.25a.

The authors first rendered a series of realistic videos of a UAV performing 7 interactive
motion primitives in a shared warehouse environment. 10 motion scenarios (7 exocentric
and 3 egocentric view) and 8 different combinations based on absence or presence of a
particular manipulator resulted in total of 80 videos. Figure 2.25c shows two examples of
such exocentric and egocentric renderings. In a study with 85 participants, the authors
measured the response time and the accuracy of perception of intent by the participants.
The result indicates that although no single manipulator can significantly improve the
performance over the baseline, the combination of them can. Based on these findings,
the authors performed a second study, this time with a real UAV, traversing a flight path
in front of a participant (Figure 2.25b. In this study, Szafir et al. hand crafted a set
of manipulators for each of 11 motion primitive (e.g. arc and ease for avoid person and
anticipate for approach object) and asked 24 participants to rate their perceived usability,
motion naturalness and safety with and without these manipulators. The results indicate
that such manipulations not only significantly increase usability ratings, but also result in
more natural motions and increased feeling of safety.
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(a) The feedback signals to communicate the
next flight direction

(b) THe physical implementation of each signal
on an AR-Drone UAV

Figure 2.26: Communication of intent from UAVs to a human through light feedback (Szafir
et al. [174] c© 2015, ACM))

In a follow-up work, Szafir et al. [174] explored the possibility of using light feedback
on-board UAVs to communicate its direction of movement. This is a critical safety aspect
when UAVs are collocated with humans which are not necessarily familiar with interpreting
UAVs actions based on their motions. The authors’ proposed hardware consists of an array
of individually addressable color LEDs mounted underneath a UAV on a circular fixture,
providing a 360◦ viewing angle. Szafir et al. designed four different animated signals to
communicate the UAV’s planner motions to the user as well as its transition to and from
hovering. These signals are named blinker, beacon, thruster and gaze. Figure 2.26a shows
how these signals change over time for a particular planner trajectory. Figure 2.26b shows
a snapshot of the physical implementation of these signals on an AR-Drone quadrocopter.

In a user study with 16 participants, the authors asked each participant to observe a UAV
flying in close vicinity and mark if the UAV is flying to a predefined set of target locations
correctly. The participants were unaware of the real intent of the study and the existence
of the light feedback. The UAV would randomly fly to a wrong target location in each trial
while always communicating its next [true] flying direction 300 milliseconds in advance.
The study was designed to see the effect of four designed signals on speed and accuracy of
each participant performing the monitoring task compared to the baseline (no feedback).
The results show that the participants noticed the feedback design and recognized that
it conveys robot’s intent. They also indicate that all signaling methods (except beacon)
significantly improved the performance results over the baseline. Qualitatively, participants
found the robot’s communication clear and intuitive. More specifically, the users rated
blinker as highly intuitive and thruster as less intuitive. They also felt confident about their
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understanding of the robot’s direction when the UAV used the gaze, thruster and blinker
signals to communicate its direction. Under all four signal designs, the users perceived the
UAV as a collaborative partner in a work environment, however they felt that the UAV
made their task easier, compared to the baseline, only when it was communicating through
blink and gaze signals.

2.3 Approach and Repositioning in Human-UAV Interaction

In the previous section we provided a few examples in which motion based feedback is
utilized for communication of intents and affects from UAVs to their interaction partners.
However this is not the only case where the movement or location of a UAV might be
controlled in a Human-UAV interaction setting. In application domains such as search and
rescue, personal photography, goods transportation and personal training the position or
flight trajectory of the UAV can be controlled to facilitate further interaction or to fulfill
the application goal. As an example, when the interaction is initiated by a human in need
in a search and rescue scenario, the UAV approaches the human to provide her with a
tele-presence link to first responders or to deliver medical aid. Another notable example
is a personal filming drone which approaches and/or follows an athlete after interaction
initiation or upon receiving a command from its interaction partner.

In general, solutions for tracking and following humans by mobile robots consist of two
main components: A human localizer component which continuously estimates the location
of the target human with respect to the robot and a control scheme. The controller 22

steers the robot to follow, track or approach the user given the location of the human and
constraints imposed by the environment and the robot platform (i.e. kinematic and dynamic
constraints).

Similar to the discussion in Section 2.2.2, one can either instrument the user or use
external sensing devices to facilitate the human localization task, or use embodied sensing
and direct methods to localize humans with respect to a robot. There exists many examples
of Human-Ground Mobile Robot interaction systems that use embodied sensing to track and
follow uninstrumented people (e.g. [9,64,80,124,139]). This is not the case for Human-Flying
Robot interaction systems. In addition to the relatively young age of this field of research,
the limited payload capacity of many consumer/research UAV platforms limit the type
and fidelity of sensors and computing devices that these platforms can carry which in turn
makes the task of human detection and localization more difficult. We provided a survey
on challenges and methods related to employing human feature detectors on-board UAVs
(in the context of interaction initiation) in Sections 2.2.1.1 and 2.2.1.2. This is the reason
that many consumer UAVs rely on GPS or inertial-based tracking devices carried by their
users (also known as virtual tethers) to perform person following and tracking. Example

22We use the term controller here as a general term that refers to both planners and reactive controllers
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consumer UAVs that use virtual tethers to follow people include Solo by 3D Robotics23,
Hexo+24, AirDog25 and Lily26.

As our survey in Sections 2.2.1 and 2.2.2 indicates, computer vision techniques that use
monocular or depth sensing cameras are the most common techniques used by researchers
for interaction initiation and communication of intents in situated and direct Human-UAV
interaction systems. In systems that use pedestrian detectors to initiate the interaction,
it is possible to directly use the location of the detected human in the image plane as
an input to the tracking controller. However pedestrian detectors (like any vision-based
object detectors) are prone to false positives and false negatives. A common approach used
in practical systems to overcome the shortcomings of pedestrian detectors is to employ
visual trackers to track the location of the human once detected. In Human-Flying Robot
interaction systems, using this approach provides a major benefit. Regardless of which
interaction initiation method is used by the system, the visual tracker can track the location
of the target human after the interaction is initiated. In the remainder of this section we
survey related work on uninstrumented human tracking with UAVs. Later on, in Chapter 5
we show how we integrate a state of the art visual tracker into our approach controller to
bring a flying robot to close proximity of a user once the interaction is explicitly initiated.

Tracking and approaching humans with UAVs using vision-based perception can be
considered as a special case of visual target detection and tracking with UAVs. In a re-
cent comprehensive survey on navigation and control of unmanned rotor-craft systems,
Kendoul [85] categorizes research projects related to application of visual target detection
and tracking for unmanned rotor-craft systems as (i) vision-based landing on a known tar-
get; (ii) vision-based landing on an unknown target; (iii) vision-based static target tracking;
(iv) vision-based mobile target tracking; (v) target tracking for automatic landing; (vi)
horizontal target approach; and (vii) moving ground target tracking.

From these categories (i), (iii) and (vi) are closely related to the approach and repo-
sitioning components of end-to-end Human-Flying robot interaction systems. A common
practice for designing systems to perform automatic landing or static target tracking is to
use predefined targets (or helipads in case of landing) to facilitate the visual state estima-
tion process. This way the position (with metric scale) of the UAV can be recovered with
respect to the target using a monocular camera. The automatic landing systems of Saripalli
et al. [159], Shakernia et al. [162], Yang et al. [190] and Ling et al. [98] are notable examples
of systems that fit this category. For Human-Flying Robot Interaction systems that em-
ploy human feature detectors this approach can be used to design tracking or approaching
controllers. Compared to a specifically crafted target, a bounding box in the image plane
returned by a human feature detector or a visual tracker provides fewer constraints for

23https://3dr.com/follow-me-mode/
24https://hexoplus.com/
25https://www.airdog.com/
26https://www.lily.camera/
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Figure 2.27: A sample sequence from Pestana et al. [134, 135]’s experiments where an
AR-Drone 2.0 quadrocopter followed a pre-selected human for 45 seconds covering 120-140
meters of distance ( c© 2013, IEEE)

recovering the pose of the UAV with respect the user. Therefore practical systems usu-
ally impose some simplifying conditions or assumptions about the environment or target
to overcome this issue. We provide some examples of these assumptions in the context of
Human-UAV interaction systems in the remainder of this section as well as in Chapter 5.

To facilitate the state estimation and control of the UAV while landing on (or tracking)
an object, control systems might also fuse other sources of information (such as inertial or
GPS) with the data obtained from a vision system (e.g. Proctor and Johnson [144] and
Hermansson et al. [74]). This is also a viable approach for control systems designed for
tracking or approaching humans in Human-UAV interaction systems.

The special case of approaching a human from distance as part of a Human-Flying
Robot Interaction scenario is similar in nature to the horizontal target approach category.
However, it must be noted that despite many similarities between these categories, approach
to a horizontal target is more challenging, specifically when a monocular camera is used.
This is due to the fact that landing targets are usually placed on the ground level which
makes it straightforward to use the estimated altitude of the UAV directly as the depth
(distance) of the object. Recovering the depth of an object which is positioned freely with
respect to the UAV using a monocular camera without any prior on the target size or
configuration is not possible. Without proper depth estimation (or approximation) safe
and smooth approach towards a human is not feasible.

Pestana et al. [134,135] designed an Image Based Visual Servo (IBVS) controller for the
task of tracking (following) user-defined objects using a low-cost consumer quadrocopter.
The user first defines the region of interest on the video feed streamed by the UAV. The
system then uses the Tracking-Learning-Detection visual tracker of Kalal et al. [82] to track
the location of the selected object on the image plane while refining its appearance model
over time. The location and size of the tracked object in the image plane is the input to
the IBVS controller. The controller’s task is to keep the object in the center of UAV’s
field of view and fly at a fixed distance with respect to the object. The authors use the
normalized size of the object as an approximation for its depth and propose a heuristic
decoupling strategy that uses the pitch and yaw angles of the UAV and intrinsic parameters
of the camera to map image-based error vectors to the four controllable degrees of freedom
of the quadrocopter. Four Proportional-Derivative (PD) controllers generate the reference
velocity vectors for the on-board flight controller to track. In a series of demonstrative
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Figure 2.28: Sequences from Haag et al. [69]’s long-term human following demonstrative
experiments using an AR-Drone 2.0 quadrocopter ( c© 2015, IEEE)

experiments27 in outdoor settings, the authors showed how their system could track moving
objects including people. For the task of people following, the operator would select the
logo on the t-shirt of the user for the controller to track (Figure 2.27).

Haag et al. [69] modified this system and replaced the short-term tracking component
of the TLD tracker with a state of the art correlation based visual tracker - with further
improvements to the long-term tracking component - to achieve long-term human following
by a quadrocopter in outdoor settings. In at least one of their demonstrative experiments,
the UAV could follow a human jogging in a forest for 10 minutes (Figure 2.28). We inte-
grated this long-term visual tracker in our end-to-end flying robot interaction system. We
will provide more details about this tracker in Section 5.3.3.

The most recent example of a person following system in Human-UAV interaction is the
active vision framework of Danelljan et al. [39]. The goal of this system is to implement
a human following behavior on-board a quadrocopter equipped with a monocular camera.
Unlike the previous two papers, in this system a HOG based human detector (ref. Sec-
tion 2.2.1.2) is used to implicitly initiate the interaction (behavior). The authors propose
to combine the output of the human detector with a visual appearance-based tracker and a
probabilistic multi-object tracker. This is to improve the robustness of the system against
false positives/negatives and to keep the focus of attention on the same person in cases
where multiple people are in the field of view. Danelljan et al. also propose a depth esti-
mation method based on the following assumptions (i) the size of pedestrian is known and
(ii) the ground plane is flat. Given the size of the object, the height of the camera (UAV)
from the ground plane and the tilt angle of the camera, they propose a formula to recover
the distance of the target pedestrian to the camera. The method and the assumptions
are conceptually similar to the method we propose for depth estimation in the end-to-end
Human-Flying Robot Interaction system which we describe later on in Section 5.3.4.1. The
authors use a Bayesian filtering approach to estimate the position and velocity of the tar-
get. These estimates are fed into a so-called leashing control module to generate reference

27Video, code and dataset available at http://robotics.asu.edu/ardrone2_ibvs/
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velocities for the on-board flight control. This controller calculates a waypoint on the line
connecting the UAV to the target at the desired following distance, then uses a proportional
controller to generate desired reference velocities for linear and yaw degrees of freedom of
the quadrocopter. In a series of indoor demonstrative experiments, the authors validated
their leashing controller.

It is worth mentioning that none of the aforementioned state of the art uninstrumented
human following systems with UAVs ( [39,69,135]), report the number of conducted exper-
iments, their failure rates and quantitative data about the performance of their systems.

2.4 Conclusion

In this chapter, we surveyed the state of the art in Human-Flying Robot Interaction. We
first studied human factors and interface design for remote interaction with UAVs in Sec-
tion 2.1. As discussed in that section, the level of shared autonomy in various control loops
of an Unmanned Aerial System directly affects the cognitive load and effectiveness of its op-
erators. We also discussed two major strategies for managing the level of shared autonomy
in such systems: Management by Consent and Management by Exemption. Furthermore,
we studied how different paradigms for presenting information in remote interaction systems
can affect the performance of their operators and surveyed related work on ground control
station designs for remote interaction with UAVs.

In the next section (Section 2.2), we focused on situated, embodied and natural interac-
tion with UAVs. We introduced the main motivations for such interaction schemes, example
application domains and a concrete example scenario. We broke down proximate interaction
with UAVs into three components for initiating the interaction, approach and repositioning
and communication of commands from humans to UAVs and communication of intent and
states from UAVs to a human. We surveyed implicit interaction initiation methods through
human feature detection and related human detection techniques in Section 2.2.1. As our
survey shows, visual sensors are the most popular sensor on-board UAVs to detect humans.
We also noticed that, most of the practical interaction systems that incorporate human
detectors, utilize focus of attention techniques to reduce the computational load of human
detectors. We then studied the literature on explicit interaction initiation methods through
moving object detection in Section 2.2.1.3.

We introduced notable human studies that deal with effective natural and embodied
communication of intent from humans to UAVs in Section 2.2.2.1. Defining gesture vocab-
ularies, efficient interaction modalities and natural interfaces were the focus of the papers
surveyed in that section. We then surveyed the rather sparse literature on practical sys-
tems for embodied and natural communication of intent and commands from humans to
flying robots in Section 2.2.2.2. We introduced practical systems and human studies that
focus on efficient communication of intent from UAVs to humans through motion decompo-
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sition or visual feedback in Section 2.2.3. Finally in section 2.3 we provided an overview of
challenges associated with approach and repositioning in Human-Flying Robot Interaction
and surveyed the few practical systems that enable a flying robot to follow an uninstru-
mented human. All three survyed systems operate in relatively close-range to people and
use implicit interaction initiation to trigger the behavior.

In general, none of the surveyed systems fully demonstrate an integrated system that
implements all three phases of Human-Flying Robot Interaction, thus can not be considered
as end-to-end interaction systems (cf. Definition 1). Table 2.2 summarizes the most promis-
ing works from the state of the art and how close they come to implement an autonomous
end-to-end Human-Flying Robot interaction system. As it is shown in this table, each sys-
tem lacks one or more components of an end-to-end interaction system. Furthermore, none
of the related work implement an explicit interaction initiation method. This is particu-
larly important since in many of the application domains, the presence of a human does
not necessarily mean that the human intends to interact with the UAV. Even in domains
where implicit interaction initiation through human/face detection is acceptable, one needs
to consider cases where multiple human/faces might be in the UAV’s field of view. Given
the state of the art, we see an opportunity to push it towards more realistic Human-UAV
interaction scenarios such as in outdoor (natural) environments and over longer distances
(> 10m).

