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Abstract—In this paper, we show how a swarm of
differential-drive robots can self-organize into multiple nested
layers of a given shape. A key component of our work is the
reliance on inter-robot collisions to provide information on how
the formation should grow. We describe a simple controller
and experimentally evaluate how its performance scales as the
number of robots in the swarm increases from tens to several
hundred robots. The average quality of the formation is shown
to be a linearly decreasing function of swarm size, although
the steepness of this line depends on the complexity of the
formation. We also show that the time for a swarm to form
a given shape does not grow quickly even as the number of
robots in the swarm increases by a large amount.

I. INTRODUCTION

We present a simple controller for organizing large num-
bers of robots into concentric shapes. These shapes can be
simple (such as a circle, shown in Figure 1) or more com-
plex, such as a cross (Figure 4). At its heart, our approach
is very simple: a large swarm of robots self-organizes along
the perimeter of the defined shape. Since all of them might
not fit, the remaining robots attempt to organize themselves
into a larger version of the original shape surrounding the
first formation. When this group of robots experiences too
much congestion, they form another outer layer, and so on.
The ultimate effect is that the robots will form concentric
instances of a predefined shape around a central point. Our
controller is simple—robots are anonymous, homogeneous,
and do not need to communicate or identify one another.
Robots only need simple rangefinders to detect obstacles
in front of them and also require the ability to determine
their distance and bearing in world frame from the center
of the desired formation. Our controller is very scalable: the
amount of computation on each robot is small and indepen-
dent of population size, and formation quality is maintained
as the number of robots increases. We demonstrate this
empirically using swarm populations ranging from tens to
hundreds of robots with several different shape formations1.

Our work has several applications. Concentric circles
are perhaps one of the most obviously useful formations
since they can be used to surround, protect, or observe a
target [1], [2], [3], [4]. Circular formations also help to

1All source code and data for this project are available at https:
//github.com/AutonomyLab/concentric-shapes. The SHA1 hash tag is
7933ab3a8e4b79f6236070de40b0068e90b450c8.

Figure 1: A group of randomly positioned robots self-
organize into concentric rotating circles with our controller.

maximize mutual visibility. Our controller will also work
with stall vehicles (e.g., fixed-wing aircraft [1]) since the
robots are always moving. Our algorithm has the property
that robots space themselves out evenly, and this can be
leveraged to allow actions such as cooperatively lifting an
object from underneath such that the load is evenly balanced
among the robots. Additionally, nested rectangular or ellip-
tical formations would allow robots to perform foraging or
transportation in such a way that interference is minimized.

The next section provides a brief overview of related
work. We follow this with a detailed description of our
robot controller. We present the results of our experimental
evaluation for determining the scalability and efficiency of
our controller. The paper ends with directions for future
work and concluding remarks.

II. PREVIOUS WORK

Groß et al. [5] presented a robot formation controller for
surrounding a target based on the well-known Brazilian nut
effect, and also evaluated it with a physical swarm of e-
pucks [6]. Robots in their work attempted to maintain an
appropriate distance to other robots based on their perceived
“virtual sizes”, while simultaneously attempting to drive
towards a common center point. The addition of random
motion emulated the effect of shaking a box of nuts—
eventually, the “smaller” robots would be gathered near
the center of the formation, while the “larger” ones would
occupy the outer edges. In contrast, robots in our work are
homogeneous and do not need to use pre-assigned properties
such as “size” in order to influence their position within the

https://github.com/AutonomyLab/concentric-shapes
https://github.com/AutonomyLab/concentric-shapes


formation. In contrast to the fixed membership of a robot
to its size-class in Groß’s system, a robot’s layer number
is set dynamically during interactions between robots. Our
controller is also able to form a greater variety of shapes.

Litus and Vaughan [7] demonstrated an approach for
queuing a large number of robots in a compact Fibonacci
spiral, as in the arrangement of sunflower florets. Here
we are interested in task-determined shapes rather than
compactness.

