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Abstract

We describe a novel method whereby a particle filter is used to create a potential field for robot
control without prior clustering. We show an application of this technique to control a team
of mobile robots to cooperatively locate and track a moving target. The particle filter models
a probability distribution over the estimated location of the target, providing robust tracking
despite frequent target occlusion. This method extends previous work in particle-filter-based
tracking in two important ways. First, the particle cloud is never clustered to find a single
estimate of target location. Instead, robot motion is guided by a potential field generated
directly from the particle cloud. Secondly, effective coordinated multi-robot searching and
tracking can be achieved by simply assigning a subset of the particles to each robot.

Simulation trials and real robot experiments demonstrate the method successfully locating
and tracking targets, and experiments show that multiple coordinated robots outperform a
similar but uncoordinated team.

1 Introduction

1.1 Problem Statement

Estimating the position of target objects is an important sub-problem in many real-world robotics
applications. There are two basic variations of this problem: locating an object whose position
is initially unknown, and tracking the changing location of an object given an initial location.
The challenge in both variations of the problem is coping with the limitations of target-detecting
sensors. Even assuming a sensor that reliably detects targets within its field of view, the target
may be out of range or occluded. In this case, the task becomes one of moving the sensor so that
the target falls within its field of view. If the target is moving, the sensor may need to move to
keep the target in view. This is a natural application for mobile robots, which can sweep large
areas with their sensors over time in contrast to static sensors. Using multiple robots can increase
the effective sensor field of view, and so should in theory enable superior performance. However,
a multi-robot coordination strategy is required to maximize the effective sensor area and to avoid
spatial interference between robots.

This paper proposes a method for locating and tracking a moving target using one or more
mobile robots. The method is robust to pervasive occlusion of the target. When more than one
robot is used, the method automatically coordinates their activity to effectively parallelize the
search task and avoid spatial interference.
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Figure 1: A robot (rectangle) tracking a person (stick figure) who has disappeared from view.

1.2 Background

Target tracking systems are vulnerable to failure in situations in which targets go out of the field
of view of the sensors for a long period of time. Consider the task of a mobile robot tracking a
person through a building. Figure 1 shows the situation where a robot has followed its target down
a corridor to a T-junction, and the target has left the robot’s sensor field of view. Assume that
the robot did not detect whether the person moved to the right or the left. The naive tracker has
now lost the target.

A general solution to the occlusion problem is to use a model-based approach, whereby the
tracking system can make some predictions about the behaviour of the occluded target. Proba-
bilistic models have become popular due to their robustness in the presence of uncertainty, which
makes them able to cope with large amounts of sensor noise and occlusion. One elegant feature
of using a probabilistic model is that the target locating problem can be reduced to the tracking
problem. If the initial target location is represented as a prior distribution over possible positions,
then a uniform distribution over all possible positions represents a ‘null’ or ‘don’t know’ hypothesis
(most practical implementations make use of the particle filter to approximate the true probability
distribution). If the tracking method is powerful enough to locate the target from such a weak
prior, then we have a general locating-and-tracking method.

In addition to extensive work on target tracking in the computer vision community, several
authors have described tracking systems using autonomous mobile robots. As an example of a
recent work (Schulz et al., 2003) have introduced sample-based joint probability data association
filters to track multiple moving objects. (Montemerlo et al., 2002) present a probabilistic algorithm
called the conditional particle filter to track a large distribution of people locations conditioned
upon the robot poses. These approaches are concerned with the guidance of individual robots only.

Target tracking performance and reliability can be improved by deploying multiple robots,
but in general some coordination strategy is needed to avoid interference and maximize paral-
lelism.(Jung and Sukhatme, 2004) have proposed an example cooperative system. (Stroupe et al.,
2004) have developed an optimized coordination strategy to track multiple targets with a team of
robots. Their approach, in common with the other approaches mentioned above, works well when
the target lies in the sensors’ field of view or has a short-term occlusion but they do not address
the long-term occlusions which cause large uncertainty for the tracker.

Pursuit-evasion games also model a searcher chasing an evader. This class of problems guaran-
tees that even in the worst cases in which the evaders move arbitrarily quickly, any evader would
be found by a group of pursuers. (LaValle et al., 1997) proposed a pursuit-evasion method for
k-searchers where each searcher is equipped with k flashlights by which they can see the environ-
ment. (Gerkey et al., 2004) recently showed a generalization of this method by introducing a new
class of searcher, the φ-searcher where each pursuer has a φ radian field of view instead of infinitely
thin beams.

A practical deficiency of the known solutions to the pursuit-evasion problem is that they are
highly computationally intensive and do not scale well in application to multiple-robot systems.
For example, in Gerkey’s approach, the joint information and action space grows exponentially
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Figure 2: The point-cloud represents a set of hypotheses about the target’s current position,
generated by a probabilistic model of its movements.

in the number of searchers. In addition, this method cannot be implemented perfectly for real
applications, since it requires searchers to exactly traverse wall and obstacle boundaries. In the
real world this can not be perfectly achieved, so the algorithm would lose its correctness guarantee.
A further limitation of pursuit-evasion methods is that these methods do not address the continuous
tracking of intruders once they are found.

Building on this previous work, we propose a novel technique that tightly integrates robot
motion control with the target position estimation system to locate and track targets. Further,
the method can be used to coordinate multiple robots using a modest amount of robot-robot
communication. As mentioned above, existing tracking methods (excluding the pursuit-evasion
methods) focus on combining sensor measurements to track the object of interest. The problem
arises when the object of interest goes out of the field of view for a long period. Our method
simultaneously addresses this problem and the problem of coordinating multiple robot trackers.

1.3 Task and Approach

Consider the example shown in Figure 1 again. Assume that the target may have moved left or
right, but its top speed is limited and it may not move through walls. A probabilistic model of
the target’s future movements would generate a bimodal probability distribution over the possible
future target locations, which would be represented in a particle filter as a split particle cloud.
Each dot in Figure 2 shows a possible location of the intruder. If each particle is weighted with
the same probability, the density of particles in a region indicates the probability that the target
will be found in that region. If a particle falls within the sensor’s field of view, but no target is
detected, the particle can be eliminated. Considering this model, we can state a simple rule that
maximizes the probability of observing the target: the robot must visit all particles, where ‘visit’
is defined as positioning the robot so that the particle falls within the sensor field of view.