In the following chapters we describe our methods to perform explicit interaction initia-
tion with a flying robot using a monocular camera (Chapter 4), selecting and commanding
teams of UAVs using gaze and gestural commands from close-range (Chapter 3) and our
end-to-end interaction system that combines those two components with a cascade approach
controller and light based feedback (Chapter 5) which works in outdoor environments over
distances up to 25m.
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Naseer et
al. [125]

Nagi et
al. [122]

Lim and
Sinha [96]

Danelljan
et al. [39]

Our goal

Year 2013 2014 2015 2015 -

Interaction
Initiation

Implicit
(Person
Detection)

Implicit
(Person
Detection)

Implicit
(Ped.
Detection)

Implicit
(Ped.
Detection)

Explicit

Approach No No No No Yes

Reposition-
ing

Yes (4
DOF)

Yes (4
DOF)

Yes Yes Yes

Commands
to UAV

Hand
gestures

Hand
gestures

No No Hand gestures

Feedback to
Human

No Yes (low
bandwidth)

No No Yes

Non-
instrumented

Yes No Yes Yes Yes

Embodied
Sensing

Yes Yes Yes Yes Yes

Autonomous Yes Yes No Yes Yes

Long-range
Interaction
(>10m)

No No No No Yes

Main sensor RGB-D
Cam.

Mono.
Cam.

Mono.
Cam.

Mono.
Cam.

Mono. Cam.

Tested
environment

Indoors Indoors Outdoors Indoors Outdoors

Table 2.2: Comparison of state of the art in situated and end-to-end interaction with flying
robots with the goals of this thesis
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Chapter 3

Close-range Situated Interaction
with a Group of Flying Robots
through Face Engagement and
Hand Gestures
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The work in this chapter represents the first demonstration of a close-range Human-UAV
interaction system that enables an uninstrumented human to create, modify and command
teams of flying robots. To create a team and to initiate the interaction with a UAV, the
user focuses attention on an individual robot by simply looking at it, then adds or removes
it from the current team with a motion-based hand gesture. Another gesture commands the
entire team to begin task execution. Robots communicate among themselves by wireless
network to ensure that no more than one robot is focused, and so that the whole team
agrees that it has been commanded. Since robots can be added and removed from the
team, the system is robust to incorrect additions. A series of trials with two and three very
low-cost UAVs and off-board processing demonstrates the practicality of this approach.

3.1 Introduction

Selecting and commanding individual robots in a multi-robot system can be a challenge: in-
teractions typically occur over a conventional on-screen human-computer interface (e.g. [104]),
or specialized remote control (e.g. [37]). Humans, however, can easily select and command
one another in groups using only eye contact and gestures. In this chapter we work towards
a direct communication method for human-UAV interaction. In particular we avoid the
need for the human to be instrumented in any way, and all interaction is mediated by the
robot’s on-board sensing and actuation.

The method we introduce here is an extension of the work by Couture-Beil et al. [32]
that uses face engagement to select a particular robot from a group of robots. In that
system, once selected, a single robot engaged in one-on-one interaction with the user. In
this chapter we compose a multi-flying robot team from the population of flying robots by
adding or removing the currently selected robot, then command the whole team at once.
Couture-Beil et al. used wheeled mobile robots which were stationary for the human-robot
interactions. In this chapter we use flying quadrotor robots which are continuously moving.
The constant movement of cameras attached to flying robots make the problem of vision
mediated human robot interaction much more challenging.

The contributions of this chapter are: (i) the first demonstration of HRI control of a
flying robot by an uninstrumented human using only passive computer vision; (ii) the first
demonstration of dynamically creating and modifying robot teams by an uninstrumented
human; and (iii) the first demonstration of interaction initiation with a flying robot by
face-engagement.
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Figure 3.1: An uninstrumented person creates and commands a team of three UAVs using
face-engagement and hand gestures

3.2 Background

Throughout this chapter, we will use the term face engagement, as coined by Goffman [65],
to describe the process in which people use eye contact, gaze and facial gestures to interact
with or engage each other.

3.2.1 Gaze and Gesture in Human Robot Interaction

Researchers have argued that exploiting stereotypical communication cues (without instru-
mentation) can achieve natural human-robot interactions [50]. Gaze and body movements
(gestures) are two such communication cues.

There is a large literature on gaze tracking techniques; Morimoto and Mimica provide
an in-depth survey [115]. Applications of gaze trackers can be found in fields ranging from
psychology to marketing to computing science; many interesting examples are given in the
survey provided by Duchowski [49].

In an experiment by Mutlu et al. [118], gaze is used to regulate conversations between,
a humanoid robot, and two human participants. The study showed that (among other
things) gaze was an effective tool for yielding speaking turns and reinforcing conversation
roles. Kuno et al. [92] present a museum tour-guide that only responds when directly looked
at. A telephoto lens is used to capture a high quality image; the robot then estimates if
the user is looking at it by detecting if the nostrils are centered between the eyes. Couture-
Beil et al. [32] showed that this method can be extended to select individual robots from a
population by using explicit wireless communication between robots to perform a distributed
election algorithm to unambiguously decide which robot (if any) was being looked at directly.
Since the election is completed in a few tens of milliseconds and is essentially imperceptible
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to the user, the user’s experience is simply that as you look from robot to robot, the selected
robot is always “the one I am looking at right now”. In the following sections we show that
this method is also effective for flying robots.

We briefly introduced major computer vision-based gesture recognition techniques in
Section 2.2.2.2. Several gesture-based robot interfaces exist; we do not attempt to provide
an exhaustive survey, but rather mention some interesting examples. Systems may use
static gestures – where the user holds a certain pose or configuration – or dynamic gestures
– where the user performs a combination of actions. Waldheer et al. use both static and
motion-based gestures to control a trash-collecting robot [183]. Earlier work by Kortenkamp
et al. presents a mobile robot that uses an active vision system to recognize static gestures
by building a skeleton model of the human operator; a vector of the human’s arm is used
to direct the robot to a particular point [89]. Giusti et al. [63] demonstrated how a swarm
of mobile robots can cooperatively detect a static human gesture and act upon it.

We use simple motion-based gestures to issue commands to robots once they have been
selected using face-engagement.

3.2.2 Robot Selection And Task Delegation

There is little work on human-robot interfaces for multi-robot systems. Examples can be
broken up into two general cases:

3.2.2.1 World-Embodied Interactions

World-embodied interactions occur directly between the human and robot, through either
mechanical or sensor-mediated interfaces. Key advantages of this approach compared to a
conventional Graphical User Interface (GUI) include the possibility for users to walk freely
among the robots rather than being tied to an operator station. Also since robots observe
humans directly using their on-board sensing, they may not need to localize themselves in a
shared coordinate frame. Examples include work by Payton that uses an omni-directional
Infrared (IR) LED to broadcast messages to all robots, and a narrow, directional IR LED to
select and command individual robots [37], work by Naghsh et al. [120] who present a similar
system designed for firefighters, but do not discuss selecting individual robots, and work by
Zhao et al. [193] which proposes the user leaves fiducial-based “notes” (e.g. “vacuum the
floor” or “mop the floor”) for the robots at work site locations. Xue et al. [188] introduced
a fiducial design for imperfect visibility conditions and combined them with user-centric
gestures.

3.2.2.2 Traditional Human-Computer Interfaces

Rather than interacting directly with robots, a traditional human-computer interface is
used to represent the spatial configuration of the robots and allow the user to remotely
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interact with the robots. Examples of human-robot interactions which occur through a
traditional interface include work by McLurkin et al. [104] that presents an overhead-view
of the swarm in a traditional point and click GUI named “SwarmCraft”, and work by
Kato that displays an overhead live video feed of the system on an interactive multi-touch
computer table, which users can control the robots’ paths by drawing a vector field over
top of the world [84]. Similar to Zhao et al.’s fiducial-based notes [193], Kolling et al. [88]
designed a user interface that allows the operator to place virtual beacons in a simulated
robot environment.

3.2.3 Human Robot Interaction with UAVs

Traditional human computer interfaces have been used extensively to design control in-
terfaces for single [30, 33, 103] and multiple [133] UAVs. Uninstrumented interfaces have
also been used to interact with UAVs. Song et al. [171] describes a method for recognizing
aircraft handling signals from depth data, and tested their method on a database of videos
collected from a stationary (non-airborne) camera. Lichtenstern et al. [95] describe a pro-
totype system in which gestures directed at one UAV carrying a Kinect (active RGB-D)
sensor can be used to control other UAVs. Jones et al. [77] performed a user study to
investigate how different modalities can be used to control a swarm of simulated UAVs in
a virtual reality environment. Naseer et al. [125] developed an autonomous system that
enables a single quadrocopter to follow a human and respond to hand gestures using active
RGB-D sensor with vision-based ego-motion cancellation.

Our method is different from the aforementioned works due to our use of vision-based
gestures (obtained from a passive monocular camera) to select and command a team of
airborne UAVs. Now that affordable UAVs are available we expect this area to grow rapidly.

3.3 Method

To demonstrate our approach, we use a group of unmodified AR-Drone 2.0 quadrocopters1.
These inexpensive aircraft have a built-in attitude controller and a forward-facing 720p HD
camera. Video from the camera and flight control data are streamed via 802.11 wireless
network to a control computer. A practical challenge when using this setup is that all
user software is run externally and is therefore subject to large network delays: we observe
around 200 milliseconds end-to-end latency. Engel et al. [54] have shown that it is possible
to explicitly model the communication delay and use monocular Simultaneous Localization
and Mapping (SLAM) to accurately navigate a single quadrocopter. Another successful
position controller is presented by Krajník et al. [90]. They determined the drone’s dynamic
model and implemented a PID controller that would hover the drone over a mobile target,

1http://ardrone2.parrot.com/
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Figure 3.2: System overview, the dashed box (right) wraps the components that run on a
laptop, the remainder (left) runs on-board the aircraft. Components in gray (lower right)
are custom developed for this work, while third party modules with small adaptations are
marked in white.

tracked by the downward facing camera. We use only the forward facing camera for HRI
and localization, since the platform does not permit simultaneous streaming from both
cameras.

Next we describe our approach, with an overview shown in Figure 3.2.

3.3.1 Position Estimate and Control

While the AR-Drone 2.0 is capable of generating 720p video streams, we use a lower reso-
lution to save wireless channel bandwidth and allow us to use multiple robots. We exper-
imented with two different 3D pose estimation methods for the robots: fiducial based and
salient feature based. The fiducial based method uses the ALVAR library [182] to track the
drone’s position (x, y, z, φ, θ, ψ)T relative to fiducials mounted at known locations in the
environment. Here x, y, z is the 3D location in the world frame and φ, θ, ψ are roll, pitch
and yaw (heading), respectively. The feature-based method employs the Parallel Tracking
and Mapping (PTAM) monocular SLAM system [87] to estimate each robot’s pose. We
use an Extended Kalman Filter (EKF) to fuse the vision based position estimate with iner-
tial measurements from the drone’s flight control computer to improve the accuracy of the
estimated pose.

When robots use the fiducial based method, they are localized in the global coordi-
nate frame, which makes the multi-robot formation control straightforward. However, this
method is sensitive to fiducial occlusions. The feature-based method on the other hand is
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Figure 3.3: Face detection is used to locate the user, and to select the currently focused
robot. Hand gestures change the state of the focused robot. This image is from the flying
robot’s point of view. The gesture detection regions are marked by a rectangle. (The
stabilized optical flow magnitude’s heat map is blended into the image.)

more robust to occlusions. However, the coordinate frame and scaling of pose estimates are
not defined with respect to the world and depend on the PTAM initialization phase. Our
system uses the method introduced in [54] to perform scale estimation using EKF. In our
system, all robots use the same recorded video of the environment for PTAM initialization,
and thus they all agree on the initial coordinate frame.

To control each drone, the position estimate and the 4-DOF target position (xT , yT , zT , ψT )T

are fed into four independent PID controllers, one for each directly controllable degree of
freedom. The control output is then sent via the wireless network to the drone. In prac-
tice we find that this approach works well as long as there is sufficient distance (> 3m)
between any two aircraft. When drones are too close together, turbulence from the down
draft causes the drones to pitch and roll rapidly in an attempt to maintain their position,
and the camera cannot be kept on-target for HRI. This fast movement cannot sufficiently
be tracked by our position controller because of the network delay. We avoid this issue by
enforcing a minimum distance of 3m between aircraft.

3.3.2 Face Detection and Tracking

To locate and track faces in the video stream, we use the OpenCV [21] implementation of
the Viola-Jones [179] face detector. Because of the often rapid ego-motion of the airborne
camera we might lose a detected face or detect several false positives. We address this prob-
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Figure 3.4: Optical flow in the left and the right hand zone; the top graph shows the
unfiltered optical flow and the bottom graph shows the output of our multi-stage filter.
Sections marked in green (left) correspond to left hand gesture, periods of both hands
gesture are colored blue (right).

lem by using a Kalman Filter to smooth face position estimates. We use a nearest neighbor
data association strategy to determine which detected face to use as the measurement input,
using a Mahalanobis distance derived from the estimated covariance of candidate faces.

Information about the tracked face is used in two subsequent modules: first to partially
cancel image flow due to ego-motion as described in the next section, and second to deter-
mine if the user is engaging in an interaction with the robot. Our HRI attention-focusing
strategy is to engage one robot at a time out of the group by simply looking at it. Sub-
sequent commands are addressed to the engaged robot. The challenge for the robots is to
determine which robot is currently being looked at, as the user’s face might be visible to
several robots at the same time. As we mentioned earlier, we use a mechanism developed
and successfully used earlier by Coutuere-Beil et al. [32]. The face detector is trained on
frontal faces only, and we observe that the largest number of candidate face detections occur
when the face is looking directly at the camera. Since the face detector is insensitive to small
changes in scale or position, multiple candidate detections are often clustered around faces.
We use the number of candidate detections in each cluster as a score to assess the quality of
the detected face. To determine which robot sees the most frontal face, the robots perform
a distributed election, each proposing their currently observed face score. If no robot has
a score above a threshold, no robot is engaged, otherwise the robot with the highest score
is the one being engaged by the human. Only the currently engaged robot will watch for
gestural commands.
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3.3.3 Motion Cancellation and Gesture Recognition

The system uses the magnitude of optical flow in fixed regions around the user’s face to
detect hand-wave gestures. In order to have reliable optical flow information, motion from
sources other than user’s hand movement in the video stream should be filtered out. We
have to deal with three sources of motion in our video stream. The first is the motion of
the camera caused by the motion of the aircraft stabilizing its attitude and controlling its
position. The second is caused by user movements other than gesturing, and the third is
a result of the hand gestures used to command the vehicle. The objective is to cancel the
first two while not damping the gesture motion.