Several other works explore the construction of circular
formations. Défago and Souissi [8] presented an algorithm
for anonymous, non-communicating robots that results in
a stable circular formation. However, they assume that all
robots are able to see and localize one another—in our work,
robots are only able to perceive other swarm members indi-
rectly as obstacles. Yu et al. [1] presented an approach that
requires inter-robot communication, unlike our work. Their
technique is also not generalizable to other shapes. Similar to
our work, Zheng et al. [2] proposed a controller that relies
on bearing information for surrounding a target, but their
approach can only be used to form single (non-concentric)
circles. Chen et al. [9] demonstrated a controller enabling
multiple robots moving at different speeds to converge to
a single formation of concentric circles. In their work, a
robot’s orbit distance was influenced by its speed, ensuring
that robots at different speeds were kept in separate layers
of the formation to avoid interference. Similarly, we are also
interested in minimizing interference by constructing layered
formations. Lee et al. [10] used local interaction rules based
on the formation of isosceles triangles to develop a controller
that resulted in concentric circles of robots. Similar to our
work, they use a minimal robot model (no communication
or robot identifiers), but their controller is not generalizable
to other shapes.

III. ROBOT CONTROLLER

Our robot controller is composed of three subsystems. The
orbit and steering module is responsible for directing the
robot towards an appropriate location on the perimeter of the
desired shape. To help reduce unnecessary interference (as
we will explain, the existence of robot-robot interference is
actually a driving component of our algorithm) the collision
avoidance subsystem slows the robot down when it detects a
nearby obstacle, but does not steer away to avoid it. Finally,
the layer promotion subsystem determines when a robot
should “promote” itself to the next layer of the formation in
order to avoid congestion and free up space for other robots
which already occupy the current layer.

A. Orbit and Steering

Our robot controller achieves pseudo-orbital motion
around a central point at a specified radius. A constant
radius would describe a perfectly circular orbit. Changing
this distance dynamically, however, allows a robot to travel
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Figure 2: Shows the target orbit position for robot i (la-
belled). Although a circular formation is shown, the ap-
proach is generalizable to more complex shapes.

a path describing the boundary of more complex shapes.
Consider the Earth’s elliptical orbit, where our distance to
the Sun varies constantly. To generate a desired path, we
define a robot i’s target distance bθi from a central point
c (the formation center) as a function of the robot’s global
angle θi relative to c. We have implemented this as a lookup
table with 1-degree resolution. Using an appropriate sensor,
a robot continually monitors its range di and relative bearing
to the formation center, and uses compass data to determine
its global orientation θi with respect to this point. θi is then
used to index into the lookup table, where the base target
orbit distance bθi at that angle is located.

Based on the available range and bearing information,
robot i calculates the estimated formation center point c
and computes pi, the target orbit location. pi is acquired
by adding a small rotational offset u to θi and computing a
position ti units away from c at the new angle (1). Using
the same value of u for all robots ensures that the swarm
will always travel the formation shape in one direction only.
The robot then computes the bearing errori to the point pi
and feeds it into a PID controller that steers the robot to the
correct position. The shapes described by each robot in the
population are globally aligned due to the global frame of
reference. This is depicted in Figure 2.

To allow robots to occupy a different “layer” of a forma-
tion, robot i’s base orbital distance bθi is multiplied by an
integer gi ≥ 0 that describes which layer the robot should be
currently occupying (1). If gi is zero, the robot will occupy
the innermost layer of the formation. As described in Sec-
tion III-C, the value of gi will increase as the robot attempts
to find a layer that has the least amount of congestion.

ti = bθi + (bθi × gi) (1)



B. Collision Avoidance

In order to detect congestion and reduce unnecessary col-
lisions, robots are equipped with forward-facing rangefinder
sensors. Robots reduce speed based on the distance to the
nearest sensed neighbour robot. This results in a time-
and energy-efficient (and visually-pleasing) “zipper merge”
effect when robots attempt to join a new layer that is already
populated with many robots. It also encourages robots to
maintain a suitable distance from each other.

We apply (2) to the left and right motor speeds MLi and
MRi of robot i when it detects a frontwards obstruction j
within some threshold distance F, where Di,j is the distance
from the detecting robot i to object j. The slowdown factor
S is particularly sensitive: too high a value results in robots
not slowing down enough and thus not merging efficiently.
Values that are too low will slow down the merge process
unacceptably since robots will brake too hard. We used
hand-tuned values of S = 1.2 and F = 30cm in our
implementation. (A sensitivity analysis of these parameters
is beyond the scope of this paper—informally, it is not
difficult to find appropriate values for them.)

M{Li,Ri} =M{Li,Ri} ×
(
Di,j

S

)
(2)

Note that the collision avoidance subsystem does not
actually steer the robot away from potential collisions. For
this reason, an implementation on real robots would not
require advanced rangefinder sensors that provide bearing
information—an array of inexpensive short-range infrared
or sonar sensors would suffice.