The task of our robot controller therefore is to maximize the number of visited particles. This
approach was taken by (Rosencrantz et al., 2003) to locate the opponents in a laser tag game in
which the opponents might be under pervasive occlusions. However, their work mostly addressed
the improvement of the tracker for multiple opponent tracking, rather than coordination of multiple
trackers.

In this paper which is an extension of (Mottaghi and Vaughan, 2006), a particle filtering method
has been implemented to represent arbitrary multi-modal densities for the location of the intruder.
Then we apply a potential field method on top of the particle filtering for coordinating multiple
agents to move so as to reduce the uncertainty in the target location. Each agent decreases the
uncertainty in its own target position estimate by observing as many particles as it can.

Section 2 presents an outline of the probabilistic tracking method, robot mapping and local-
ization. Section 3 introduces a novel technique where a particle cloud and map are combined
to create a potential field robot controller for a single robot. In section 4, we present coopera-
tive action selection and optimization strategies for searching the environment by multiple robots.
Then an experimental section shows the result of the implementation of the proposed method on
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simulated and real robots in different environments. Additionally, the performance of the system
has been studied with respect to different population sizes, with and without communication, and
also different types of communication between teammate robots.

2 Probabilistic Tracking

2.1 Prerequisites: Localization and Mapping

We assume a map of the robot’s workspace is available. Such a map can be provided a priori, or
acquired automatically online or offline using tools such as those described by (Thrun, 2002). For
the experiments in this paper, we supply a priori maps. Also, the robots need an estimate of their
location and orientation. Using the map, odometry and laser scan data, good pose estimates are
obtained using Monte Carlo localization (Thrun et al., 2001), where the belief about the position of
the robot at the current time step, Bel(xt), can be estimated by recursive update of the following
equation:

Bel(xt) = ηp(zt|xt)
∫

p(xt|xt−1, at−1)Bel(xt−1) dxt−1. (1)

where, p(zt|xt) is the sensor model and p(xt|xt−1, at−1) is the next state density or motion
model and at−1 is the action performed in the last time step. The separation of mapping stage
from localization can somewhat help us to reduce the computational burden of the whole system.

2.2 Particle Filter Tracking Method

Since our target of interest is moving autonomously, and may be invisible to our sensors for extended
periods, our probabilistic estimate of its position may have a multi-modal distribution. Thus we
use particle filtering to track it. For instance, such a multi-modal distribution is caused when the
particles arrive at a 3-way junction of corridors as shown in Figure 2. According to a pre-defined
motion model of the target, combined with the map, the pose-estimate particles spread into the
available space. The state that we want to estimate consists of the location and orientation of the
object. So our state vector has the form xt = [x, y, θ] where x and y are two-dimensional Cartesian
coordinates of the object on the map and θ represents its orientation.

In the cases when we have an observation of the object, a probability distribution over the
state space is found according to the measurement, p(xt|z1, z2, ..., zt), that is the probability of the
state at time t provided that the observations from time 1 up to time t are equal to z1,z2,...,zt

respectively. Using Bayes’ rule, p(xt|z1, z2, ..., zt) is computed as follows:

p(xt|z1, ..., zt−1, zt) =
p(xt|z1, ..., zt−1)p(zt|xt, z1, ..., zt−1)

p(zt|z1, ..., zt−1)
(2)

Since the measurement at time t is independent of the previous measurements given the cur-
rent state, according to the above rules p(zt|xt, z1, ..., zt−1) = p(zt|xt). Also p(zt|z1, ..., zt−1) is a
constant. Therefore:

p(xt|z1, ..., zt) = kp(zt|xt)p(xt|z1, ..., zt−1) (3)

We can compute p(xt|z1, ..., zt−1) by applying the dynamic model of the object to p(xt−1|z1, ..., zt−1)
which is known from the previous time step. The dynamic model is a known motion model of the
object and it is approximated before the start of tracking or during the tracking online and it
relates the state vector at current time step to that of previous time step. The motion model can
be defined as a combination of deterministic and stochastic parts:

xt = f(xt−1) + stochastic part (4)
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Figure 3: Motion of the target is modeled with two different Gaussian functions.

f can be any function which relates the current state of the samples to the previous state.
Because the movement of the object is unpredictable from the point of view of the tracker, we
add a stochastic part to the motion model to add unpredictability to the deterministic model. For
example, the intruder can stop or move backward instead of moving forward which is forced by
the deterministic model.

2.2.1 Motion Model

The motion model depends on the intrinsic properties of the object and the environment in which
the object moves. For example, (Liao et al., 2003) and (Bruce and Gordon, 2004) have studied
the motion model of people in an indoor environment where the former assume the motion is
constrained to the voronoi graph of the environment and the latter use the intuition that people
tend to move on efficient paths rather than random trajectories. In this paper, we use a conservative
motion model since we do not have any assumption about the tracked object. The particular motion
model used for our experiments is described below. If a robot perceived the previous movement
of the target, we denote the magnitude of target displacement vector at time t by rt. The general
idea is to add some unpredictability to rt and move each particle in the direction of its orientation
by the amount computed from rt.

Our motion model is a combination of two Gaussians which peak at rt. This models our ex-
pectation that, at any timestep, the current motion of the target is the same as its previously
observed motion. The reason for choosing two Gaussian functions is that the probability of in-
creasing speed might be different from reducing speed. For instance, in most cases the target goes
out of sensor range at corners and usually a target reduces speed when it turns. Therefore, it is a
good assumption that the target will increase its speed after turning. Figure 3 shows the motion
model distribution where it is composed of G1(µ = rt;σ1) and G2(µ = rt;σ2).