For motion cancellation and gesture recognition we define three zones in the image. The
face zone is a bounding box around the face currently being tracked. The left and right
hand zones are rectangles to the left and right of the face box respectively as shown in
Figure 3.3. The size of the left and right zones is proportional to the size of the face zone.
The hand zones are cropped if any of their corners exceed the image boundaries. This will
happen when the human face is towards the edges of the image.

In the first step we mask all pixels in the hand zones to preserve the optical flow caused
by waving the hands. We then calculate optical flow in the remainder of the image using
the OpenCV [21] implementation of Franebäck’s algorithm [56]. The median of this optical
flow is an approximation of the ego-motion of the camera, which we can now remove from
the original image.

Next, using the camera-motion-reduced image, we estimate the motion of the user by
computing the median of the optical flow in just the face zone. The assumption is that
motion of the face is a reasonable proxy overall non-gesture body motion. By removing the
estimated user motion from the image we are left with an image that contains mainly the
flow resulting from the gestures. The process is illustrated in Figure 3.4.

In the last step we average the magnitude of optical flow within the hand zones. For
robustness to transient flow, the resulting signal is passed through a median filter with a
window size of 15 frames. By thresholding the result we can detect left and right hand
waving. This gives us a total of 4 states: no wave, left wave, right wave and two-hand wave.
These gestures are then used by the behavioral module to command the aircraft.

3.3.4 Commanding the Vehicle

The user commands a robot by first engaging it (by looking at it) and then giving it one
of the three gestures. A right hand wave means join the group. A robot that is part of
the group increases its hover altitude by 0.2m. A left hand wave is the command to leave
the group, consequently the aircraft returns to the original altitude. Waving both hands
is the signal for the entire group to execute a mission. Note that only one robot has to
be given the command to execute the mission; it will communicate this instruction to the
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Figure 3.5: Flowchart outlining the decision tree for the robot’s behavior.

others over the network and the group acts as one. In our demonstration the “mission”
is either to land or perform a complete roll (flip) in place. These simple missions are a
placeholder for a real mission such as search, patrol, mapping, etc. (In Section 3.4.3 we
present demonstration of an autonomous UAV exploration system in which we use this
interface to initiate the exploration mission). The robots also change the color and blinking
frequency of their built-in LEDs to report their current state (being engaged or selected as
part of the group) to the user. Informally, we found this direct feedback helps the user in
the interaction process.

The flowchart of the controller is shown in Figure 3.5. We trigger take-off manually.
Each aircraft, once airborne, autonomously flies to its predefined target location and tries
to detect faces. If a face is detected as described above, the position controller tracks the
face by steering the nose of the aircraft in the direction of the face. This is to ensure that the
face is always in the middle of the image. This is not only a feedback mechanism to the user,
but also keeps the hand zones from being cropped. Next, the face scores are communicated
to all robots by wireless network. If a robot wins the face score election, it considers itself
engaged by the user (hence the interaction is initiated) and accepts hand gestures. Left or
right hand gestures set or clear a “belong to group” flag. If the execute command gesture
is detected, the command is passed on to all other aircrafts via the wireless network. An
aircraft receiving the execute command and belonging to the group will now execute the
mission, i.e. land. The remaining aircraft stay airborne and wait for a user engagement.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Snapshots from a three robot experiment, in which a user is commanding three
quadrocopters (Table 3.1).

3.4 Demonstration

To demonstrate this system, we performed two sets of trials with a group of flying robots
and a human. All trials were performed by one expert user2. The arena is a 8 × 10 × 3m
indoor lab environment clear of any static obstacles, shown in Figure 3.1. At startup, each
robot is placed at a predefined position on the ground. During each trial, the robots take-off
after receiving an external signal, then fly to their predefined target poses (xT , yT , zT , ψT )T .
The main difference between two sets of experiments are the position estimation method
used for each experiment and the number of participating robots.

3.4.1 Three-Robot Experiment with Marker-Based Localization

In our first experiment, we used the fiducial based position estimation method as described
in section 3.3.1. Six unique 50×50cm ALVAR 2D tags were mounted on the wall behind the
user as input to the ALVAR localization system. Due to low accuracy of heading estimates
when the robots are looking at the fiducials with steep angles, initial poses for robots were
set such that they look directly towards the fiducials. This led to a linear initial formation
as shown in Figure 3.1. As a result, the human usually needs to walk along the wall into
a robot’s field of view first to get its attention. Once a face is seen by a robot, it yaws to
track the face as described in section 3.3.2.

Fifteen trials with a total of 82 scripted interactions were executed. Table 3.1 summarizes
the results. Robots were indexed from 1 to 3. In the table, the Scenario column contains
a list of the interactions attempted by the user. Si, Di and Ci mean issue the Select (add
to team), Deselect (remove from team) and Command (execute mission) gesture to the

2Video demonstration: https://youtu.be/xHH3GvZ52xg
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Trial Scenario Gesture Face Success
1 S1 S2 C1 3/3 3/3 Yes
2 S1 S2 C3 C2 4/4 4/4 Yes
3 S1 S2 S3 C3 4/4 4/4 Yes
4 S1 S2 D1 C2 4/4 4/4 Yes
5 S2 S3 D2 C2 C3 2/5 5/5 No
6 S2 S3 S1 D2 C3 5/5 5/5 Yes
7 S3 S2 S1 D2 C3 5/5 5/5 Yes
8 S2 S1 S3 D3 C2 4/5 5/5 No
9 S2 S3 C1 S1 C1 5/5 5/5 Yes
10 S1 S2 S3 D1 D2 C3 6/6 6/6 Yes
11 S1 S2 D1 D3 C2 S1 C1 6/7 7/7 No
12 S1 S3 D1 S2 C3 S1 C1 6/7 7/7 No
13 S3 S2 S1 D1 D2 D3 C2 7/7 7/7 Yes
14 S3 S2 S1 D2 D3 C2 C1 7/7 7/7 Yes
15 S2 S3 D2 S1 D3 D1 S3 C3 7/8 8/8 No

Total 75/82 82/82 10/15

Table 3.1: Result summary for three robot experiment, Si, Di and Ci mean issue the
Select, Deselect and Command gesture to the ith robot. Unintended outcomes are marked
by overstrikes.

ith robot, respectively. Unintended outcomes are marked by overstrikes. A trial with any
unintended outcome is deemed to be unsuccessful. The ratio of successful to overall trials
was 10/15. The success rate of individual interactions was 75/82.

To summarize the robot system behavior, we recorded each robot’s altitude for the
length of the trial. Figure 3.7 shows such a graph for experiment number 7. The script was
to select robot 3, select robot 2, select robot 1, deselect robot 2, then command robot 3 to
land. The plot shows the altitude of robot 3 is increasing at around 25 seconds, followed
by robot 2 at around 30 seconds and 1 at 40 seconds, as each joins the team. The altitude
of robot 2 decreases at around 45 seconds as it leaves the team. Robots 1 and 3 land at 60
seconds, while robot 2 remains hovering, as required by the trial script.

3.4.2 Two-Robot Experiment with Feature-Based Localization

In a second set of experiments we used the monocular SLAM-based pose estimation method.
The main motivation was to let the robots create a formation in which they initially look
at the same spot in the room. We could not arrange this with the ALVAR-based system as
the robots needed to face directly towards a fiducial to maintain a stable hover. With the
monocular SLAM method, this restriction is lifted and the user can stand on one spot and
just look from robot to robot without moving in and out of the robots’ field of view. The
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Figure 3.7: Plot of smoothed robot altitude over time during trial #7 (Table 3.1). Dotted
vertical lines show the time that a specific gesture was performed. Select (Si) adds robot
i to the team, Deselect (Di) removes robot i from the team. Team members hover 0.2m
higher than non-team members. The Execute command (Ci) makes the team land.

other benefit of this method is that there is no need to instrument the environment with
fiducial markers.

This system has its own limitations though. The PTAM system is not able to track
the position of the robot well when the camera motion is mainly rotational. This situation
happens when the robot is tracking the human’s face while hovering close to its target
position. We found empirically that to avoid this situation, the change in heading of the
robot should be small while performing stable hovering and face tracking. This means
that, as the heading angle of the robot with respect to human increases, the distance
between human and the robot should increase. This new constraint, in addition to the
minimum distance constraint discussed in 3.3.1, meant that we only had space for a two-
robot experiment in our lab.

We performed a total number of 10 scripted trials with two drones. Table 3.2 summarizes
the results. The ratio of successful to unsuccessful trials was 8/10. The success rate of
individual interactions was 43/45. Figure 3.8 shows the snapshots of trial number 8.

3.4.3 Integrating Multi-Modal Interfaces to Command UAVs

In this section, we present an integrated human-robot interaction system that enables a user
to select and command a team of two Unmanned Aerial Vehicles (UAV) using voice, touch,
face engagement and hand gestures. This system integrates the close-range Human-Flying
Robot interface that we introduced in this chapter with the “Touch-to-Name” interface of
Pourmehr et al. [141] and “Feature-rich path planning algorithm” of Sadat et al. [156] and
use it in a coherent semi-realistic scenario. The task of the UAVs is to explore and map a
simulated Mars environment.

70
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Figure 3.8: Snapshots from a two robot experiment, in which a user is commanding two
quadrocopters (Table 3.2).

(a) (b) (c)

Figure 3.9: The touch-to-name interaction interface of Pourmehr et al. [141] used for in-
teraction initiation during the multi-modal integrated demonstration (Section 3.4.3). (a)
The user first announces the desired number of robots with “You” or “You N” where N is
the desired number of robots (b) The user then handles the intended robot(s) (c) The user
finally assigns a name to the selected robot(s) that can subsequently be used to address this
robot or team.

To initiate the interaction (mission), the user needs to select a robot. To do this, we
used the “Touch-to-Name” selection and naming interface of Pourmehr et al. [141]. In this
method, the user first announces the desired number of robot(s) (e.g “You” or “You Two”),
then gently moves the intended robot(s) iteratively. Robots compare their accelerometer
readings over Wi-Fi to agree on which one is selected (Figure 3.9).

Once selected, the user names the selected robot using verbal commands (e.g “You are
Green”). These names are then used to command the robots (e.g. “Green Takeoff”) [142].
Here, we use this interface with maximum group size set to one.

After taking off and while hovering, the flying robot uses the method described in this
chapter to detect and track the user’s face, maintain its yaw and respond to her hand
gestures. A hand wave gesture (left or right) assigns an exploration task to the robot in the
indicated direction.
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Trial Scenario Gesture Face Success
1 S1 S2 C1 3/3 3/3 Yes
2 S1 S2 C2 3/3 3/3 Yes
3 S1 S2 D1 C2 4/4 4/4 Yes
4 S1 S2 D2 C2 C1 4/5 5/5 No
5 S1 D1 S2 C2 4/4 4/4 Yes
6 S1 D1 D2 S2 C1 4/5 5/5 No
7 S2 S1 D2 D1 S2 C2 6/6 5/5 Yes
8 S1 S2 D2 S2 C2 5/5 5/5 Yes
9 S1 S2 S1 C2 4/4 4/4 Yes
10 S1 S2 D2 D2 S2 C1 6/6 6/6 Yes

Total 43/45 45/45 8/10

Table 3.2: Result summary for two robot experiment. Si, Di and Ci mean issue the Select,
Deselect and Command gesture to the ith robot. Unintended outcomes are marked by
overstrikes.

While exploring, each robot performs vision-based Simultaneous Localization and Map-
ping (SLAM) using their on-board monocular camera [87]. We used the “Feature-rich path
planning algorithm” introduced by Sadat et al. [156] to robustly navigate the UAV while
exploring an unknown environment. To terminate the mission, the user commands each
robot to come back home (e.g “Green come back”). To come back, robots use the same
algorithm to plan a feature-rich path to their takeoff position. Finally, The user asks robots
to land. (e.g. “Green land”).

Similar to the setup described in Section 3.4.1 and 3.4.2, the system provides two types
of feedback to the user during interaction sessions and mission execution. Robots change
the color and blinking pattern of their LED lights to inform the user about their state
(e.g. “tracking user’s face”, “exploring” or “being idle”). In addition, a text-to-speech
(TTS) engine provides verbal feedback to the user whenever a robot’s state changes. As
an example, when the Green robot is asked by the user to comeback, it acknowledges by
saying “Green is coming back”. The TTS is embedded within a general purpose web-based
robot monitoring dashboard.

The video of this system in a demonstration experiment 3 shows a complete run-through
of a two robot exploration mission in which the HRI worked perfectly.

3.4.4 Discussion

In all trials the face engagement subsystem was successful: the robots could successfully
detect and track the user’s face while running the distributed leader election algorithm. We
note informally that this capability combined with the LED and altitude feedback made a

3https://youtu.be/heiYPVGFnEM
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comfortable and natural-feeling method of interaction with the robots. The gesture recog-
nition subsystem however had a total of 9 failures, 7 cases of false recognition and 2 cases
of failed recognition. Examining the data, we found that false negative and incorrect recog-
nitions occur when the motion cancellation happens to cancel a legitimate hand motion.
The false recognition can also occur when the motion cancellation does not filter out all
non-relevant motions.

The position control subsystem also had some failures when the marker based pose
estimate of a robot became inaccurate either due to full occlusion of localization tags by the
user’s body or very fast human movements during an interaction. Although the robots could
recover from these errors, their short-term instability forced the human to wait. After a few
practice trials, the user learned to move his body so as to avoid these problems. While our
goal is to design systems where such user adaptation is not necessary, we observe informally
that a bit of user training can lead to a useful improvement in the performance of the
current system. The occlusion was not a problem when using feature based pose estimates,
however PTAM recovery after initialization from the pre-recorded video sometimes could
take up to 15 seconds.

3.5 Conclusion

In this chapter we presented a computer vision-mediated human-robot interface whereby an
uninstrumented user can create, modify and command a team of robots from a population
of autonomous individuals in a multi-robot system from close-range. The user selects an
individual as the current focus of attention by simply looking at it. The focused robot
can be added/removed from the team by waving the right/left hand. The whole team is
dispatched to a mission by waving both hands. We demonstrated the effectiveness of this
method using a system of low-cost quadrotor robots with on-board attitude control and off-
board computer vision-based 4-DOF position control. In a series of trials the robots achieved
better than 90% correct execution of the user’s intentions and 76% correct execution of trial
interaction scripts.

The system we described in this chapter uses face engagement for implicit interaction
initiation and is suitable for close-range direct interaction with a flying robot. This system
partially implements elements of an end-to-end interaction system as we defined in Chap-
ter 1. In addition to implicit interaction initiation, it provides gesture based methods for
communication of commands from the human to the UAV and a low-bandwidth light and
movement based feedback for communication of states from the flying robot to the human.
In the following chapter we describe our method for explicit interaction initiation system
through periodic motion detection that works over longer distances and in outdoor envi-
ronments. In Chapter 5 we will integrate the close-range interaction system of this chapter
into an end-to-end Human-UAV interaction system and introduce a more sophisticated light
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based feedback system for communication of intents from UAVs to a human. Furthermore,
the system we described in this chapter does not implement an approach behavior and only
maintains the vehicle’s yaw and altitude based on the image-plane location of the user’s
face. We will introduce our visual servo-based approach controller as part of an end-to-end
interaction system in Section 5.3.4.2.
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Chapter 4

Explicit Interaction Initiation with
a Flying Robot Using Stationary
Periodic Motions
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In this chapter we present the first demonstration of explicit interaction initiation and
establishing mutual attention between an outdoor UAV in autonomous normal flight and
an uninstrumented human user. We use the familiar periodic waving gesture as a signal to
attract the UAV’s attention. The UAV can discriminate this gesture from human walking
and running that appear similarly periodic. Once a signaling person is observed and tracked,
the UAV acknowledges that the user has its attention by hovering and performing a “wobble”
behavior. Both parties are now ready for further interaction. The system works on-board
the UAV using a single camera for input and is demonstrated working reliably in real-robot
trials.