C. Layer Promotion

A key element of our approach is the reliance on the
interference between robots to provide useful information
to each robot [11], [12], [13], rather than treating it as
something purely undesirable.

Recall from Section III-A that every robot i in the swarm
is assigned an initial layer ID gi that determines which layer
of the formation the robot should occupy. To ensure that the
swarm is physically spread out over successive layers of
the formation, robots may decide to promote themselves to
the next layer when they detect too much congestion, by
incrementing the value of gi.

Using its front-facing rangefinder, robot i will consider
itself overcrowded if both of these conditions are met: (a)
i is within some overcrowding distance V of another robot,
and (b) i’s distance from the orbit center, di, is greater than
or equal to its preferred orbital distance ti. If overcrowded,
the robot will increment the value of its overcrowded timer,
which controls how long the robot is willing to wait for
the interference to reduce. If the timer reaches its maximum
value (see (3)), the timer is reset and the robot increments
gi. Conditions (a) and (b) collectively have the effect that a
robot will only promote itself if pushed outwards from its

current orbital radius by another robot, or if there is too much
congestion to settle into a comfortable “lower” orbit. The
intuition here is that a robot should not needlessly promote
itself to a higher layer if it is still attempting to travel
outwards to its desired orbit distance. The overcrowded timer
is repeatedly reset to zero whenever either condition (a) or
(b) above is not met.

The maximum value of the overcrowding timer is defined
as a function of gi, as shown in (3). The intent is to encour-
age robots occupying inner layers to promote themselves
more quickly. This is desirable since inner layers cannot
accommodate as many robots as outer ones—if a robot
experiences heavy congestion in an inner layer, then it is
statistically likely that the robot does not belong there. Con-
versely, robots in the outer layers will be hesitant to expand
the formation further, and essentially wait out any congestion
in the hopes that interference will gradually reduce. This
has the advantage that a maximum value for gi does not
need to be specified. While this technically means that
robots can promote themselves excessively or even endlessly
(we refer to this phenomenon as runaway promotion), this
does not occur because g will typically converge to suitable
values across the population as promotion results in reduced
congestion. That is, a sufficient number of robots promote
themselves in a timely enough manner that the formation
does not explode. Conditions (a) and (b) above also help to
ensure that runaway promotion does not occur.

Figure 4 shows a time lapse of robots promoting them-
selves when attempting to form a cross shape.

max overcrowd time = 1000ms+ (gi × 1500ms) (3)

IV. EVALUATION

A. Simulator, Robots, and Formations

We experimentally evaluated our controller using a cus-
tom robot simulator written in C++. Robots were modelled
as differential drive vehicles 10cm in diameter. Simple
physics prevented intersections and allowed robots to push
against and move each other. The simulator arena was
12m x 12m in size, and was bounded and finite (i.e.,
not toroidal). The large arena size was chosen because
preliminary experiments showed that this was more than
sufficient to comfortably hold formations made up of 500
robots or less. In all configurations, robots were placed
randomly within the inner 60% of the environment, and were
all assigned an initial layer ID gi of 0. Significant parameters
used in our trials are shown in Table I. These were chosen
to be representative of a typical lab robot (e.g., a Pioneer).

Our simulator allows us to draw formations with the
mouse, and save or load them to and from disk. For our
experiments, we created four different formations (Figure 3):
circle, rectangle, triangle, and cross, to evaluate the perfor-
mance of our robot controller. For each of these formations,



Parameter Value
initial layer ID, g 0
robot radius, E 5cm
robot top speed 50cm/s
robot rangefinder range 30cm
robot rangefinder FOV 180°
slowdown factor, S 1.2
overcrowd threshold, V 1cm
arena size 12m x 12m
trial time 120s

Table I: Parameters used in our simulations.

(a) Circle (b) Rectangle

(c) Triangle (d) Cross

Figure 3: The four formations used in our evaluation. The
circle formation specifies a constant orbit distance, while the
other three are more complex and were drawn by hand.

we ran experiments with swarms sizes of 50 to 500 robots, at
50 robot increments. Every experimental configuration was
repeated 10 times. This yielded a total of 400 experimental
trials. Every trial was run for 120 simulated seconds.