For every particle, we sample from this distribution and add the movement vector to the
current position of the particle. Since the distribution is not well-defined, the sampling step is not
straightforward. The sampling procedure is as follows: one of the distributions (G1 or G2) will be
selected with probability of 0.5. After selecting one of the normal functions, we sample from that
distribution. If a sample from distribution G2 falls in the region on the left of rt, we just consider
a value that has the same probability but is larger than rt. The same explanation is true for the
samples from G1. σ1 and σ2 are specified a priori such that they represent our assumption about
the motion of the tracked target.

Therefore, the magnitude of the displacement is equal to the sample drawn from the above
distribution but only a simple Gaussian noise is added to the orientation. It should be noted that
when the target is observed σ1 would be equal to σ2.

If st
is

t−1
i ∩Cobs "= ∅, the sample is moved to the nearest point in the free space in its direction of

movement and noise is added to the previous orientation. st
is

t−1
i is the line segment that connects
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Figure 4: Motion of the target is constrained to free space.

the position of sample i at the current time step to its position in the previous time step and Cobs

is the space of all of the obstacles present in the map. Intuitively, it means that the particles are
not allowed to go inside an obstacle or through a wall. Figure 4 shows this case. This models the
constraints on the target that it can only move through free space.

2.2.2 Reweighting

The next step would be the reweighting of the samples to find the probability distribution of the
object over the state space. Two cases have been considered for the reweighting step:

1. We define the area S which is a circular segment as the sensor visibility of the agents. This
area is centered at the robot position and its central angle, ϕ, is in the range θ− F

2 to θ + F
2

where θ is the robot orientation and F is the field-of-view angle subtended by the sensor. It
should be noted that not having perfect localization will not affect the method. Finally, the
radius of the circular segment shows the sensor range. If the ith sample si ∈ S and the line
that connects the sample to the robot does not intersect an obstacle, wi the weight of that
sample will be zero. This case is shown in Figure 5(a). Thus the robot deletes the particles
that it now knows do not correspond to the real position of the target.

2. If have we an observation of the object, the Factored Sampling method (Isard and Blake,
1998) is used to find the new weight of the samples. If the number of samples goes to infinity
the distribution of samples from p(zt|xt)p(xt|z1, ..., zt−1) tends to be that of p(xt|z1, ..., zt−1, zt).
A reasonable assumption for accommodating noise in the sensor model is to be a Gaussian
function where the mean of the Gaussian is located on the real measurement from the sensor
and its deviation is determined according to the sensor and the map. Figure 5(b) shows the
reweighing of each sample according to the Gaussian function. It should be noted that we
have shown the observation density for a one-dimensional case. A higher degree function
needed for higher dimensional state spaces.

If neither of the above cases happened, the sample keeps its previous weight or we can assign
an equal weight to all of the samples. We describe below how these particles and their weights are
used to track the object. In the traditional particle filter tracking system, some clustering method
is used to decide what the current ‘actual’ estimate is. Usually the weighted mean or median of
a particle cluster is considered to be the target. We avoid this clustering step, and thus avoid
the artifacts it can introduce. As we may not have an observation during the tracking, we try to
maximize the number of visible particles while simultaneously optimizing the joint motion of the
robots.

3 Tracking using potential fields

Our goal is to reduce the uncertainty in the target position by maximizing the number of visited
particles. Also, the likelihood of finding the target is maximized if all the particles are swept off.
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(a) The robot assigns low weights to the
visited particles.

(b) Reweighing the particles according to the sensor model.

Figure 5: Weighting schemes.

A practical problem with most of the existing methods such as POMDPs (Partially Observable
Markov Decision Processes) which are otherwise well-suited to solve this kind of problem, is that
their computational complexity or memory needs grow exponentially with the number of robots
(Roy et al., 2005). The problem also can be simplified to find a polygon in the environment to
cover as many particles as possible and move the robot with a limited field of view to that area
to cover a large number of particles. But there is no polynomial algorithm for performing these
calculations.

The problem can be formalized as minimizing the entropy of the particles as a measure of
predictability of the system. Therefore, the searcher robots should try to decrease the entropy
of the probability distribution over target locations. In practice this means shrinking the area
containing the particles into a small region which will be a good estimate of the location of the
target. However, one of our major restrictions is that when the target is not visible, we do not have
complete information about the probability distribution that is necessary to compute the entropy
of the system. Therefore, we use a heuristic approach to decrease the uncertainty in the location of
the target that may not always result in the optimum solution. However, the experiments described
below suggest that our method performs well in practice.

We implement a potential field method for doing this task which is O(Npn) in the worst case
where n is the number of cells if we represent the map by grid cells and Np is the number of
particles used in the tracking algorithm. For speed, the number of particles which are used for
the calculation of the forces can be decreased by selecting at random a subset of the particles.
Since the particle filtering results in producing more particles in the high probability areas, the
chance of choosing particles in those areas would be higher and the distribution of the particles is
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Figure 6: The short arrowed line shows the Euclidean distance between two points which is not
useful for calculating the attraction force because of the presence of the obstacle. The longer
arrowed line shows the traversible distance.

approximately the same. So we perform the update stage for the whole set of particles but calculate
the forces based on the randomly chosen particle subset. Potential Field methods were used for
robot control and motion planning in their early robotics applications (Khatib, 1986), where a
robot was considered as a particle which moved in a free space. Obstacles exerted repulsive force
on the robot while the goal exerted an attractive force on it and the resultant force caused the
robot to move from a source to a goal without colliding with obstacles.

In the following subsection we explain the method for finding the distances on a traversibility
map, instead of Euclidean distance, and subsequently, how a potential field can be generated to
provide motion control for tracking.

3.1 Finding map distances

For maximizing the number of visited particles, the intuitive idea is that each particle exerts an
attractive force on a robot. The greater number of particles in an area, the larger the attractive
force in that direction experienced by the robot. This force is inversely proportional to the distance
from the particle to the robot. This means that the robot tends to sweep the nearest particles first.
But when the robot’s mobility is limited by obstacles, as shown in Figure 6, the Euclidean distance
from particle to robot does not indicate how quickly the robot can reach the particle. Instead we
must calculate the shortest traversible path using the map.