4.1 Introduction

As we discussed in Chapter 2.2.1, interaction between a Human and a UAV can be initiated
either implicitly through human feature detection or explicitly through a triggering mech-
anism. For situated interaction scenarios using embodied sensing, no applicable solution
exists in the literature. In this chapter, we propose a computer vision pipeline that runs
on-board an autonomous UAV for this task.

We use the familiar periodic double-arm-waving gesture pictured in Figure 4.1 as a signal
to attract the UAV’s attention. The UAV can discriminate this gesture from human walking
and running that appears similarly periodic. Once a signaling person is observed and
tracked, the UAV acknowledges that the user has its attention by hovering and performing
a distinctive “wobble” behavior. Both parties now know that they have the attention of
the other and are now ready for further interaction. The system works on-board the UAV
using a single camera for input and is demonstrated working reliably in real-robot outdoor
trials.

The problem of detecting and tracking humans from a moving camera platform is non-
trivial, and is a current research problem. It is essential for pedestrian detection in self-
driving cars, and for automated surveillance from drones. We [114] and others [31, 95, 125]
have previously demonstrated people-tracking for close-up HRI with small UAVs. Expand-
ing this work outdoors and to a UAV that is flying rather than hovering, we find that the
person is represented by only a few pixels in the image and may be in-view only briefly.
Variable lighting conditions and fast camera motion also contribute to the challenge. Our
approach is to use fast computer vision methods that require no training and can run in
real-time on-board the UAV.

The periodic waving gesture is designed to be highly salient to an observer: it makes the
user appear larger, and fast periodic motions are relatively rare in outdoor scenes. Thus it
is amenable to computer vision detection.

The arm-waving signal is also very familiar, and we informally suggest that this is a
natural way to attract the attention of any human, animal or robot that is looking for
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Figure 4.1: Our system in action, showing scale. A human is waving to a UAV.

you. In addition to being familiar and easy to perform, the user’s intention to attract the
robot can be correctly interpreted by human observers. Again, informally, we suggest that
this behavior does not need to be taught to users, so our system could work in search and
rescue scenarios where the subject has no robot training. In wilderness survival guides, this
behavior is suggested as an effective signaling method to attract attention (e.g. [20]).

The robot signals back to the user with a high-frequency periodic “wobble” behavior as
an approximation of the “wing-waggle” behavior conventionally used by fixed-wing aircraft
pilots to show they have observed a person on the ground. Informally, this is readily
perceived by the user as a confirmation of being attended to, probably because it looks
deliberate yet distinct from the normal control motions of the vehicle.

Our vision system provides detection and tracking of candidate humans-that-want-to-
interact for moving UAVs. It occasionally gives false positives and negatives, so should be
used as part of a closed-loop system whereby the UAV has suitable failure/retry behaviors
to achieve real-world robustness [143]. Our end-to-end Human-Flying robot interaction
system, which we will present in the next chapter, is an example of such closed-loop system
that integrates the pipeline we introduce here.

The contributions of this chapter are (i) a description of a fast approach to detect
waving gestures based on a combination of well-known computer vision methods; (ii) a
demonstration of the first fully autonomous UAV detecting the intention to interact from
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an uninstrumented person with all computation performed on-board. (iii) a complete im-
plementation available online1.

4.2 Background

As we surveyed in Section 2, interfaces to control UAVs can broadly be classified into two
groups. Those that use conventional instrument-based Human-Computer Interfaces [101,
133] and direct and uninstrumented interfaces mostly based on computer vision techniques.
Of the uninstrumented interfaces, a few have demonstrated fully integrated human-UAV
interaction systems. Lichtenstern et al. [95] described a system in which gestures observed
by a UAV carrying a Microsoft Kinect (indoor, active RGB-D) sensor are used to control
other UAVs. Naseer et al. [125] developed an autonomous system that enables a single
quadrotor to follow a human and respond to hand gestures using an active RGB-D sensor
with vision-based ego-motion cancellation. Costante et al. [31] developed a person-specific
gesture-based interface to command a UAV using monocular vision.

All these systems use vision-based body or face detectors to find the region of inter-
est (ROI) in the robot’s field of view for tracking the human and/or performing gesture
recognition and to implicitly initiate the interaction. The RGB-D based solutions are not
applicable to outdoor settings or long distances because sunlight overwhelms the projected
infrared structured light field. Furthermore, state of the art human-detectors are too com-
putationally intensive to run in real-time on a CPU and are unreliable when the person is
distant (< 30 pixels tall) [47]. As a result, all existing approaches have been applied to
close range interaction scenarios in indoor environments only. Our human-UAV interaction
system is the first to work outdoors, while the UAV is translating rather than hovering, and
over relatively long distances (> 10m) when the human occupies less than 5% of the image.

Instead of directly using human-detectors to find and track the human in the UAV
imagery, it is possible to find and track objects using motion or other salient object detection
techniques (also known as foreground object segmentation). Sokalski et. al [170] developed
a system that combines contrast features, mean shift segmentation and multichannel edge
features to detect static salient regions in UAV imagery. Rodriguez et. al [150] developed a
real-time system to detect and track multiple moving objects from a UAV by constructing
an artificial sparse optical flow field from estimated camera motion. Discrepancies between
the real and artificial flow fields characterize moving objects. Camera motion is estimated
by a monocular visual SLAM algorithm. Siam and Elhelw [168] developed a similar system
to track multiple moving objects from a UAV by clustering feature points which are outliers
in camera motion estimation step. The camera motion estimation is done by finding the
homography transform between consecutive frames using tracked feature points. Kimura et
al. [86] applied multi-view geometry constraints (epipolar constraint and flow-vector bound)

1http://autonomylab.org/obzerver
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to tracked feature points between consecutive frames in order to detect moving objects from
an airborne UAV. Our approach is similar to [86, 150, 168] in the sense that we also rely
on explicit camera motion estimation and motion saliency to detect regions of interest.
However since the arm waving gesture is not a strong motion cue from a distance, we also
integrate tracked feature points to find salient objects.

To detect a dual arm waving gesture given a sequence of tracked ROIs, it is possible
to apply two approaches: human activity recognition techniques and periodicity analysis.
Human activity recognition is an active and vast area of research. Although there exist many
promising human activity recognition algorithms, most are far from real-time on current
hardware [2]. For the specific task of action recognition from distance, the computation
time is dominated by the need for precise tracking (e.g [27, 52]) or an expensive motion
feature extraction step (e.g [27,187]).

Detecting and analyzing periodicity in image sequences has been explored in the human
activity recognition community to classify cyclic human actions (e.g. walking or waving).
Some earlier work [5, 177] relies on detection and tracking of specific points on the human
body to detect periodicity. This method is not practical in our setting, since tracking feature
points reliably on a small moving object from distance is not feasible. Methods based on
temporal changes in individual pixel intensities use frequency domain analysis (e.g [99]),
periodicity metrics such as periodograms (e.g [147]) or self-similarity (e.g [36]) to detect
periodicity in regions of interest. Since these approaches require precise frame alignment,
they become computationally expensive and inaccurate in the presence of tracking errors.
Another approach to detect periodicity is to consider the ROI as a whole and perform
frequency domain analysis of either its trajectory [17, 140] or mean pixel motion [176]. We
found these methods less sensitive to tracking errors and thus a better fit for detecting
periodicity using a moving camera. Similar to [176] we perform frequency domain analysis
on the average motion per pixel of each ROI. Periodic motion detection has previously
been successfully applied to outdoor human robot interaction: in Sattar et. al [160], an
underwater robot follows a human diver by tracking the periodic motion of the diver’s
brightly-colored fins. The robot also uses blob tracking to compensate for tracking errors.
This work is different, since we perform periodicity detection on-board a UAV, and it does
not rely on strong color or other appearance priors.

4.3 Method

To detect arm waving signals from a flying platform, we first estimate the camera mo-
tion between consecutive frames—and hence the robot’s ego motion—by tracking feature
points between frames. It is also used later in the pipeline to estimate each salient object’s
movement over time with respect to a fixed reference frame. To find salient objects, we first
cluster tracked feature points using a fast non-parametric clustering algorithm. Clusters are
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Figure 4.2: Block diagram of the system. Refer to Section 4.3 for the definition of each
variable. Except flight controller, other components run on the vision processing unit
(Section 4.3.5).

first pruned based on their size and motion characteristics and then tracked using a bank
of Kalman filters. For each tracked object’s ROI, we calculate average motion per pixel
and use discrete Fourier transform and a statistical test to estimate the dominant frequency
component of that signal. Tracks that are (i) stationary in the global reference frame and
(ii) show periodicity in a specific frequency band are classified as positive detections. Figure
4.2 shows the overview of the detection pipeline. In the following sections we describe each
component in more detail.

Throughout this section we introduce parameters for each component, but we defer
the discussion on how to set these parameters to Section 4.3.4. Since our approach is
a temporal method, we extensively use circular buffers of fixed size N to store a rolling
history of different entities. We use the terms “sampling period” and “sequence length”
interchangeably to denote N .

4.3.1 Camera Motion Estimation and Ego Motion Cancellation

Our camera motion estimation and stabilization method is based on techniques developed
for visual odometry with monocular cameras [23, 129]. To estimate the camera motion at
time t, the input frame is first converted to a grayscale image It. Then, we detect FAST
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corners [151] in It and store them in a list F t = {f ti }. To limit computation time in scenes
with large number of strong corners, we limit the number of stored feature points to Nmax

F .
We use a pyramidal implementation of the Lucas Kanade optical flow algorithm [18] to find
matches between F t−1 and F t. If the number of matches exceeds threshold Nmin

F , we fit a
full homography based motion model on the optical flow field using least median of squares
regression. Otherwise, we consider motion estimation as failed for the current frame and do
not execute other components of the pipeline. After pruning outliers, the result is further
refined using Levenberg-Marquardt non-linear optimization. The resulting transform T t−1

t

from frame t to frame t − 1 is stored in a circular buffer. To cancel out the ego motion
of the vehicle, we warp It into I∗t using the inter-frame transform T t−1

t . We calculate the
absolute image difference of I∗t and It−1, adaptively threshold the result and pass it through
a low-pass filter for smoothing and suppressing transient errors. We call the resulting image
Dt camera independent inter-frame motion image.

4.3.2 Salient Object Detection and Tracking

In order to detect salient objects in each frame, we combine two cues: camera independent
inter-frame motion and spatial density of feature points in that frame. Motion fields (similar
to Dt) have been widely used by researchers to segment and track moving objects from
mobile cameras (e.g [36]). However the segmentation quality is heavily dependent on the
quality of the camera motion estimation, type of background and size of targets. For our
specific application, the size of the target (two moving arms) can be as small as 10 × 10
pixels, the background is usually complex in outdoor settings, and there is often inevitable
camera stabilization error. Camera stabilization error causes false motion blobs in areas
with non-homogeneous background as well as around objects with feature points not lying
on the ground plane. For those reasons, we found that the motion field alone is insufficient
to segment arm waving motion from a distance.

Our approach for detecting salient moving objects is based on detecting dense clusters
of feature points in motion salient areas of the image. We first use DBSCAN [55], a fast
non-parametric density based clustering algorithm to detect dense clusters of feature points
in the frame. As we will show in Section 4.4, it runs in real-time when clustering hundreds
of feature points. DBSCAN only relies on two parameters: the maximum inner cluster
distance ε and the minimum number of feature points per cluster NDBS

c . For each cluster,
elements that have zero motion are discarded (Dt(Xf t

i
, Yf t

i
) = 0). Next a minimum axis-

aligned bounding box is fitted to the remaining members. A post-pruning step filters out
clusters that are smaller than Smin = Wmin ×Hmin, larger than Smax = Wmax ×Hmax or
have small average motion per pixel value. Given a bounding box Bt, the average motion
per pixel (DBt

avg) is calculated as follows:
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DBt

avg =
∑

(x,y)∈B D
t(x, y)

WB ×HB
(4.1)

We use a bank of Kalman filters with a constant-acceleration motion model to track the
state of each cluster (position, velocity and size) over time. To cancel out the effect of ego
motion in state transition, the state is warped using T t−1

t before each Kalman prediction
step. In other words, at time t, the previous state of each track is first transformed to
the current frame’s coordinate system using the inverse of the estimated camera motion,
then the Kalman prediction step is applied. To associate observations to tracks we use
the Hungarian matching algorithm with extensions proposed in [100]. Tracks without any
associated observation are deleted after a timeout period.

To differentiate between stationary periodic actions such as hand waving gestures, and
non-stationary periodic ones such as walking, we calculate the camera independent displace-
ment of each track over the sampling period δtt−N−1. To determine this value we first need
to calculate the camera motion over the whole period:

T t−N−1
t =

i=t∏
i=t−N

T i−1
i (4.2)

Then we remove the effect of camera motion from the position of each tracked object
(P t = [xtyt]T ):

P ts = T t−N−1
t P t (4.3)

The Euclidean distance between P ts and P t−N−1 in image space is the camera indepen-
dent displacement of the tracked object over the sampling period.

4.3.3 Periodicity Detection

To detect periodicity we perform frequency domain analysis on each track’s average motion
per pixel (Equation 4.1) over the sampling period. We chose this measure since it is fast
to calculate and unlike pixel intensity based measures, does not require perfectly aligned
tracks. The latter is important, because we found precise tracking to be difficult to achieve
in real-time under fast camera motion in flight and when the tracked object is non-rigid.

For each track, the average motion per pixel signal Dt
avg(t) is first de-trended and win-

dowed with the Hann function. Using a discrete Fourier transform, we calculate the power
spectrum of the signal and find its maximum normalized power component. If Ak where
k ∈ K = {1..N2 − 1} denotes the positive half of the energy spectrum, the maximum
normalized component is calculated as follows:

AM = argmaxk∈KAk∑
k∈K Ak

(4.4)
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(a) (b)

(c) (d)

Figure 4.3: The output of each component of the pipeline running on a sample from ARG
Aerial dataset (a) Tracked feature points (b) Camera independent inter-frame motion image
(c) Salient objects (d) Tracks

To test if AM is statistically significant and thus is the dominant frequency of the
signal, we apply the approximation to Fisher’s exact test proposed by [4]. If AM passes this
test with confidence greater than 99.5%, we consider the track as periodic with frequency
f = k×fps

N .
If a track’s dominant frequency is between fmin and fmax with small camera independent

displacement δt−N−1
t < δmax, we classify that track as stationary, periodic gesture.

Figure 4.3 shows the effect of each component in the pipeline to detect stationary peri-
odic objects on a sample sequence from the ARG dataset (Section 4.4.1).