B. Performance Criteria

We examined how fast robots would converge to the
desired shape and how accurately that shape could be
formed, particularly as the number of robots increased. We
ran each trial for two simulated minutes, but we observed
that in all trials the robots required less than 30 seconds to
reach a relatively stable configuration. We record the average
orbital error (4), defined as the mean of the distance (in
robot radii) from each robot to its desired orbit distance, at
any instant:

Figure 4: Shows a swarm of robots forming a cross shape.
As robots near the inner layers interfere with each other,
robots will promote themselves to the outer layers.

avg orbital error =

∑N
i=1

|di − ti|
E

N
(4)

where E is the radius of a robot and N is the number of
robots in the system. A non-technical interpretation of this
value would be the average failure of the robots to represent
the desired formation at the current time, i.e., to what degree
the swarm diverges from the ideal formation appearance.
We sampled this value every second so we could observe
it as it changed over time, and averaged the results of each
configuration over the 10 trials.

V. RESULTS AND DISCUSSION

In all trials, robots achieved a stable configuration within
30 seconds. Figure 5 shows the average orbital error for each
formation over time, with varying numbers of robots.

Perhaps the most interesting result is that the average
orbital error grows very slowly as the number of robots
increases. This is an encouraging result, since it suggests that
our controller is scalable to many robots and is not severely
impacted by interference as more robots are added. While
interference is obviously undesirable in multi-robot systems,
in our case we harness it to provide useful information that
improves the state of the robot swarm as a whole.

The total number of robots in the system also affects the
final value of the average orbital error. As the number of
robots increases, the final average error increases slightly
as well. This is an expected result: it is clear that a larger
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(a) Circle
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(b) Rectangle
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(c) Triangle
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(d) Cross

Figure 5: Average orbital error over time for all four for-
mations, for the first 30 seconds of simulation, for all 10
swarm population sizes.

number of robots only makes it more likely that some
robot(s) may not be situated in the formation 100% correctly.

It is also possible that higher layers of a formation are
more difficult to occupy with precision: robots in outermost
layers tend to move quicker because they experience less
congestion (Section III-B), and moving at faster speeds
makes it difficult to turn hard corners. Notably, the cross
formation is the most complex (containing 12 hard turns)
and suffers the most from this. This effect is also sometimes
present in the innermost layer since formation shapes are
harder to navigate accurately when they are very small.
Interestingly, only the circle formation reaches near-zero
average orbital error. This is likely because the other three
shapes are much less uniform and contain hard angles of
at least 90 degrees. This suggests that robots may be able
to achieve lower orbital error if the rectangle, triangle, and
cross formations are modified to have rounded corners.

The bumps seen in Figures 5a show large numbers of
robots simultaneously deciding to promote themselves in
order to avoid interference. The same behaviour is present in
Figure 5d, but to a lesser degree. The rectangle and triangle
formations do not demonstrate this behaviour as strongly.
This is because these formations are irregularly shaped in
comparison—while large-scale promotion events still occur,
they are not as synchronized as a result.

Figure 6 shows the final values of the average orbital
error after 2 minutes. The error for the circle formation
is noticeably smaller than those of the other formations,
likely because the circle shape is the least complex and is
best-suited for an orbit-based controller. Error for the circle

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

50 100 150 200 250 300 350 400 450 500

D
is

ta
n

ce
 t

o
 Id

ea
l P

o
si

ti
o

n
(i

n
 r

o
b

o
t 

ra
d

ii)

Number of Robots, N

Circle

Rectangle

Triangle

Cross

Figure 6: Shows the final average orbital error at the conclu-
sion of each 2 minute simulation, for every formation and
value of N. Error bars show standard deviation.

formation only shows a slight increase as the number of
robots grows. The other shapes are more complex and suffer
from higher orbital error. However, as seen in the example
screenshots (Figures 3 and 4), these errors do not translate
into a strongly noticeable deformation—the shapes being
formed are still easily recognizable.

Orbital error appears to grow linearly as the number of
robots increases. This is true for all formations in our study,
and is an intriguing property of our controller. The fact that
our robots rely on interference to provide information allows
them to adapt and avoid collisions by promoting themselves
to higher layers of the formation. The results shown here
suggest that if we were to add even more robots to the
system, we would see a linearly proportional increase in
orbital error. The finite size of the environment itself would
eventually become a limiting constraint.