In our implementation, shortest-traversible-path calculations are done using a simple occupancy-
grid flood fill method, though any equivalent method could be substituted. The distance algorithm
outputs a value which is assigned to each grid cell and shows the distance of that cell from the
cell where the robot is located. The flood-fill works as follows: First, we assign a zero value to
the cell in which the robot is located and an infinite number to the obstacles. Then, we pick one
of the free cells around the robot cell and increment its value by one and put that cell in a queue
and pick another neighbor cell until there is no cell around the current cell without an assigned
value. The order of picking the neighbors is important and we pick only top, bottom, left and
right neighbours. After that, we pop the first cell in the queue and perform the same procedure
for its surrounding cells. This algorithm is continued until there is no cell in the queue. This
method returns the minimum map distance of a point to the current position of the robot and its
time complexity is O(n) when implemented by a queue where n is the number of cells on the map.
Figure 7 shows an output of this method for measuring the map distance of a cell of the map.

Thus we find the map distance of each particle from the robot as required for the calculation of
the forces exerted by the particles. These calculations are explained in detail in the next subsection.
For simplicity, from now on we represent the map distance of a cell, which is located at row i and
column j, from the robot cell by ∆(i, j).
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Figure 7: The map (traversible) distance of the cell numbered 7 the robot cell labeled R is calcu-
lated by using the flood fill method. The shaded area is an obstacle on the map. The circle shows
the circle that encloses the cells used to compute the local motion vector, shown as an arrow.

3.2 Computation of potential forces

The navigation of our robots is based on the total force which is exerted on the robots by randomly
selected particles. That means at each time step, we apply the normalized total force to the robot
to find its next target position. An underlying position device based on the extended Vector Field
Histogram (VFH) (Ulrich and Borenstein, 1998) performs the task of avoiding local obstacles
while moving according to the potential field. We use the well-known VFH implementation that
is provided with the Player robot server (Gerkey et al. 2001). To compute the total potential
acting on a robot, we find the force vector for each particle. Then, we sum the vectors to find the
magnitude and direction of the resultant total force.

To find the approximate direction of the resultant of the total particle forces, we start from the
cell where the particle is located and we check its surrounding cells, the cell with the minimum
value will be selected. We continue performing the same procedure for the minimum-value cell
until we reach a certain distance from the robot cell (this approximate distance is indicated by
the circle in Figure 7). The direction of the force is approximated by the direction of the vector
from the robot to the cell that is reached through the above procedure. The reason that we do
not use directly the vector from the robot to the particle, is that the vector may intersect the
obstacles that has blocked the robot way. Figure 7 shows an example of finding the force direction.
The dashed line shows one of the paths from the goal cell (marked 7) to the robot cell and the
vector from the robot to the cell with value 3 can be considered as the force direction. A suitable
value for this threshold parameter is determined empirically. We found that a few multiples of
robot radius worked, in combination with VFH’s local steering, to generate smooth paths around
complex obstacles.

If mi and ni are the row and column index of particle i in the map grid, the magnitude of the
force exerted by that particle, Fi, is calculated by the following Gaussian model:

Fi =
1

σ
√

2π
e−

1
2

∆2(mi,ni)
σ2 (5)

where σ is assumed to be a constant in the whole process of tracking or it can be determined
according to particle data. σ is the parameter that determines the priority for sweeping the
particles close to the robot. The reason for choosing a Gaussian function is to assign more priority
to the closest particles while the deviation is tunable by σ. This equation means that the closer
particles exert a larger force and the first priority of the robot is to sweep the nearest particles.
Nevertheless, if the number of particles is large in an area the robot will be attracted to that area
neglecting the nearest particles (unless they happen by chance to be swept by the sensor field of
view as the robot moves). The magnitude and direction of the attractive force is determined by
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the vector summation of the forces from all of the particles which were selected randomly from the
whole set of particles. The robot will be driven around according to the direction of the resulting
force.

The main criticism of potential field methods in general is that rapidly changing local optima
can cause an oscillatory behaviour in the navigation of the robot. However, because of the random
nature of the particle filtering method and clearing of the particles during the navigation, the
symmetry breaks and we have not observed adverse oscillations in the robot movements. There
are a lot of tricks to get rid of the oscillation caused by potential field methods. An ad hoc solution
which improves the performance slightly is to consider the direction and magnitude of the past
forces in the calculation of the current force that is exerted on the robot.

This method is very easily extended to rationally coordinate multiple tracking agents, as de-
scribed in the next section.

4 Coordination Strategies

The tracking performance of the system can be improved by simply adding more robots, but to
maximize performance, the robots’ actions should be coordinated in some way. In this section we
describe how multiple robots can cooperate to perform the assigned task according to the potential
fields which have been formed by the particles. The basis of the technique is that each robot selects
a subset of its particle cloud to visit, and ignores the rest. Various alternative methods of selecting
particles can be considered, but in this paper we allocate to each robot those particles that are
closer to it than to any other robot, i.e. in a Voronoi diagram of robot locations, we allocate each
particle to the robot in its containing cell.

This requires that each robot has an estimate of the location of the other robots. Each robot can
send its global position information to the teammates through communication or it can localize
the other robots in its coordinate frame. Both of these constraints are feasible using current
methods and since the exact position of the other team members are not required, any suitable
approximation method can be used. In our simulations, we use communication among the robots.
The communication can be direct communication between two robots or in the case of limited
communication range, a robot can get the location information of one robot through communication
hops via intermediate robots. Each robot has its own set of particles which are updated according
to the robot observation and the information received from teammates and no particle information
is exchanged among the robots.