4.3.4 Tuning the Parameters

Our system is sensitive to two of the parameters described so far: the maximum inner cluster
distance of DBSCAN (ε) which controls the size of objects of interest in the scene and the
video frame-rate (FPS) that limits the accuracy of the periodicity detection component.
Setting FPS is trivial because it is known in advance. We manually tuned ε for specific
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experiments. However, it is possible to tune this parameter automatically given the height
above ground at which the UAV is flying, camera intrinsics and a prior on the size of
objects of interest (people in our case). We set Nmax

F and Nmin
F to 500 and 10 feature

points respectively. For smaller input sizes, we reduce this number. The sequence length
N is set to four times the FPS value (100 to 120) to capture a few periods of the gesture.
The parameters of band pass filter for periodicity detection is set to fmin = 0.9 Hz and
fmax = 3.0 Hz to include the frequency range of human waving gestures. To reject small
or large bounding boxes we set Smin = 5 × 10 and Smax = 100 × 200 pixels. Similar to ε,
these two parameters can be inferred automatically. Finally we set the threshold to segment
stationary and non-stationary tracks (δmax) to 30 pixels.

4.3.5 Platform and Implementation

We run the entire system on board an Asctec Pelican quadrotor to create a fully autonomous
system capable of establishing mutual attention with an uninstrumented human in outdoor
settings. The pipeline runs on a small form factor PC with a dual core 4th generation
Intel Core i7 CPU and 8GB of RAM. To capture images, we use a Point Grey Firefly
MV color camera mounted on an actively stabilized gimbal. The Firefly MV is a global
shutter camera which captures 640 × 480 color images up to 60 frames per second. The
on-board computer controls the UAV by sending position and velocity commands to the
flight controller. The total weight of the entire vision processing system (camera, small
form factor PC and battery) is 400 grams. The pipeline is implemented in C++ and relies
on an optimized build of OpenCV [21]2.

4.4 Experiments

In this section we first report the performance of the proposed method on two human action
datasets, then we describe our experimental setup to demonstrate the effectiveness of this
method in a human flying robot interaction scenario. As discussed in Section 4.3.4, two
parameters have to be tuned for a specific data source: Framerate (FPS) and the maximum
inner cluster distance of DBSCAN algorithm (ε). We tuned the latter for each dataset to
achieve good performance.

4.4.1 Datasets

We tested the system on two human action datasets to evaluate the precision and per-
formance of the proposed method in detecting arm waving gestures and rejecting periodic
distractions such as walking and running people.

2All source code and configurations used to generate the results in this chapter are available for download
at http://autonomylab.org/obzerver/. The commit hash of the code used to generate the results begins
1fc6bd8.
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Setup Picture Size FPS (Input) ε Avg. Exec. Time per frame (ms)
KTH 160× 120 25 0.2 3.136
ARG 960× 540 30 0.03 27.84
UAV 640× 480 30 0.2 31.65

Table 4.1: Properties of video streams, parameters used for each experiment and average
execution time per frame (Section 4.4.3)

The first dataset is the KTH human action dataset [93], which contains six actions
performed by 25 actors. The camera is static and the background is homogeneous. Each
action is performed four times by each actor in four different scenarios: static homogeneous
background (SHB), SHB with scale variation, SHB with different clothes and SHB with
lighting variations. The second dataset is the UCF-ARG (University of Central Florida-
Aerial camera, Rooftop camera and Ground camera) [119]. We use the aerial component
of the dataset which was recorded from a remote controlled helium balloon. It consists of
10 actions performed four times (in different directions) by 12 actors in an open parking
lot. This dataset contains a set of challenges: fast and sudden camera motion in almost all
video frames, shadows, variation in scale and clothing and small size of people in this dataset
which occupy less than 5% of the whole 960 × 540 image. Table 4.1 lists the properties of
the video stream in each dataset as well as the parameters we used to evaluate the system.

First we report the performance of our approach on detecting human hand waving ges-
tures on these datasets. Table 4.2 summarizes the true detection rate, false positive rate
and miss rate of the vision pipeline when applied to hand waving gesture subset of these
datasets. A detection is considered correct if the detected bounding box is stationary, over-
laps with the upper body of the actor and includes at least one hand. If the system detects
a bounding box which is stationary but does not overlap with the body it is considered
as a false positive. Non-stationary detections as well as no detections are considered as
misses. The detection rate on KTH and ARG datasets are 78% and 56.25% respectively.
Although, the false positive rate is low for both datasets (0% and 4.15%), the miss-rate is
the major deficiency. We observe that salient object detection and tracking errors due to
scale changes (KTH), small objects and fast camera motion (ARG) are the main causes of
the high miss rate. Since the input video length is relatively short with respect to sequence
length3, the system does not have enough time to recover from bad/false tracks to detect
periodic motions.

To evaluate the effect of non-stationary periodic distractions such as walking and running
actions, we report the false positive detection rate of our approach when applied to the
walking and running subset of UCF-ARG and KTH datasets. Table 4.3 shows the results.
The pipeline shows zero false detections on either “running” sequence. However it exhibits

3Average duration of waving gesture sequences in KTH and UCF-ARG datasets are 21.5 and 10.2 seconds
respectively.
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Dataset Number of Actions DR FDR MR
KTH 100 78% 0% 22%
ARG 48 56.25% 4.16% 39.58%

Table 4.2: The accuracy of hand waving detection for each experiment (DT: Detection Rate,
FDR: False Detection Rate, MR: Miss Rate)

Dataset Action Number of Actions FDR
KTH Walk 100 13%
KTH Run 100 0%
ARG Walk 48 16.67%
ARG Run 48 0%

Table 4.3: False Detection Rate (FDR) for walking and running actions (UCF-ARG and
KTH datasets)

a 13% and 16.67% false detection rate on the “walking” sequences of the KTH and ARG
datasets respectively. This is mainly due to tracking and motion estimation error which
causes a non-stationary periodic object to appear stationary. The false detection rate can be
reduced by decreasing δmax at the expense of a lower detection rate or slower response time.
An alternative is to use robot behavior to reject false positives as discussed in Section 4.5.

4.4.2 Closed-loop experiments with an outdoor UAV

To demonstrate the effectiveness of our system in initiating interaction and establishing
mutual attention between a flying robot and a human, we performed a series of 22 trials in
outdoor settings4. The trials were carried out on three different days, under two lighting
conditions (sunny and overcast), at two different locations and with different subjects. Both
locations were open grass fields with trees and bushes at one side. In each trial the robot
traversed a predefined path (a set of GPS waypoints) of length 10 meters back and forth at
a fixed altitude and heading. We designed the UAV’s flight path such that the vegetation be
visible at all times. The altitude was varied from 10 meters to 15 meters during the trials.
In each trial, a single human tries to initiate the interaction with the UAV and attract its
attention by waving at it. Two types of distractions were present in the field of view of
the UAV: walking, running or standing people and natural distractions such as trees and
bushes often moving in the wind. Since the robot does not perform any active searching to
find humans, the workspace in which the subject and human distractors are allowed to act
is marked in advance. The robot is fully autonomous, untethered and self-contained except
during take-off and landing, where it is controlled by a human safety pilot. The script for
each trial is as follows:

4Video demonstration: https://www.youtube.com/watch?v=KXmgBDI_6PE
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(a) (b)

Figure 4.4: Example images from the robot’s perspective during experiments. Location 1
(left) Location 2 (right)

• Human distractors perform their act during the entire length of a trial and are in-
structed to stay with the UAV’s workspace.

• The human subject chooses an arbitrary position in the workspace prior to the start
of the trial.

• The UAV takes off and flies back and forth between two predefined points.

• The subject is instructed to stand still while the robot traverses the first leg (from A
to B). This is to test that the system correctly handles the absence of gestures.

• Once the robot is on the return leg (after reaching point B) the subject starts waving.

• If the UAV detects this gesture it stops translating, hovers, and starts the “wobble”
behavior. This indicates to the waving human that she is detected. This successfully
concludes a trial.

• If the UAV reaches a waypoint without detecting a waving gesture it starts a new
traverse back to the previous location. The subject is allowed to try again to get the
robot’s attention. We report the number of retries in the results section. Runs with
more than 1 retries are considered failures.

For a few trials we asked the subject not to try to attract the UAV’s attention so we
can examine the system’s resistance to false positives. Figure 4.4 shows the robot’s field
of view during trials on two different locations. Table 4.4 summarizes the conditions and
results of all trials. The overall success rate of all trials was 81.8%. During all 22 trials,
the UAV was never attracted to a false positive. In 6 successful runs with a waving human
subject, it took the UAV one more traversal to find and acknowledge the subject.
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Trial Condition Subjects and Distractors Alt. # of Tries Outcome
1 C1 1,0 10 1 Success
2 C1 1,1(w) 10 1 Success
3 C1 0,1(w) 10 N/A Success
4 C2 0,2(r) 10 N/A Success
5 C2 1,1(w) 12 2 Success
6 C2 1,1(w) 12 4 Failure
7 C2 1,2(w) 12 3 Failure
8 C2 0,1(w) 12 N/A Success
9 C2 1,0 12 1 Success
10 C3 1,1(w) 12 2 Success
11 C3 1,1(w) 12 4 Failure
12 C3 1,1(w) 12 1 Success
13 C3 0,3(w) 12 N/A Success
14 C3 1,1(r) 15 1 Success
15 C3 1,1(r) 15 2 Success
16 C3 1,1(r) 15 1 Success
17 C3 1,1(r) 15 2 Success
18 C4 1,2(w) 15 4 Failure
19 C4 1,1(r) 15 1 Success
20 C4 1,1(r) 15 2 Success
21 C4 1,1(r) 15 1 Success
22 C4 1,1(w) 15 2 Success
Overall Success Rate 18 / 22 (81.8%)

Table 4.4: Outcome of all trials. C1: Location 1, Late Afternoon, Overcast, C2: Location 1,
Noon, Overcast, C3: Location 2, Noon, Overcast, C4: Location 2, Late Afternoon, Sunny,
(r): running, (w): walking

Analyzing the experimental data we observe two major causes of failures. In two trials
the human was on the edge or out of robot’s field of view for the majority of time. Therefore
the tracking of the human was not reliable enough to detect periodicity. This was mainly
due to errors in the UAV’s waypoint navigation and position control, which changed the
robot’s visible workspace. Since the robot is flying several meters away from the human and
the camera is barely visible, the subject was not able to estimate the robot’s field of view
to correct her location. This emphasizes the importance of the robot providing behavioral
feedback when the human is detected. In two other failed trials, the vision system was not
able to detect a moving object. Either too few features were detected on the subject’s body
or they were too sparse to form a cluster.

88



KTH ARG UAV
Pre-processing 0.179 2.14 2.51
Feature Detection & Tracking 0.529 13.10 13.69
Find Homography 2.30 10.55 10.10
Salient Object Detection 0.08 1.89 5.25
Object Tracking & Periodicity Detection 0.052 0.17 0.10
Total 3.13 27.84 31.65
Stddev 1.51 3.22 2.86

Table 4.5: Mean per-frame execution time breakdown for each component of the pipeline
(in milliseconds).

4.4.3 Runtime Performance

For all three experiments, we measured the execution time per frame incurred by each step
of the vision pipeline. The last column of Table 4.1 shows the average processing time per
frame for each experiment. Table 4.5 shows the detailed breakdown of execution time for
each component of the pipeline during each experiment. The processing time is less than
the inter-frame time, so the system works at frame-rate.

4.5 Conclusion

In this chapter we presented the first demonstration of human-UAV interaction in outdoor
environments using real-time computer vision running entirely on-board. We show how
a dual arm-waving gesture can be used to attract a flying robot’s attention while being
robust to similar distractions such as walking and running people. By acknowledging the
user through a wing wiggle, the robot communicates its readiness for further interaction
with the user.

The main limitation of this approach is that the UAV can become attracted to non-
interesting stationary periodic motions caused either by other human actions (e.g. digging)
or irrelevant extrinsic processes (e.g waving trees). In the following chapter, we will explore
a solution to this problem based on using robot’s behavior to approach the user and to
perform close-range inspection/interaction.
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Chapter 5

An End-To-End, Direct
Human-Flying Robot Interaction
System
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(a) The user initiates the interac-
tion with the UAV using a dual-
arm waving gesture in the pres-
ence of other humans (distance
is ≈ 25m)

(b) The UAV approaches the
user using an appearance based
tracker and a custom cascade
controller

(c) The user asks the UAV to
take a picture of her using a sin-
gle hand waving gesture

(d) The resulting portrait (e) The user terminates the in-
teraction by performing a dual
hand waving gesture.

Figure 5.1: Our end-to-end human-flying robot interaction system in action during one of
outdoor experiments (Section 5.4.2).

In this chapter we present the first demonstration of end-to-end far-to-near situated
interaction between an uninstrumented human user and an initially distant outdoor au-
tonomous UAV. The user uses an arm-waving gesture as a signal to attract the UAV’s
attention from a distance. Once this signal is detected, the UAV approaches the user using
appearance-based tracking until it is close enough to detect the human’s face. Once in this
close-range interaction setting, the user is able to use hand gestures to communicate its
commands to the UAV. Throughout the interaction, the UAV uses colored-light-based feed-
back to communicate its intent to the user. We developed this system to work reliably with
a low-cost consumer UAV, with only computation off-board. We describe each component
of this interaction system, giving details of the depth estimation strategy and the cascade
predictive flight controller for approaching the user. We also present experimental results
on the performance of the complete system and its individual components.

5.1 Introduction

In this chapter we show the first realized end-to-end Human-Robot Interaction system
whereby an uninstrumented user can attract the attention of a distant (20 to 30 meters)
autonomous outdoor flying robot, the robot then approaches the user to close range (≈ 2
meters), hovers facing the user, then responds appropriately to a small vocabulary of hand
gestures.
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The main contributions of the chapter are (i) the first demonstration of end-to-end
interaction with a distant flying robot over multiple scales; (ii) a description of a robust
integrated visual servo and predictive cascade controller design for smooth approach to-
wards a human; and (iii) a case study in outdoor situated HRI with UAVs over multiple
scales. Below we describe the components of our end-to-end situated interaction system.
We describe how we use fast computer vision methods to detect the user’s intention from
distance using a monocular camera, how we estimate depth when approaching the user,
a predictive cascade controller to follow a smooth trajectory towards the user despite the
high latency of our off-board vision via WiFi link, our close-range interaction system for
the communication of commands from the user to the UAV and our colored-light-based
feedback system for communicating the UAV’s state to the user. We present experimental
results of this system in action, where an uninstrumented user can summon a Parrot Bebop
Drone from distances over 20m and have the robot take a close range portrait photo - a
selfie - of her. The scale change is such that the person initially appears around 15 pixels
high in the UAV’s 640 × 368 camera image, but the portrait taken features the person’s
torso and head in the center of the image (Figures 5.1 and 5.6).

5.2 Background

We previously presented systems that enable uninstrumented humans to perform close
range situated interaction with UAVs through gaze and hand gestures in Chapter 3 and
obtain a distant UAV’s attention using stationary periodic gestures while the UAV is in
flight in Chapter 4. In this chapter, we build upon those systems to provide an end-to-end
interaction system for human-flying robot interaction.

In Chapter 1 we identified the components of an end-to-end interaction system as (i)
interaction initiation; (ii) approach and re-positioning to facilitate close-range interaction;
and (iii) communication of commands and intents from the human to the UAV and com-
munication of intents from the UAV to the human (Definition 1).