A point of curiosity is whether or not it is possible
using our system to generate formations that feature worse-
than-linear performance. We suspect that any formation our
system is capable of generating will exhibit linear properties
similar to those shown in Figure 6 because of how the
formation points are defined (as a function of a robot’s
orientation relative to a point). It may be the case that
linearly-scaling formation error is an inherent property of
our algorithm due to the limitations imposed on the types
of formations that can be represented this way. However, we
have not performed any formal validation in this regard.

A. Limitations

Our choice of initial g = 0 for all of the robots had
an obvious effect on our results. Since every robot initially
attempted to occupy the innermost layer, there was a signif-
icant amount of interference until robots began promoting
themselves. There would have been much less interference



(and the swarm may have converged more quickly) if g
had been chosen differently. For example, initially assigning
every robot a random g between 0 and 4 may have improved
our results. We chose to use g = 0, however, because
this makes no assumptions about the size of the swarm,
which may potentially range from a handful to thousands of
robots. Additionally, our robot controller does not support
demotion—robot layer IDs can only increase or remain the
same. This places limitations on good initial choices of g.
For example, an initial g = 1 would prevent any robot from
ever occupying the innermost (g = 0) layer. Future work
could include having robots periodically transmit anony-
mous radio pings, the frequency of which could be used to
estimate the swarm size and determine a good distribution
of initial g values across all robots. Even if the amount of
communication is so overwhelming that no messages can be
received uncorrupted, such events could themselves be used
as indicators that the swarm is potentially massive [11].

Our results are also likely influenced by the starting
arrangement of the robot swarm. Recall from Section IV-A
that all robots are initially placed in the inner 60% of the
environment. This is obviously advantageous to our con-
troller since the average robot starting position in this case
is roughly the formation center, c. Additional experiments
could determine how well the system performs when the
robots are distributed along one edge of the arena, or when
the robots are already perfectly arranged in their correct
formation positions but assigned random, zero, or otherwise
inappropriate values of g at the onset of the simulation.

Currently, robots in our work require the ability to deter-
mine their range and bearing to a central point. While the
availability of GPS or motion-tracking systems makes this
possible, it would be better to not have to rely on them.
(Chen et al. [6] used a light source to provide localization
information to their robots.) Possible extensions to this work
should include methods that rely on local sensing only
(perhaps by localizing to nearby detected robots). However,
computing orbit distances based on orientation relative to
a point means that certain shapes are impossible to form.
Highly concave formations, for example, cannot be created.

VI. CONCLUSION

We have presented a simple controller for self-organizing
a robot swarm into concentric shapes. We have demonstrated
the generalizability of our approach using four different
formations. Simulation results indicate that the system scales
well as more robots are added, and that the complexity of the
shape and the size of the swarm have a strong influence on
how accurately the shape can be represented. Additionally,
we have identified several areas in which our controller
could be improved. The results we obtained are encouraging
and suggest that further research into concentric formation
control would be useful.

REFERENCES

[1] X. Yu, L. Liu, and G. Feng, “Distributed circular formation
control of multi-robot systems with directed communication
topology,” in Control Conference (CCC), 2016 35th Chinese.
TCCT, 2016, pp. 8014–8019.

[2] R. Zheng, Y. Liu, and D. Sun, “Enclosing a target by non-
holonomic mobile robots with bearing-only measurements,”
Automatica, vol. 53, pp. 400–407, 2015.

[3] L. Ma and N. Hovakimyan, “Cooperative target tracking in
balanced circular formation: Multiple uavs tracking a ground
vehicle,” in 2013 American Control Conference. IEEE, 2013,
pp. 5386–5391.

[4] J. Saez-Pons, L. Alboul, J. Penders, and L. Nomdedeu,
“Multi-robot team formation control in the guardians project,”
Industrial Robot: An International Journal, vol. 37, no. 4, pp.
372–383, 2010.

[5] R. Groß, S. Magnenat, and F. Mondada, “Segregation in
swarms of mobile robots based on the brazil nut effect,” in
Proc. 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 4349–4356.

[6] J. Chen, M. Gauci, M. J. Price, and R. Groß, “Segregation in
swarms of e-puck robots based on the brazil nut effect,” in
Proc. 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems, 2012, pp.
163–170.

[7] Y. Litus and R. Vaughan, “What can a sunflower teach a
robot? efficient robot queuing by reverse phyllotaxis,” in Proc.
12th International Conference on Artificial Life (ALife XII),
August 2010.
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