As stated before, we want to reduce the uncertainty in target position estimate by maximizing
the number of visited particles (observing the locations of more particles). So our goal is to cover
an area that is occupied by larger number of particles and to prevent the particles from further
spreading. Two simple cases are shown in Figure 8. Figure 8(a) shows the case where we have two
high density regions that means the chance of finding the intruder is high in those two regions. The
best action to minimize the uncertainty is that one robot goes toward one cloud of particles and
the other robot goes toward the other cloud. The next figure (8(b)) shows the case where there is
a single high density area. The best action to shrink the particles’ area and prevent it from further
growing is that the robots approach the covered area from different directions. Our coordination
method achieves the desired behavior while minimizing the path that a robot navigates.

To coordinate the motion of the robots, we compute the cooperative forces which are exerted
by the set of particles on each robot. These forces will determine the navigation direction of the
robots. First, we assign a value to each particle according to density and distance of the robots.
The more negative the value, more desirable for the agent to go toward that particle. This value
which is represented by Vn,j for particle n relative to agent j is determined by:

Vn,j =
N∑

i=1,i "=j

{
−wiFnj ∆i > ∆j ;
wiFni ∆i ≤ ∆j .

(6)
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(a) (b)

Figure 8: Results of the coordination strategy for two robots in two simple cases. Each robot
moves towards those particles that are closest to it, leading to appropriate coordinated behaviour.

Figure 9: Two robots (small rectangles) are separated by a wall (dark rectangle) . The light and
dark shaded areas show the set of points that are closer, in traversible map distance, to each robot.

where Fnj and Fni are the forces that particle n imposes on agent j and agent i, respectively and
are computed according to Equation 5. N is the number of agents used for tracking and wi is a
priority factor which is used to assign higher priorities to some agents. Also, ∆i and ∆j are the
map distance of the nth particle from agent i and agent j. Intuitively, this equation means that
the parameter V will be more positive for a selected particle and a specific robot if the density of
the other robots around the particle is high. That means each robot will attend to those particles
that are closer to itself than to any other robot. The boundary between the shaded regions in
Figure 9 is the boundary of positive and negative values of map distance differences in an example
configuration of two robots. We normalize these values to get positive force magnitudes. The
normalization is done by an exponential function again. So, the force magnitude that particle n
exerts to agent j in presence of the other robots, Fn,j , is calculated as follows (note that Fn,j is
different from Fnj since Fnj is that force without the presence of the other robots):

Fn,j = e−(Vn,j−Vmin)2 (7)

where Vmin is the most negative value. The direction of the force is also found by the procedure
described in the last section. Now, we should find the vector sum of the forces which are exerted
to one robot by the set of particles, So:

F tot
j =

Ns∑

n=1

'Fn,j (8)
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where Ns is the number of randomly selected particles. As mentioned before, for the sake of
efficiency, we use a small set of particles for force calculations and only the update step (in particle
filtering) is done for the whole set of particles. The direction of navigation of robot j is determined
by 'F tot

j .

5 Experiments

We present a series of experiments to demonstrate and evaluate the utility of our method. All
of the requirements for the proposed method including localization and mapping, probabilistic
tracking and path planning, have been discussed above. In this section, we show simulated and
real examples of target tracking, highlighting the ability of the method to cope with periods when
the target object is not observable.

The experiments are done in simulation using the well-known Player/Stage robot development
and simulation system (Gerkey et al., 2001). We use the standard mobile robot base and scanning
laser rangefinder models included with Stage, in their default configurations. These model the
common ActivMedia Pioneer-3DX robot and SICK LMS-200 rangefinder. We also use a “fiducial-
finder” to detect the objects of interest, generically modeling a feature detector on a camera or
other sensor. A simple real-world validation is performed using a two physical Pioneer-3DX robots
with SICK LMS-200s. In all cases, the robots communicate through TCP to exchange position
and orientation information.

We present:

A1. A simulation demonstration of two robots cooperatively tracking a target in an artificial
corridor environment.

A2. A real robot demonstration of two robots cooperatively tracking a target in an real office
building corridor environment.

B1. A simulation experiment to compare the performance of target tracking with and without
coordination.

B2. A simulation experiment to compare the performance of target finding with and without
coordination with robot teams of different sizes.

It should be mentioned that in all of the experiments, σ2 = µ and σ1 = µ/3 for our motion
model.

5.1 A1: Simulated Robot Demonstration

In this simulation demonstration, closely resembling the experiment of (Jung and Sukhatme, 2004)
two searcher robots, S1 and S2 start out at the bottom of a figure-8 shaped world the world as
shown in Figure 10(a) (left), and try to locate the position of an intruder, T , which starts at some
unknown location an can move. Each robot has an identical map of the world, and an initially
null hypothesis about the location of the target: the particle filter particles are initially spread
randomly in the traversible free space, indicating that the target could be anywhere on the map
(Figure 10(a) right).

The intruder is controlled manually by the human experimenter who sees the whole world and
tries to evade the searchers. In Figure 10 the left-hand pictures are screenshots from the Stage
simulation and the right-hand pictures show the map and particle cloud maintained by one of the
robot controllers. The robots start searching by moving in opposite directions along the corridors,
which maximizes the number of particles visited and thus reduces the uncertainty in the target
position estimate (Figure 10(b)). Then S2 sees the intruder but the intruder suddenly goes out of
its field of view. Therefore the particles are gathered in a small region of the top right and robot
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S1 takes the shortest path toward the particles (Figure 10(c)). But as the target becomes occluded
again as it attempts to escape from S2, the particles start spreading along the top corridor. This
causes S1 to reverse direction and to move left and up to catch the target as it moves left along
the top corridor, while the other robot covers the area behind the intruder (Figure 10(d)).

Finally, the searchers trap the intruder and both observe it simultaneously. The particle cloud
shrinks to a small region giving a very good estimate of the target position (Figure 10(e)). Note
that the final target position distribution has much higher kurtosis than is apparent in the images,
due to their limited resolution.

5.2 A2: Real Robot Demonstration

We seek to verify that the proposed method can work in practice using real robots. The main
challenge is dealing with noise in robot sensors and actuators that is not present in simulation. We
collected map data offline from our lab environment and used two Pioneer-3DX robots operating
in our office building to run the real-world demonstration.