As we discussed in the previous chapter (Chapter 4), uninstrumented interaction ini-
tiation between co-located humans and UAVs mostly happens in two forms. In the first
form, the UAV utilizes vision-based human feature detectors to find potential interaction
partners. Alternatively the user may try to attract the UAV’s attention by using active
stimuli such as gestures, sound or body movements.

Using vision-based human detectors on-board a UAV poses multiple challenges. First,
when the UAV is flying far from the humans, features are either hard to detect or require
high computational resources to be detected in real-time. Some researchers use extra sensors
such as thermal cameras [14], scene information such as saliency maps [15] or the prior on
the height of the human combined with ground plane estimation [169] to identify regions of
interest in the image plane before executing vision-based human detection.
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Most existing human detectors assume an upright human view [14]. The violation of
this assumption caused by time-varying and different vantage point of UAVs causes the
second issue for performing on-board pedestrian detection. In [15] the authors show that
the performance of a conventional pedestrian detector can be improved by retraining it using
a dataset that is recorded from a UAV and with synthetic variations of camera roll and pitch
angles. In [7], the authors propose to compensate for this time-varying vantage point by
estimating the ground plane using UAV’s telemetry data and cancel out the distortion by
projecting the image to the ground plane prior to using a pedestrian detector. Although
none of the aforementioned methods were explicitly used for human-UAV interaction, they
are applicable for implicit interaction initiation or as a building block for explicit interaction
initiation. The same is true for methods such as [80] that utilize moving object detection
to find regions of interest and potential interaction partners in the UAV’s field of view. We
provided a detailed survey on related work for implicit and explicit methods suitable for
interaction initiation with flying robots in Section 2.2.1.

Once the interaction between a human and a UAV (or a team of UAVs) is initiated,
the human and the UAV(s) can interact more directly by communicating their intents
(Section 2.2.2). Uninstrumented, natural and situated communication of commands from
humans to UAVs have been recently explored by various researchers in form of human studies
and practical systems. Example human studies include [77] and [25] that investigate natural
commanding modalities for collocated interaction between a human and a flock or a single
UAV respectively.

To approach towards the user, the UAV should first track the location of the user,
then constantly control its flight trajectory to reach the person. Recently, researchers have
applied state of the art long-term appearance-based visual trackers and Image Based Visual
Servo (IBVS) control for following an uninstrumented human with a UAV [69,135]. We use
the same long-term visual tracker developed by [69] in our system. Similar to [135], we use
a visual servo controller to generate approach trajectories for our target platform. However,
since our system performs approaching towards the user, rather than following her, depth
estimation of the target becomes more critical, thus we provide a solution to estimate depth
of the tracked object using UAV’s telemetry data and the intrinsic parameters of the camera.
Furthermore, unlike [135], our system is not initialized by a human operator, instead it
uses explicit interaction signals from the human to initialize the appearance-based tracker.
Most relevant to our work is [39] in which the authors designed a self-contained person
follower UAV that implements implicit interaction initiation through pedestrian detection,
appearance based tracking, depth estimation and trajectory controller. As mentioned, we
use explicit interaction initiation signals that helps the UAV steer its attention to a single
person when multiple users are in its FOV. In addition, we explicitly address the two-way
communication of intents and commands between a human and a UAV.
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Practical systems for situated interaction with UAVs in the literature mainly utilize
sound and gestural interfaces for communication of commands from humans to UAVs (Sec-
tion 2.2.2.2). In the prototype environment of [95], the authors use a Microsoft Kinect
sensor on-board a hovering UAV to transmit gestural commands to a team of flying robots
in an indoor environment. In [125], the authors propose a solution for canceling the ego-
motion of an RGB-D camera attached to a flying UAV and use the stabilized depth image
to perform gesture recognition and person following in an indoor environment. In [31], the
authors applied transfer learning to develop a person-specific gestural interface to command
a UAV.

As argued in [78] being able to “talk” is as important requirement as being able to
“listen” for an autonomous agent. Through proper feedback, the user can understand if the
UAV correctly understands her intents and if the UAV is functioning properly. These in
turn decrease user’s cognitive workload and improve her awareness and safety. Recently, a
few different modalities for communication of intent and affects from a UAV to its collocated
human partners have been studied. These modalities include flight path manipulation [163,
173] and light-based feedback systems [174] (Section 2.2.3).

In the remaining of this chapter, we demonstrate the first end-to-end Human-Flying
Robot interaction system that implements all the components of Definition 1 in outdoor
settings. This system autonomously brings a flying robot from relatively long distances to
a proximate distance to the user.

5.3 Method

Our proposed system consists of three hardware components and five major software blocks.
We use the Parrot Bebop, a lightweight consumer UAV as our platform. The UAV transmits
the live video stream of its front facing camera and flight telemetry data to an off-board
computer over WiFi. This computer runs the core software components of the interaction
system and sends the desired control commands over the same WiFi link to the UAV. A
small form factor computer is mounted on top of the UAV to drive an array of 11 high
intensity RGB LEDs mounted on the front side of the UAV and generate feedback signals
(Figure 5.3). The off-board computer communicates the desired feedback to the embedded
computer over a separate WiFi link based on the current state of the interaction. The five
major components of the software stack are (i) the behavior generator and coordinator; (ii)
the long-range periodic motion detector for initiating the interaction; (iii) the appearance-
based object tracker; (iv) the cascade controller used for approach towards the user; and
(v) the face engagement detector and motion based gesture recognizer for the close-range
interaction phase. Figure 5.2 shows the overall architecture of our interaction system.

The system starts in the searching state, where it looks for periodic but net-stationary
motions in camera’s FOV as in Chapter 4. When a periodic signal is detected, the corre-
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Figure 5.2: The block diagram of the system

sponding region of the image is fed into a long-term visual tracker which simultaneously
tracks the object in the image plane and refines its appearance model. The track is piped
into a cascade controller, which first estimates the distance of the target with respect to the
image plane, then controls the flight of the UAV towards the target. The approach towards
the target ends either when the target is in the center of the image plane and the UAV is
within a predefined distance with respect to the target, or a human face detector finds a
human face inside the target’s bounding box in the image plane. In the latter case, the
system transitions into close-range interaction state, where the UAV maintains the user’s
face in the center of its FOV and at a fixed distance from its camera (using the same cascade
controller). In this state, a motion based gesture detector detects the left hand and right
hand waving gesture of the human which is consequently used to command the vehicle to
perform a certain action. The UAV constantly communicates its state and intentions to
the user using its front facing colored-light-based feedback system. In the remainder of this
section we describe each component of this system in more details.

5.3.1 Hardware Platform

One of the difficulties faced during the development of this system was to choose a UAV
platform suitable for close-range situated interaction with a human. The main criteria for
this platform were safety around the interaction partner, being able to perform stable hov-
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Figure 5.3: Our platform. Parrot Bebop Drone and color-light-based feedback system. The
UAV is executing the Gaze feedback (Section 5.3.6).

ering and carrying enough payload for sensing, feedback and computation. Most consumer
UAVs available in the market nowadays are multi-rotor flying platforms that are able to
perform stable hovering. Many of these platforms are also powerful enough to carry small
form factor sensing devices and computational units. However, not many of these UAVs
provide the minimum safety measures to fly in close proximity of people. We believe any
UAV platform that enters the social space (≈ 3−4 meters) [70] of a human or closer should
be at least equipped with physical propeller guards and provide an automatic shutdown
systems in case of contact between any of its propellers and an object.

We chose the Parrot Bebop Drone1 as our UAV platform. Although this UAV pro-
vides the required minimum safety measures, its on-board [flight controller] computer is not
powerful enough to execute our CPU intensive software stack. Due to its limited payload
carrying capabilities, it is also not capable of carrying powerful small form factor comput-
ers. For these reasons we opted to control the UAV off-board over WiFi. Bebop is a small
form factor consumer UAV with an on-board high definition camera and a fisheye lens with
the field of view of 180 degrees. The video stream of this camera is digitally stabilized
and rectified on-board prior to being transmitted over WiFi with the reduced resolution of
640×368px at 30 frames per second. The rectification target is limited to the FOV of ≈ 80◦

(horizontal) and ≈ 50◦ (vertical), essentially simulating a virtual pan/tilt camera with a
stabilized gimball. The desired pan and tilt of this camera is also controllable over WiFi.
Bebop transmits its telemetry data (i.e. altitude and attitude) over WiFi to the off-board
computer at the rate of 5 Hz.

1http://www.parrot.com/products/bebop-drone/
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5.3.2 Interaction Initiation using Periodic Gestures

To initiate the interaction with a distant human and while the UAV is in flight, we use the
system previously presented in Chapter 4 to detect periodic salient motions on-board a UAV.
The main software component of this system (Freely available at http://autonomylab.

org/obzerver/) is a real-time computer vision pipeline that detects salient moving objects
that exhibit periodic motion patterns in a moving camera’s FOV. The dual-arm waving of
a human is a periodic signal (with a dominant frequency of 1 to 4 Hz) which is detected by
this component to initiate (trigger) the interaction. In Section 4.3 we provided a detailed
description of this computer vision pipeline. We provide a brief summary of this pipeline
here.

To detect periodic motions that are stationary with respect to the camera, this pipeline
first detects and tracks salient feature points between consecutive image frames of the
UAV’s video stream. The correspondences between these tracked feature points are used
to estimate the ego motion of the UAV’s camera. After compensating the estimated ego-
motion, the pipeline calculates the so-called “camera independent inter-frame motion image”
which indicates the regions of interest in the image plane that contain motions from moving
objects in the scene. Simultaneously, the pipeline clusters the salient feature points in
motion-rich areas of the image plane into candidate objects and tracks these objects over
time. For each candidate, the frequency spectrum of its average motion per pixel as well as
its displacement in a world’s coordinate system are calculated over a short time period of 4 to
6 seconds. If a track is stationary with respect to the world and exhibits a periodic motion
with a dominant frequency of 1 to 4 Hertz, it is considered as the interaction initiation
signal.

5.3.3 Visual Tracker

To track the location of the target detected by interaction initiation module in the image
plane, we use the long-term visual tracker of Haag et al. [69]. This appearance-based tracker
(named as KCFTld by the authors) combines the Kernelized Correlation Filter (KCF)
tracker of Henriques et al. [73] for short-term tracking with Tracking-Learning-Detection
(TLD) framework of Kalal et al. [82] for long-term tracking, target re-detection and loss
detection.

The popularity of Correlation Filter-based Trackers (CFT) in the visual tracking com-
munity has been rising in recent years. CFT trackers have shown compelling results in
various benchmarks (e.g. [91]) while running at faster than real-time speeds2. In general,
when a correlation filter is applied (via convolution) to an image, it shows strong responses
in the areas that the object of interest is located. CFTs use this property to localize the
object of interest based on its appearance model. Bolme et al. [16] proposed an efficient

2For a recent experimental survey on CFTs please see [28]
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method to model the appearance of the object of interest in the frequency domain from a
few training examples called the Minimum Output Sum of Squared Error (MOSSE). Since
the convolution can efficiently be done in the frequency domain, this tracker could operate
at hundreds of frames per second. The KCF tracker of Henriques et al. [73] is a kernelized
version of the MOSSE tracker that exploits the cyclic structure of dense sliding sampling
windows used for refining the appearance model. The mathematical framework proposed
by Henruques et al. [73] provides a way to efficiently use all sampling windows for training,
apply the kernel trick to train non-linear models and use richer feature descriptors (such as
HOG [38]) instead of raw pixels to improve both speed and accuracy of adaptive correlation
filters.

KCF Tracker is a short term tracker, meaning that it can not deal with object re-
detection when the object of interest is lost. Haag et al. [69] integrate KCF into Tracking-
Detection-Learning (TLD) framework of Kalal et al [82]. TLD is a long-term tracker that
performs tracking and detection simultaneously. The tracker tracks the object of interest
between frames while the detector evaluates the whole frame to find instances of the target.
While tracking, a semi-supervised learning pipeline monitors the detector and generates
new positive and negative samples to decrease its false-positive and false-negative rate. The
detector uses these samples to refine its appearance model of the target. When the target
is lost, the detector is able to reinitialize the tracker.

In KCFTld, Haag et al. [69] use the learning and detection part of the TLD framework
and use KCF as the tracking component. They also employ the Peak to Sidelobe Ratio
(PSR) measure originally introduced by Bolme et al. [16] to detect target loss. Furthermore,
KCFTld modifies the target re-detection policy of TLD framework such that the tracker
should further confirm a re-detection ROI reported by the detection component.

5.3.4 Cascade Controller for Approaching the User

The task of the approach controller is to bring the UAV to a predefined distance of the user
while keeping her in the center of its FOV. We designed a cascade controller in order to
achieve this task. The input to the cascade controller is the current location of the tracked
object in the image plane and the outputs are the desired set-point velocities for the on-
board flight controller of the UAV. As a quad-rotor UAV, the Bebop has four controllable
Degrees Of Freedom (DOF): roll, pitch, yaw and altitude. The on-board flight controller of
Bebop offers velocity control for the latter two DOF. However, roll and pitch - which control
the acceleration of the UAV - are set directly. The Bebop performs on-board visual-inertial
state estimation and reports the estimated values for its attitude and velocity at 5 Hz. The
high level controller in this cascade is an Image Based Visual Servo (IBVS) controller that
receives the current position of the tracked ROI in the camera plane, estimates its depth
based on the current state of the UAV, then calculates a set of reference velocities that would
bring the camera to the desired location in front of the target. The angular and vertical
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Figure 5.4: The block diagram of the cascade controller.

velocity components of the IBVS controller’s output are sent directly to the UAV, while the
lateral and forward velocity components are fed into a velocity controller which deals with
the latency and slow update rate of the feedback signal. Figure 5.4 shows the architecture
of the approach controller. Internally this controller uses the dynamic model of the UAV to
compensate the delay and predict the feedback signal as well as a PI controller to track the
reference velocity. We provide more details about this controller in the following sections.

Throughout this section, vx, vy, vz and ω denote the forward, lateral, vertical and
rotational (along z-axis) velocity of the UAV, respectively. In addition, d and f superscripts
indicate desired and feedback values for a variable. Finally v̂ stands for any estimated
velocity.

5.3.4.1 Depth Estimation

Similar to the approach proposed by Danelljan et al. in [39], we use camera intrinsic
parameters (specifically β, its vertical FOV), the prior on the size of the tracked object
(H1), the prior on the distance of the object from the ground plane (H2), current tilt
angle of the camera with respect to the inertial frame of the UAV (α), and the vertical
pixel location of the ROI in the image plane (hc) to estimate the distance of the center of
the object (Z) from the image plane, under the assumptions that the ground plane is flat
(horizontal) and the user’s ROI is perpendicular to the ground plane (Figure 5.5). Using
simple geometry we can derive Z as:
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∗ β) (5.1)

5.3.4.2 Visual Servo Control

Once the depth of the tracked bounding box is estimated, we use a classical IBVS con-
troller [26] to calculate the desired velocity of the camera to approach the target. In the
formulation proposed by Chaumette and Hutchinson [26] a visual servo controller minimizes
the following error function between a set of visual feature points s(m(t),a) and a set of
desired feature points s∗ by generating appropriate control signals.

e(t) = s(m(t),a)− s∗ (5.2)

In this formulation m(t) is a set of image plane coordinates and a is additional knowledge
about the system such as camera intrinsic parameters. For image-based visual controllers, s
is computed directly from image data. The time derivative of s is coupled to the the linear
and translation velocity of a camera cv = (cv, cω) through the so-called interaction matrix
Ls:

ṡ = Ls
cv (5.3)

When s∗ is constant, the time derivative of the error (ė) equals to time derivative of the
visual features (ṡ), thus:

ė = Le
cv (5.4)

Where Le = Ls. Considering an exponential decrease of error (ė = −λe), the velocity
of the camera can be controlled as follows to minimize the error in Equation 5.2.
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cv = −λL†ee (5.5)

In this formula, L†e is the pseudo-inverse of the interaction matrix and λ is a constant
gain.