The robots’ task is similar to that of the simulation demonstration, except that in this case,
we allow for the possiblity that no target is present. This is defined as the case if the robots can
continously and simultaneously observe all possible locations of the target and thus determine that
is is not present. The corridor map provided to the robots is shown in Figure 11(a). The particles
are distributed uniformly on the entire map at the beginning which means the intruder can be
anywhere on the map. Intuitively, if the robots clear all of the particles, they can be certain that
there is no intruder inside that part of the building.

Photographs of the real robot demonstration are shown in Figure 11, showing the robots at five
different points on the traversed path (Figure 11(a)). Figure 11(c) shows the two robots together
near the beginning of the trial. The robots exhibit desirable behaviour, heading off in opposite
directions to avoid clearing the same particles, thus maximizing parallelism, and searching the area
faster. Figure 11(g) shows the two searchers a few minutes later converging on the only remaining
unexplored area. Having observed that no target is present here, the robots correctly conclude
that there is no target on the map. Figure 11(b) shows the approximate trajectories of the two
robots.

5.3 B1: Experiment 1 - Evaluation of Tracking

In this section, we evaluate the performance of the method for target finding and tracking for a
team of robots. Our performance metrics are the amount of time spent for finding the intruder,
and the amount of time following first observation that the target is occluded. Less is better in
both cases. Our goal is to show that a system of coordinated robots will outperform similar but
uncoordinated robots.

We perform three experiments in this section:

1. Searcher robots try to find the intruder without any coordination strategy. They do not have
any information about the teammates and act individually.

2. The robots communicate by broadcasting their pose and any target observations they make.

3. The teammate robots share the set of randomly selected particles used in force calculations as
well as the pose and observation which means the robots have approximately identical models
of the probability distribution of the target pose. This method requires more communication
bandwidth but more information is provided for coordination of the robots. Because of the
random nature of particle filters, in some situations, the number of particles may be small in
an area from one robot’s view while the other robot has large number of particles in that area.
Sharing the particles will usually provide more information to the robots in these situations.
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(a) t0 Initial positions. (b) t1 S1 and S2 split up to explore opposite coridoors.

(c) t2 S2 observes T. S1 takes shortest path to T. (d) t3 S2 loses obervation of T, so position estimate be-
comes more uncertain. S1 moves to explore to the left
side again.

(e) t4 S1 and S2 both observe T.

Figure 10: Simulation results of two searchers tracking an intruder over time, from t0 to t4. S1
and S2 are two searchers that try to find and catch target T. In each case, the left-hand image is a
screenshot from the Stage simulation, and the right-hand image shows the map and particle cloud
maintained by S1.
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(a) Map of building showing lo-
cations of photographs

(b) Map of building showing ap-
proximate trajectories of robots

(c) Snapshot taken at point 1

(d) Snapshot taken at point 2 (e) Snapshot taken at point 3

(f) Snapshot taken at point 4 (g) Snapshot taken at point 5

Figure 11: Photographs of the real robot demonstration with two robots in the SFU Computing
Science building. The corresponding points on the map are shown in Figure 11(a).
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Table 1: Time that the searchers had no observation before the first observation of the target.

Trial Type Mean (sec) σ T-test p-value
No coordination 175.7 99.5 —

Shared Observation 106.5 85.3 0.0076
and Pose

Shared Observation, 85.7 54.5 0.0009
Pose and Particles

The experiments were performed in a simulated indoor office environment whose map is repre-
sented in Figure 12. Two searcher robots must initially locate and then track a moving intruder.
From a random start position, the intruder chooses a random location on the map as a goal point
and heads toward that location while avoiding obstacles using VFH. After a fixed interval of time,
a new goal location is selected.

The start position of the searchers is the same in all of the experiments. The range of the robot
sensors is set to be 8 meters with an angle of view of 120 degrees while the environment dimension
is 24m×20.5m. While the sensor field of view is a large fraction of the total map, the shape of the
environment means that the intruder is often occluded. The start position of the robots is shown
by rectangles in Figure 12. The shorter trajectory on the left side of the picture is the path that
the target has traversed.

The results shown in Figure 5.3 were gathered from two robots in 10 trials of five minutes of
tracking (20 samples for each experiment in total). The light gray area shows the mean percentage
of time a searcher spends before first locating the intruder. The dark gray area is the average
percentage of time that the searchers had no observation after they see the intruder for the first
time. Smaller is better is both cases.

5.3.1 Results

Figure 5.3 shows the total time that the robots have no observation (sum of the values of light
and dark gray areas) in the shared-particle and non-shared particle case is less than that of no-
coordination case, indicating that the performance is improved on average by cooperation. Tables
1 and 2 show the results of the T-test comparing the times spent before the first observation
of the target and the total time with no target observation, respectively. Since the p-values of
the T-test are less than 0.05, we can conclude that the data do not belong to distributions with
equal means and there is a significant difference between the performance of non-coordinated and
coordinated cases where coordinated cases have performed better. The large standard deviations
are an expected issue in this experiment because the starting position of the intruder was different
in the trials and the amount of time required for finding the target can vary greatly. Nevertheless,
these data show an improvement in average search time between coordinated and uncoordiated
methods.

5.4 B2: Experiment 2 - Evaluation of Communication Effect

In this experiment, we evaluate the target-locating performance of various robot population sizes
in coordinated and non-coordinated cases. Our hypotheses are that (a) increasing the number of
the robots will improve performance; and (b) coordinated robot teams will preform better than
non-coordinated teams. For this experiment, coordinated robots communicate only their current
pose and any target observations they make. Uncoordinated robots do not communicate.

We performed 50 trials of this experiment and tested the effect of communication for two,
three and four searcher robots. The one-robot case was also performed for comparison purposes.
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Figure 12: The map of an office environment used in Experiment 1. Example robot trajectories are
shown, with rectangles indicating the robot start positions. The two longer lines are the searcher
robots, the shorter line is the evader robot. These trajectories are from the third experimental
trial. The searcher robots approach and trap the evader from opposite sides.