In the classical Image-Based Visual Servo formulation, m = (i, j) are 2D image-plane
locations of feature points in pixels and a = (ci, cj , f, α) is the set of camera intrinsic
parameters (location of the principal point, the focal length and the pixel scale ratio).
Assuming a pinhole camera model, these parameters convert m from pixel measurements
to feature points s = (x, y) on the image plane. Considering X = (X,Y, Z) as the three
dimensional location of feature points s in the camera plane, the relationship between
s = (x, y) and m = (i, j) is as follows:

x = X

Z
= i− cu

fα

y = Y

Z
= j − cv

f

(5.6)

In [26], it is shown that the interaction matrix Lx in this case has the following format:

Lx =
[−1
Z 0 x

Z xy −(1 + x2) y

0 −1
Z

y
Z 1 + y2 −xy −x

]
(5.7)

In this setting, the interaction matrix requires the depth of each feature point to be
known. In addition, since each feature point only provides two constraints to compute L†x,
more than one feature point (at least 3) is required to control all degrees of freedom of the
camera. In case of multiple feature points, corresponding interaction matrices are stacked
to form the final interaction matrix.

The input to our visual servo controller is the currently tracked region of interest by the
visual tracking module (Section 5.3.3). This ROI is an axis aligned bounding box with a
fixed aspect ratio (ζ). ζ is set when the tracker is initialized and is kept constant throughout
the tracking. This ROI is represented as (i, j, ζh, h), where i and j are the location of top
left corner of the tracked ROI and h is the height of the ROI (in pixels). We calculate two
image plane coordinates, m1 = (i, j) and m2 = (i+ ζh, j + h) from this bounding box and
augment those points with the estimated depth of the bounding box Z (Section 5.3.4.1) as
the input to the visual servo controller. These values are used by the controller to calculate
s1 and s2 and subsequently the interaction matrix:

Lx =
[
L1x

L2x

]
(5.8)
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We define the desired feature points s∗ = (s∗1, s∗2) based on the prior on the target height
(H1) and desired depth (distance) of the camera to the target (Zd) as follows.

s∗1 = (−ζH1
2 ,−H1

2 , Zd)

s∗2 = (ζH1
2 ,

H1
2 , Zd)

(5.9)

These feature points represent a rectangle parallel to the image plane and provide only
three independent constraints to the IBVS controller to calculate the desired velocity of the
camera (vc). This implies that one degree of freedom of the UAV is not controllable. We
chose the lateral movement of the UAV (bvy) as the non-controllable degree of freedom and
map cv to Bebop’s DOFs as follows. We transform cvx and cvz to the forward (bvx) and
vertical (bvz) DOFs through the tilt angle of the camera ([bvx, bvz]T = <(α)[cvz, cvx]), set
(bvy) to 0 and control the angular velocity (ω) directly from the error between the horizontal
center of the bounding box and the horizontal center of the image plane using a proportional
controller.

This control schema flies the UAV to a semi-sphere with radius Zd in front of the target
in a configuration that keeps the object at the center of its FOV. If α is 0, the altitude of the
UAV at the end of the approach trajectory will be H2 +H1/2. Although the semi-spherical
shape of the final location with respect to the target might not be suitable for applications
such as perching or landing on a moving platform, for human-robot interaction applications
it is not a major concern since the user can re-position itself (changes her yaw (or gaze)
direction) towards the UAV when the robot is flying towards her.

5.3.4.3 Velocity Controller

As mentioned in Section 5.3.4, bvz and ω are directly sent to the on-board flight controller
of the Bebop for execution. For lateral and forward velocities, we designed a velocity
controller to control the roll and pitch angles of the UAV such that it tracks the desired
velocity vector. Our objective was to design a controller that generates smooth trajectories
towards the target. The major challenges towards designing such a controller are the latency
and low update rate of the feedback signal. Our proposed controller uses a dynamic model
of the UAV to compensate for this latency and predict the feedback signal. The dynamic
model we used is a first-order non-linear system that relates the roll and pitch angles of
Bebop to its lateral and forward velocities respectively (Equation 5.10).

v̇bx = Cxv
b
x + g tan(pitch)

v̇by = Cyv
b
y − g tan(roll)

(5.10)
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In this equation, g is the gravitational constant (≈ 9.81s−2) and Cx and Cy are the free
parameters. We performed a system identification step to find Cx and Cy by flying the
UAV indoors and measuring true values for pitch, roll, vbx and vby using a high precision and
frequency (≈ 120 Hz) motion capture system. The estimated values for these parameters
are Cx = 0.57633 s−1 and Cy = 0.58498 s−1. By minimizing the squared error between
measured velocities and feedback velocities over different time offsets, we estimated the
latency of the feedback as td ≈ 262 milliseconds. This latency is mainly caused by the WiFi
transport delay as well as the down-sampling/buffering step performed by Bebop’s firmware
prior to transmitting the feedback over WiFi.

As shown in Figure 5.4, once the feedback is received, the controller utilizes the dynamic
model of the UAV to predict the state of the system (bv̂x and bv̂y) from the feedback signals
(bvfx , bvfy , rollf and pitchf ) which are td seconds delayed. The PI controllers calculate the
desired control values of the system (pitchd and rolld) by calculating the error between the
feedback velocity and the desired velocity (coming from the visual servo controller). Instead
of relying on the low-frequency feedback to generate the control signal which would either
decrease the output rate to 5 Hz or increase its jerk because of the periodically increasing
delay between the last feedback signal and the true state of the system, the controller again
utilizes the dynamic model of the UAV to predict the state of the system from the last
received feedback signal and the latest desired control command. Once a new feedback
signal is received, it resets the state of the predictor. This way, the predictor fills the 200
milliseconds gap between two feedback readings to provide a 30 Hz estimation of this signal
for the PI controller.

5.3.5 Close-range Interaction

When the UAV enters the Approaching State, the behavior coordinator enables the close-
range interaction component of the software stack. This component consists of the human
face detector and the optical flow based gesture detector of Chapter 3. The UAV uses the
cascade classifier of Viola and Jones [179] to detect human faces in the image plane. It
only considers the faces which their corresponding bounding boxes overlap with the tracked
object’s region in the image. It also uses the so called face score [32] (Section 3.3.2) to
filter out the faces that the classifier is not confident about them. Once a candidate face is
detected, it is internally tracked with a Kalman filter and its bounding box is continuously
fed into the cascade controller, replacing the input from the visual tracker. Compared to
the output of the visual tracker, the tracked bounding box of the face region is more con-
sistent with the prior on its size. therefore, in case the face is detected, the resulting depth
estimation will be more accurate which subsequently leads to a more precise positioning in
front of the user. The UAV maintains its position on a semi-sphere around the user while
keeping her face in the center of its FOV.
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Feedback Animation State Metaphor
Search Searching Radar Scanner
Approach Approaching Pointing
Engaged Close-range Gaze
Selfie Close-range Camera Timer
Bye Close-range Iris
Bad Video Any -
Lost Approach & Close-range Radar Scanner

Table 5.1: Animation used for providing light-based feedback to the user, their correspond-
ing state and metaphors.

While tracking the face, the close-range interaction component calculates the dense op-
tical flow inside two regions around the human face. The size of these regions are linearly
dependent on the size of the face and are placed such that they capture hand/arm move-
ments. In order to cancel out the effect of ego-motion of the UAV, the median of magnitude
of optical flow vectors inside the human face and the background regions are subtracted
from all optical flow vectors inside the two gesture regions. A post processing step smooths
the time variations of average optical flow per pixel inside the gesture regions, then applies
a median filter and thresholding to decide if there is substantial motion in any of those re-
gions. These motions are considered as left/right hand waving gestures by this component
and used to communicate commands from the human to the UAV.

5.3.6 Communication of Intents from the UAV to the User

To communicate the state of the UAV and its intents to the user, we developed a custom
color-light-based feedback system. This feedback systems consists of 11 individually address-
able RGB LEDs mounted on the front side of the UAV, an Atmel AVR-based driver board
and an Intel Edison embedded computer that executes the feedback generation software
(Figure 5.3). The high level behavior coordinator (which runs on the off-board computer),
communicates over WiFi to this embedded computer to request the execution of any of
predefined animations based on the current state of the UAV and its next command. A
custom key-frame-based animation engine runs on-board the Edison computer to generate
the feedback signals. The total weight overhead of this feedback system is 55 grams.

As shown by Szafir et al. [174], using light feedback helps co-located humans deduce
the flying intent of a UAV faster and more accurately (ref. Section 2.2.3). We believe
this feedback modality is advantageous to other modalities previously used in this context
such as sound [141] or LCD displays [105] over long distances, specifically for small form
factor UAVs. In [174], the authors showed that animations based on Gaze and [car] blinker
metaphors perform well to communicate the flying intention of a UAV. Inspired by these
results, we designed a set of feedback signals to communicate the intent of the UAV to the
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(a) The user initiates the interac-
tion with the UAV using a dual-
arm waving gesture in the pres-
ence of other humans (distance
is ≈ 25m)

(b) The UAV approaches the
user using an appearance based
tracker and a custom cascade
controller

(c) The user asks the UAV to
take a picture of her using a sin-
gle hand waving gesture

(d) The resulting portrait (e) The user terminates the in-
teraction by performing a dual
hand waving gesture.

Figure 5.6: Our end-to-end human-flying robot interaction system in action during one of
outdoor experiments (Section 5.4.2).

user during each phase of the interaction process. These designed signals use colors and
motion to convey the intent to the user. Table 5.1 provides a summary for all these feedback
signals and their corresponding metaphors. Please refer to the supplementary video for the
visualization of these signals (Section A.2).

5.4 Experiments

For all the experiments we used the platform described in Section 5.3.1. Except for the
LED animation generator, all the software ran on a notebook computer with a specification
matching the small form factor embedded computer we previously used for self-contained
Human-UAV interaction 3 [110]. For the data intensive communication with the UAV over
WiFi, we used a long-range IEEE 802.11ac external network card with a high gain antenna.
We extensively used Robot Operating System (ROS) [145] to integrate different software
and hardware components of this system. The cascade controller internally uses the ViSP
library [102] to perform Image-Based Visual Servo.

All the source code for various components of this system (including the ROS driver for
Parrot Bebop Drone, ROS bindings for the long-term visual tracker, the cascade controller,
close-range interaction system, interaction initiation module and the animation generator

3Intel 5th generation Core i5 CPU, 8GB of RAM, SSD Storage
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Figure 5.7: The setup of the indoor experiments for validating the approach controller
(Section 5.4.1)

engine) are available online4 and as supplementary materials of this manuscript. Please
refer to Section A.1 for more information.

5.4.1 Approach Controller

The goal of this experiment was to validate the approach controller and assess its depth
estimation accuracy as well as the resulting approach trajectories. We performed this ex-
periment in a 7m× 11m× 3m indoor environment, equipped with a Vicon motion capture
system. We put an augmented reality marker of size 56× 56 centimeters in a fixed location
of the arena (marked with X in Figure 5.8). The height of the center of the target from
the ground was 1.175 meters. The augmented reality marker was used to bootstrap the
long-range interaction initiation part of the system and to replace the visual tracker for one
leg of the experiments, therefore we did not use the 6 DOF localization data these markers
provide. Instead, we use the axis aligned bounding box of detected marker in the image
plane to initiate or replace the visual tracker data.

In the first part of the experiment, the UAV was placed in one of 5 predefined starting
locations in the room (Marked with * in Figure 5.8), either looking towards the target or
looking forward (aligned with y-axis of the room). After takeoff, when the UAV first detects
the marker, it transitions to the approaching mode and constantly use the consequent
detections to feed the approach controller, replacing the visual tracker. The desired depth
of the UAV with respect to the target and the camera tilt was set to 2.5m and 0◦ respectively.
Once the sum of the velocity errors were below a certain threshold, the UAV would land.

4http://autonomylab.org/bebop_hri
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Figure 5.8: The indoor approach trajectories for leg 1 (left) and leg 2 (right)

The second leg of the experiment was similar in design with the first leg. The only difference
was that the marker detection was only used once to initiate the visual tracker which would
provide the reference bounding box to the approach controller. We repeated each leg of this
experiment four times from each location (two for each orientation), resulting in total of 20
experiments for each leg.

Figure 5.9 shows the 2D top-down view of the ground-truth locations where the UAV
decided to land relative to the target for both legs of the experiments. Since the camera
was not tilted during these experiments (α = 0, the target altitude of the UAV is expected
to converge to the aforementioned height of the target center (1.175m). The root mean
squared (RMS) error of distance and altitude error of the UAV for the first leg of the
experiment was 0.242m and 0.064m respectively. The same errors measured for the second
leg of the experiments (with the visual tracker in the loop) were 0.392m and 0.076m. The
RMS depth estimation error for the two legs of the experiments were 0.665m and 0.793m
meters respectively. Figure 5.8 shows the trajectories the UAV flew to reach the target in
two dimensions for each leg of the experiment.

Since in leg 1 the detection happens in every frame, the input to the approach controller
more accurately corresponds to the true location of the target in the image plane, therefore
the depth estimation accuracy is higher and the final location error is less for the first leg
of the experiments. This means when an object detector is used to drive the approach
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Figure 5.9: The indoor approach location error for leg 1 [continuous detection] (left) and
leg 2 [detect and track] (right)

Figure 5.10: 3D rendering of two outdoor approach trajectories from actual GPS log data

controller or when the tracker does not drift much, and when the prior on the object size is
precise, the final location of the UAV with respect to the target is more accurate.

5.4.2 Outdoor Experiments

To demonstrate and validate the proposed end-to-end Human-UAV interaction system,
we performed a series of outdoor experiments with the platform and the setup previously
described in Sections 5.3.1 and 5.4. The tilt angle of the [virtual] camera was set to 45◦ and
this value was dynamically and independently being controlled by the behavior coordinator
to smoothly tilt it to 0 towards the end of the approach trajectory. We tested the interaction
system in three different locations, at three different times of the day (noon, early and
late afternoon) and with 9 users. All the users were from our own research group, but
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State Attempts Success Count (%)
Search 52 42 (80.77%)
Approach 42 40 (95.23%)
Close-range tracking 40 38 (95%)
Selfie Gesture 40 38 (95%)
Terminate Gesture 38 37 (97.37%)
Feedback System 52 51 (98.07%)
Total 52 37 (71.15%)

Table 5.2: The summary of failures in the end-to-end outdoor experiments

not necessarily familiar with the details of the interaction system in advance. In each
experiment, the UAV would take off from a fixed location and towards a predefined direction.
A safety pilot would correct the direction of the UAV after take-off to cancel out the yaw
error during takeoff, then would put the UAV in autonomous mode. The UAV’s search
behavior was to hover at the fixed altitude of 12 meters and tilt its camera down to 45◦.
During each experiment, one user would try to attract the UAV’s attention by using dual
arm waving gestures. The other user(s) would act as distractors either by walking or
standing in the FOV of the UAV. The UAV would execute the behavior described in 5.3.1
to find its interaction partner, approach and engage in close-range interaction with her,
while constantly provide light-based feedback as described in Section 5.3.6. In close-range
interaction mode, the single hand waving gesture of the user would cause the UAV to take a
close-range portrait photo - a selfie - of her. The user then would ask the UAV to terminate
the interaction and leave by performing a double hand waving gesture (Bye Bye). Upon
receiving this command, the UAV would turn away, ascend and restart its behavior from
the searching state. We briefed each user once in advance about the interpretation of each
feedback signal. For the outdoor experiments we set the prior on the size of the region of
the periodic motion (H1) to 1.5m and the prior on its distance from the ground (H2) to
1m.