Figure 13: No coordination, Shared observation and pose and Shared particles (from left to right)
are three cases shown in this diagram. The light gray area shows the average percentage of time
an agent has spent before visiting the object for the first time. The dark gray area is the average
percentage of time that the robots had no observation after they see the intruder for the first time.
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Table 2: The total time that the searchers had no observation of the target.

Trial Type Mean (sec) σ T-test p-value
No coordination 215.8 70.3 —

Shared Observation 164.6 63.7 0.0208
and Pose

Shared Observation, 153.4 53.3 0.0046
Pose and Particles

(a) t = 0

(b) t = 50 sec

Figure 14: (a) Start configuration of robots in experiment B2 in which four robots try to locate
an intruder. Left pictures are Stage snapshots and right pictures are plots of the map and particle
cloud of one robot. (b) Robots configuration after 50 seconds. Robots have dispersed by taking one
corridor each, rapidly reducing the uncertainty in the target position estimate, though no robot
has yet seen the target.

The initial positions of searchers and the target are random. The target moves autonomously
using the simple controller described above. Its stochastic nature makes the makes the target’s
movements unpredictable in the long term. The environment for this experiment is a model of our
office building (SFU TASC) shown in Figure 14. Its topology is complex, making the search for a
moving target difficult.

The map dimension is 70m×19m and the size of each cell in the occupancy grid is 15cm×15cm.
Each robot carries a laser range scanner with field of view of up to 8 meters at 180 degrees in its
front. Fiducial-finders are used to detect the target. The searcher robots move at 0.2ms−1 and the
target moves at 0.3ms−1. The pseudo-random number generator seed is the same for corresponding
trials. Therefore, the initial positions and traversed path of the target were the same in the first
trial of all of the experiments.

The experiments start with randomly distributed particles on the map and the searchers con-
tinue until the intruder is found or a time limit of 400 seconds is reached. Initially randomly
distributed particles is the worst case for the tracker which means the searchers have had no idea
where the intruder is located until the first observation is made.
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Table 3: Wilcoxon test results for checking the difference between coordinated and non-coordinated
cases for different population sizes.

Number of Robots z ratio p value Sum of Neg. Ranks Sum of Pos. Ranks
Four -4.518 0.000 59.00 682.00
Three -2.540 0.011 234.50 626.50
Two -0.942 0.346 475.00 653.00

Table 4: Pairwise Wilcoxon test results to check if there is any advantage in increasing the popu-
lation size.

N of Robots z ratio p value Sum of Neg. Ranks Sum of Pos. Ranks
4 vs. 3 -4.283 0.000 170.50 1005.50
4 vs. 2 -4.949 0.000 105.50 1070.50
4 vs. 1 -6.144 0.000 1.00 1274.00
3 vs. 2 -2.241 0.025 369.50 806.50
3 vs. 1 -4.614 0.000 159.50 1115.50
2 vs. 1 -3.171 0.002 309.00 966.00

5.4.1 Results

The results show that in the coordinated robots cases, the robots effectively distribute the search
space amongst themselves. In practice this means they spread out, reducing the chances of spatial
interference and increasing the effective sensor coverage area. While this heuristic method offers no
optimality guarantees, we can informally state that in practice the robots are observed to perform
the optimal action (Figure 14) in the scenarios we examined.

Histograms of the time taken to locate the target using each method are shown in Figure 15.
Statistical tests were performed to check if there is any significant difference between coordinated
and non-coordinated cases and also to examine if increasing number of robots has any effect on
the performance.

We chose the Wilcoxon Signed-Rank test (Daniel, 1978) to analyze the data. This test is equiv-
alent to the T-test for non-parametric data. In summary, this test ranks the absolute differences
between paired data, then it examines if the median of the differences is greater or less than zero
according to the signed sum of the ranks. If the p-value is less than 0.05, we can conclude that
there is a significant difference between two distributions.

As Table 3 shows, our data show a statistically significant difference between non-coordinated
and coordinated cases for four and three robots but the coordination strategy does not improve
the performance of tracking for two robots in this environment. We believe that the reason for no
improvement seen in this two-robot case is because the task is very difficult for two robots due to
the size and complexity of the environment. We argue that this would be true for any method,
given the opportunities for the target to slip past two robots into previously-cleared areas.

We compared the results of the experiments for different numbers of robots for coordination
case. For each pair of population sizes, we aim to establish whether the performance data is drawn
from distributions with significant difference. Table 4 shows there is a significant statistical differ-
ence among the results of the experiments for different number of robots which means increasing
the number of robots has improved the performance of cooperative tracking.
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(a) 4-robot coordinated (b) 4-robot non-coordinated

(c) 3-robot coordinated (d) 3-robot non-coordinated

(e) 2-robot coordinated (f) 2-robot non-coordinated

(g) 1-robot

Figure 15: Histograms for the time spent for finding the target in the experiments in which the
robots were supposed to locate an intruder in SFU TASC map with and without a coordination
strategy. 20



Figure 16: Illustration of the cyclical potential field problem. Observing the largest particle cloud
causes the other cloud to grow, creating an oscillation in robot behavior.

6 Discussion

This section discusses some of the essential limitations and tricky issues encountered when imple-
menting the method, and suggests some modifications and extensions.

6.1 No optimality claim

The main limitation of the method is that it is essentially heuristic and is not guaranteed to find
optimal, or indeed any, solutions. In practice we observe that the method generates appropriate
robot behavior in all the cases we have tried, including the experiments described above. Further,
this approach is one of the (or perhaps the) most efficient approaches to the multi-robot tracking
task so far described. As mentioned in the related work section, there are some optimization
frameworks such as POMDPs that can deliver the optimal solution for this problem, but they are
difficult to apply in practice since they are computationally intractable.

6.2 Dynamic loops in the potential field

A second and related criticism of this method is that it is theoretically subject to cyclical local
optima. An example case is shown in Figure 16 where the problem is that the robot is positioned
half-way between a large and a small cloud of particles. The robot is initially attracted toward the
larger cloud, but as it approaches and clears the closest particles, the particle update rules cause
the smaller cloud to grow. This contunues until the relative sizes of the two clouds are inverted,
at which point the robot changes direction and heads for the now-larger cloud. Under certain
conditions, this cycle can repeat forever.

This effect can cause an oscillatory behaviour in the navigation of the robot. We applied a
simple adhoc method to make this behaviour very unlikely: we add a strongly weighted vector in
the direction of the robot’s current heading to the vector sum that steers the robot. This creates
a behavioural “intertia” that tends to damp any undesirable oscillations.

This problem is common to many potential field approaches. While potential functions that
have only a single instantaneous optimum are well known, for example harmonic functions (Con-
nelly et al. 1993), we know of no approach that can provably eliminate such cycles over time in a
dynamically generated potential field.

In practice it is likely that ad-hoc methods could be devised to recognize some periodic robot
behaviours as they occur. This problem is not unique to our method, and good solutions would
be widely useful.

6.3 Full communication assumption

The method relies on fully-connected communication between robots. This may be impossible
in some situations. Although the robots can navigate based purely on their local sensor data,
without communication the efficiency of coordination and therefore the performance of tracking
will degrade.
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One possible extension to this work is that each robot localizes teammate robots in its own
coordinate frame using sensor data, possibly enhanced by intermittent communication. Recent
literature on localization suggests that this is feasible. For example, (Fox et al., 2006) assume a
probability distribution for teammate robots that are not in communication range to improve the
task of exploring an unknown environment. (Howard et. al, 2002) describe a method for robots
to achieve a maximum likelihood estimate of their mutual relative localization, given occasional
mutual observations or commmunications.

To achieve coordination, each robot would self-assign the particles that are likely to be closer
to itself than to any other teammate. In this case, the performance of the system will not change
significantly if one robot loses communication with other robots.

6.4 Cost of the Flood-Fill method

As described in section 3, the magnitude and direction of particle forces are computed using a
flood-fill method. The time complexity of this method for calculation of map distances is propor-
tional to the size of the map and occupancy grid cells. Large, high-resolution maps could lead
to unacceptable computation time. If speed is critical, we can trade memory space for compute
time and use a pre-computed lookup table for every possible position of a robot on a map. Other
alternatives exist between these extremes, and heuristic search methods such as A* could find map
distances without necessarily filling the entire grid.

6.5 Potential to optimize searcher start positions

The time taken for a team of searchers to locate a target of initially unknown location is highly
dependent on the searcher start positions. For any given population of searchers and map, there
will be one or more sets of searcher start locations that gives the lowest expected time before
observing the target. A potentially interesting extension of this work would be to automatically
find good start positions a priori.

6.6 Adaptive target motion model

In our implementation, the target motion model was very simple, based on the last-observed target
velocity. This is a reasonable model of a mobile robot target, but may be a poor model of a human
target, such as a lost museum visitor or a shifty burglar. An extension of this work that we plan
to pursue is to estimate the parameters of the motion model online based on observations of the
target’s behaviour. For instance, vision-based activity recognition methods can be used to estimate
the current activity of humans in broad categories such as running, walking and standing (Efros et
al., 2003). We hope that adjusting the motion model parameters accordingly (or switching between
several motion models) could be shown to increase tracking performance.

6.7 Tracking multiple targets

The method can be trivialy extended to track multiple targets by maintaining a seprate particle
filter for each target. If the combined set of all particles is allocated among all searchers, then the
task is divided purely spatially. If instead we wish one robot to be assigned to each target, then
we can assign to each target the searcher that has the minimum total map distance to the target’s
particle cloud. It would be interesting to see what other allocation strategies could be devised.

6.8 Video game non-player character motion planning

One potentially useful application of the method is in motion planning for non-player characters
(NPCs) in video games. Using this technique, an NCP opponent could move to intercept a player
based on what she was last observed (by the NPC) to do. Convincing anticipatory behaviour in
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NPCs is hard to achieve, but looks particularly ‘intelligent’ to the player, making the game more
engaging. Similarly, intelligent-looking coordination is also attractive but rare in current games.
As the amount of CPU power available for NCP AI grows, we expect methods like this to find
commercial application in the short term, and we are working in this area.

6.9 Generality of integrated particle filter and potential field method

We have described in detail the application of the integrated particle filter and potential field to
multi-robot target tracking. But this method is novel in itself and can be applied to other problems.
It is a natural approach when the distribution modelled by the filter is directly navigable by a robot
or end effector. More abstractly, the technique is applicable when we wish to control a system to
reach the same point in state space as an observed system.

For example, consider an application in human-computer interaction, where the computer mod-
els the affective state of the human as a distribution in the space with axes [Arousal, Valence,
Stance], instead of the single point in this space used in the social robot Kismet (Breazeal 2003).
A potential field created from this particle cloud can drive the computer’s current affect to track
the human’s, robustly achieving the socially important affect-matching.

7 Conclusion

We have described a method for a team of mobile robots to cooperatively track a moving target.
This approach addresses the main limitation of previous approaches in that it actively reduces the
uncertainty caused when the target is occluded for long periods.

Our method includes a novel integration of the particle filter and potential field, which can
be applied in a variety of tracking applications. In this application, the particle filter represents
a probability distribution over the possible pose in (x, y, θ) of the target. A potential field is
generated using the particle cloud directly as input - no clustering of particles is performed, so
that no information is lost. Each particle exerts an attractive potential on the searcher robot, so
that the resulting potential guides the searcher to visit particle locations with its sensors. Multiple
searchers can be coordinated by allocating a subset of the particle cloud to each robot. We used
a simple nearest-robot filter to achieve this.

Under certain (as yet undefined, but probably practical) assumptions about the number of
searchers, the nature of the map, and the relative speeds of the searcher and target, the entropy in
the particle cloud can be reduced and the target located. The qualitative behavior of the seacher
robots is attractive, with the robots splitting up to search for targets from opposite directions.

This heuristic method is simple to implement and produces effective searching behaviour in
single and multiple robots, and could also be useful in other applications.
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