We consider an experiment to be end-to-end successful when the human and the UAV
perform all steps of the interaction scenario described above. The incidents that would fail
an experiment were: search behavior does not succeed in less than 45 seconds or detects
a false positive, the approach behavior loses the target over the course of the approach
and does not recover or takes more than 30 seconds, the UAV does not detect the user’s
face before getting closer than 0.5m to her and when any of gestural commands fail after
more than one retries. Table 5.2 provides a summary of the failure points for all the
52 experiments. Taking all these failure points into account, 37 out of 52 experiments
(71%) were successful end-to-end. Figures 5.1 and 5.6 show snapshots from the UAV’s
FOV during each phase of the interaction process during each experiment. Except for high
resolution selfie shots, all other images are the actual image inputs to our interaction system.
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Figure 5.10 shows two sample three-dimensional approach trajectories generated from GPS
readings of the UAV.

As the breakdown in Table 5.2 shows, the major failure point of the system was in the
search behavior for interaction initiation (periodic motion detector). Other components of
the system performed with > 95% reliability. We also observed that for a few experiments
this task took a relatively long time to find the person of interest. We measured the average
and standard deviation of the response time of this component for successful runs as 34.82
and 17.02 seconds, respectively. From the 10 failures, 6 of them were due to false positives
and 4 were due to the timeout (false negatives). We further analyzed the failure cases of
this component by looking into the effect of different conditions on the failure. We observe
that the variable frame-rate of the input video stream, the low contrast between the user
and the background, the MPEG artifacts due to variable bitrate control were among the
most affecting factors. The low-contrast between the user and the background were mainly
caused by sunlight, failures in automatic white-balancing of the UAV’s camera and the
similarity of the color of user’s clothes to the background which makes the user a less
salient object in the environment. An immediate direction for future work is to improve
this component to improve its performance in real-world settings and decrease its response.
Similar to indoor trajectories (Figure 5.8), the flight trajectories of the UAV were smooth in
outdoor settings, and were able to steer the UAV towards the user at the maximum speed
of ≈ 2.5ms−1. The appearance based tracker performed well with occasional positional
and scale drift. However, since upon detecting a face, the system would re-evaluate its
estimated depth, those drifts did not cause major failures for the approaching behavior.
We can informally report that the close-range interaction system was responsive and users
found the color-light-based feedback system informative and intuitive.

5.5 Conclusion

In this chapter we presented the first demonstration of end-to-end human-UAV interaction
in outdoor environments that implements (i) explicit interaction initiation; (ii) approach
and re-positioning towards the user; (iii) close-range communication of commands from the
user to the UAV; and (iv) communication of intents from the UAV to the user. We show
how the user can use dual arm-waving gesture to attract a flying robot’s attention from a
distance, how an integrated visual tracking and servoing system can bring the robot to the
close proximity of the user and how the user can perform close-range interaction with the
UAV after the approach. Effective velocity control of the UAV based on computer vision
was achieved despite a high latency control loop. We also describe how the UAV employs
color-light-based feedback to keep the human informed about the intents of the UAV. We
implemented this system on a low-cost consumer UAV that we believe meets the minimum
safety requirements for the close-range interaction with a UAV. In a series of indoor and
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outdoor experiments we validated our integrated system, analyzed the accuracy of our depth
estimation and approach trajectories and identified major failure points of the system.
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Chapter 6

Conclusion and Future Work
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In this dissertation we described our approach towards designing an end-to-end Human-
Flying Robot Interaction system that relies only on embodied sensing capabilities of Un-
manned Aerial Vehicles and requires no instrumentation for its users. Motivated by emerg-
ing application domains of flying robots such as Wilderness Search and Rescue, we first
defined the essential components of an end-to-end interaction system for Human-Flying
Robot interaction as (i) interaction initiation; (ii) approach and repositioning; and (iii) two
way communication of intents and commands between flying robots and users (Def. 1). We
then provided an in-depth survey of state of the art in situated Human-Flying Robot Inter-
action systems. We discussed how new form factors and the increasing level of autonomy of
flying robots are affecting their application domains and changing the Human-Flying Robot
interaction paradigm. We argued that in the new application domains for flying robots, they
will start to operate in close proximity with people and with greater autonomy. This in-
troduces new opportunities and challenges for Human-Flying Robot Interaction research,
distinct from the concerns of traditional Human-UAV interaction research.

In our survey, we looked closely at related work on each component of the end-to-end
interaction system. Our survey shows there exists a limited body of research on direct and
uninstrumented human-UAV interaction. However, many of studies are only focused on a
specific component of the end-to-end interaction system. Furthermore, we identified that
explicit interaction initiation from distance and in outdoor settings, approaching towards an
interaction partner using a forward-facing monocular camera and explicit communication
of commands from humans to UAVs are among the least studied areas, specifically in a
context of designing a practical and autonomous interaction system (Table 2.2).

In Chapter 3 we introduced the first demonstration of a situated close-range Human-
UAV interaction system. We described our face engagement based method for interaction
initiation and our optical flow based gesture detection method for a moving camera. In a se-
ries of indoor Human-Multi Flying Robot experiments we demonstrated the applicability of
this approach and also designed a preliminary end-to-end Human-Flying Robot Interaction
system with limited motion and light-based feedback.

In Chapter 4 we examined the problem of explicit interaction initiation with a UAV more
closely. We introduced a fast computer vision pipeline that locates and tracks salient moving
objects in a moving camera’s field of view and analyzes their spatio-temporal motions to
detect stationary periodic signals. We first showed the performance of the pipeline on two
human activity recognition datasets, one being a challenging aerial dataset. Next we showed
how this pipeline can be used to detect dual arm waving signal of a human that wants to
attract a UAV’s attention while being robust to non-stationary periodic motions such a
walking or jogging humans. This was the first demonstration of a fully autonomous and
self-contained Human-UAV interaction system in outdoor settings.

Finally in Chapter 5 we combined the interaction initiation component of Chapter 4 and
the close-range interaction system of Chapter 3 with an approach controller and a light-based
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feedback system to design the first end-to-end Human-Flying Robot Interaction system. We
provided details about different components of our proposed approach controller, namely
depth estimation, visual tracking and cascade visual servo controller. We also introduced a
custom made lightweight embodied light-based feedback system to constantly communicate
the intent of the UAV to its fellow human interaction partner. Lastly, we tested our proposed
end-to-end interaction system in outdoor settings with different users. The experiments
showed that more than 70% of the time (35/52) (i) the user could successfully gain the
attention of the UAV from distances up to (25m) by waving at it; (ii) the UAV would
smoothly fly towards the user and hover 2.5m away from her while servoing to her face; and
(iii) upon detecting her hand gestures would take a selfie of her (iv) all while continuously
communicating its intents to her via light feedback.

As we will discuss in the following section, the components, systems and ideas we pre-
sented in this thesis require further refinements and experimentations for real-world de-
ployments such as in search and rescue scenarios. Nonetheless, we believe that we have
defined a new research direction for Human-Flying Robot Interaction. We have shown that
situated and direct interaction interfaces with flying robots are practical with a broad range
of applications. It also introduces interesting new challenges and research questions. The
source code for all the components of our flying robot interaction systems are available as
open source (Section A.1). We hope that this will help other researchers in this field repro-
duce our results and build upon our work to make real-world deployment of human-friendly
flying-robots a reality.

6.1 Future Work

For all our Human-UAV interaction experiments, a proper user-study with naive partici-
pants would be required to justify a formal claim that these systems are “intuitive” or better
than any other methods. Although we do not make this claim, but note informally that
selecting a robot by looking at it and attracting a UAV’s attention or sending commands
to a UAV by waving at it is fun, and for our close-range interaction component it is respon-
sive and feels easy and natural. As we discussed in Section 2.2.2.1, these types of formal
user studies with flying robots have been mostly performed in Wizard-of-Oz manner by re-
searchers. It would be valuable to study how practical, collocated and direct Human-UAV
interaction systems are perceived by their potential end users, which interaction modalities
are preferred by them and how those modalities perform in real-world scenarios. More
specifically it is interesting to see if a flying-robot’s autonomy affects the results reported
by user studies in Section 2.2.2.1.

In the context of communication of commands from humans to UAVs, robust, embodied
and fast solutions for detecting natural human gestures (and activities) from a flying robot,
both in close-range interaction and long-range interaction scenarios are of great interest
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to the community. Our close-range gesture recognition pipeline uses a very small set of
discrete gestures. In order to extend this vocabulary for real-world applications, further
research is required on detecting gestures from a moving monocular camera. Furthermore,
designing multi-modal interfaces as well as interfaces that are tailored for [multi-]human -
[multi-]robot interaction scenarios are interesting research topics in this area. Many state
of the art visual and non-instrumented gesture recognition systems rely on depth or stereo
cameras to operate. In recent years, the weight and cost of depth and stereo sensors have
decreased and the trend is likely to continue. One possible research direction is to adapt
these techniques to work with moving cameras, similar to the work by Naseer et al. [125]
which we described in Section 2.2.2.2.

As results of our interaction initiation (Section 4.4.2) and end-to-end interaction exper-
iments (Section 5.4.2) indicate, the response time and false negative rate of the stationary
periodic object detection pipeline need further improvement. Future research can focus on
enhancing the individual components of to the pipeline i.e. background-foreground segmen-
tation and salient object detection and spatio-temporal analysis. In addition, integrating
state of the art human detectors into this pipeline can improve its performance. This adap-
tation should take into account the unique characteristics of the underlying flying platform.
A few of these characteristics that we introduced in Section 2.2.1.2 are time-varying van-
tage points, limited on-board sensing and computational capabilities as well as the rela-
tively small pixel size of humans. In addition, we believe that explicit interaction initiation
through human activity recognition is of great value specially in environments where multi-
ple humans might be present in flying robot’s field of view. Focus of attention mechanisms
based on saliency maps is one of other potential research topics in the area of interaction
initiation. Furthermore, dealing with false positives during interaction initiation can be
studied further. Our proposed approach in Section 5.4.2 relies on a face detector to further
confirm the presence of the detected interaction partner during approach. Future research
can focus on more advanced UAV behaviors such as active searching [157] to improve the
robustness of the interaction initiation pipeline.

Other topics of interests are incorporating human-aware controllers for general UAV
navigation and follow the user/approach the user scenarios as well as more studies on
proxemics and safety issues in Human-Flying Robot interaction.

Overall, there are many opportunites for research and commercial development of Human-
UAV interaction systems. We hope the work described in this thesis is a useful early con-
tribution in this area.
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Appendix A

Supplementary Source Code and
Media
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A.1 Open Source Software

ardrone_autonomy: ROS driver for Parrot AR-Drone 1.0 and 2.0 quadrocopters

• Supplementary material filename (source code and documentation):
ardrone_autonomy_1_4_1.tgz

• Online source code repository:
https://github.com/AutonomyLab/ardrone_autonomy

• Online documentation:
http://ardrone-autonomy.readthedocs.io/en/latest/

• Used in: Chapter 3

bebop_autonomy: ROS driver for Parrot Bebop quadrocopters

• Supplementary material filename (source code and documentation):
bebop_autonomy_0_5_1.tgz

• Online source code repository:
https://github.com/AutonomyLab/bebop_autonomy

• Online documentation:
http://bebop-autonomy.readthedocs.io/en/latest/

• Used in: Chapter 5

autonomy_human: Face engagement and tracker module and optical flow-based gesture
detector (ROS package)

• Supplementary material filename (source code and documentation):
autonomy_human_0ddb715.tgz

• Online source code repository:
https://github.com/AutonomyLab/autonomy_hri/tree/dev/autonomy_human

• Used in: Chapters 3 and 5

obzerver: Periodic salient object detector for interaction initiation (C++ library)

• Supplementary material filename (source code and documentation):
obzerver_cd33926.tgz

• Online source code repository:
https://github.com/AutonomyLab/obzerver/tree/opencv-3.0

• Online documentation:
http://autonomylab.org/obzerver/

• Used in: Chapters 4 and 5

obzerver_ros: ROS Wrapper for obzerver

• Supplementary material filename (source code and documentation):
obzerver_ros_23e7d2.tgz

• Online source code repository:
https://github.com/AutonomyLab/obzerver_ros
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• Used in: Chapters 4 and 5

bebop_vel_ctrl: Velocity controller for Parrot Bebop Drone (ROS package)

• Supplementary material filename (source code and documentation):
bebop_vel_ctrl_4962f39.tgz

• Online source code repository:
https://github.com/AutonomyLab/bebop_vel_ctrl

• Used in: Chapter 5

bebop_vservo: Visual servo controller for Parrot Bebop Drone (ROS package)

• Supplementary material filename (source code and documentation):
bebop_vservo_f25bfaa.tgz

• Online source code repository:
https://github.com/AutonomyLab/bebop_vservo

• Used in: Chapter 5

autonomy_leds: Firmware and animation engine for DotStar LED strips (ROS package)

• Supplementary material filename (source code and documentation):
autonomy_leds_1f9073a.tgz

• Online source code repository:
https://github.com/AutonomyLab/autonomy_leds/tree/dev

• Used in: Chapter 5

bebop_hri: The behavior generator code for the end-to-end experiments

• Supplementary material filename (source code and documentation):
bebop_hri_6d8857.tgz

• Online source code repository:
https://github.com/AutonomyLab/bebop_hri

• Used in: Chapter 5
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A.2 Media

Chapter 3

• Close-range indoor experiments (Sections 3.4.1 and 3.4.2)
– Supplementary material filename: ardronehri_iros13.mp4
– Online video URI: https://www.youtube.com/watch?v=xHH3GvZ52xg

• Integrated multi-modal demonstration (Section 3.4.3)
– Supplementary material filename: integrated_dronehri_hri14.mp4
– Online video URI: https://www.youtube.com/watch?v=heiYPVGFnEM

Chapter 4

• Outdoor interaction initiation experiments (Section 4.4.2)
– Supplementary material filename: pelicanhri_iros15.mp4
– Online video URI: https://www.youtube.com/watch?v=KXmgBDI_6PE

Chapter 5

• Outdoor end-to-end Human-Flying Robot Interaction experiments and demon-
stration of light-based feedback signals (Section 5.4.2)
– Supplementary material filename: bebophri_iros16.mp4
– Online video URI: https://www.youtube.com/watch?v=6kKuGH0B8XY
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