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Abstract— This paper demonstrates an autonomous mobile
robot that follows a walking user while staying ahead of them.
Despite several useful applications for autonomous push-carts,
this problem has received much less attention than the easier
problem of following from behind. In contrast to previous work,
we use multi-modal person detection and a human-motion
model that considers obstacles to predict the future path of the
user. We implement the system with a modular architecture of
obstacle mapper, human tracker, human motion model, robot
motion planner and robot motion controller. We report on
the performance of the robot in real-world experiments. We
believe that approaches to this largely overlooked problem
could be useful in real industrial, domestic and entertainment
applications in the near future.

I. INTRODUCTION

Rapid developments in robotics will bring robots to our
everyday lives. There are various applications where robots
could usefully follow a human user around to assist them,
for example a golf caddy or self-driving luggage. Notably,
Boston Dynamics’ LS3 legged robots (unpublished, derived
from BigDog [1]) had a well-developed person-following
capability to act as load carrying mules.

Ho et al [2] categorize person following into three cate-
gories: 1) following behind the leader, 2) side-by-side with
the leader, and 3) ahead of the leader. Following behind the
leader is much simpler as it can be implemented with a
simple proportional controller that tries to keep the person in
the middle of the detection space and at a certain distance.
The other two tasks are significantly more challenging as
they require a predictive model of the user’s motion [3]. For
instance, when entering an intersection, a robot following
ahead should be able to predict which direction the user
might take. This problem has not been addressed well.

Following in front has a number of useful applications.
Consider the push-carts in daily use in logistics warehouses,
hotels, libraries, and supermarkets; they are best placed right
in front of the user for quick access. Jung et al [4] did
an experiment in which participants were told to walk in a
straight line while a robot followed them from behind. They
observe that participants look back to check the robot out
of curiosity or fear of getting hit by the robot, imposing a
cognitive load. The second advantage of following-ahead is
that the user can see the cart for security: e.g. when walking
through an airport with valuable luggage. In entertainment,
an automatic UAV camera platform that follows ahead could
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Fig. 1: Scenario of a mobile robot following ahead of
a person. The robot must anticipate the person’s future
trajectory to stay in the correct position.

capture a view of the user’s face in recreational activities
like skiing and mountain biking. Autonomous push-carts
are frequently proposed and commercial devices exist1 but
they typically remove the human in favor of map-based
navigation.

In this paper, we update and extend the limited previous
work on this task by considering the user’s path through
obstacles. Using an RGB-D camera and laser scanner data,
we estimate the relative position and velocity of the uninstru-
mented user, using an Extended Kalman Filter (EKF), and
predict their future trajectory motion using a simple motion
model interacting with a local map of the environment
obtained in parallel.

The contributions of this paper are: first, we propose this
problem as worthy of renewed attention due to its potential
utility. Second, we provide a simple novel model for human
motion in a constrained environment. Third, we provide a
complete and freely available modular implementation in
ROS, with the major components of obstacle mapper, human
tracker, human motion model, robot motion planner and
robot motion controller easily replaceable. We report on the
performance of the robot in real-world experiments.

II. RELATED WORK

Person tracking has been widely studied. Munaro et al [5]
propose a multiple target tracker system using Kinect RGB-D
detections. They use a depth based sub-clustering method to
track people even near walls. Wojke [6] successfully tracked
a user/operator using Bayes-optimal state estimator using

1E.g. ’Canvas Technology’ http://canvas.technology has an
autonomous push-cart robot without following in front



Fig. 2: Two alternate system processing pipelines to track the user. Top row: Fisheye camera and laser rangefinder: RGB-D
camera. [A] Fisheye image with person ROIs, [B] RGB image with person ROIs, [C] Raw laser scan, [D] Raw depth image,
[E] Leg detections on laser scan segmented based on person ROIs (blue circles represent estimated positions of people), [F]
Point cloud of people obtained from depth image after segmentation based on ROIs and median filter, [G] and [H] Selected
person after data association for wide FOV detection mode and narrow FOV detection mode

RGB-D detections and image-based classification. Koide and
Miura [7] developed a system that uses height and gait
information to achieve person tracking and identification.

Takano et al [8] propose an approach to predict human
motion using symbolic inference. Ziebart et al. [9] use a
Markov Decision Process (MDP) and maximum entropy
learning to obtain a probabilistic model of pedestrian tra-
jectories assuming purposeful behavior. In a similar work,
Kuderer et al [10] remove the underlying MDP assumption
and reason about continuous trajectory as opposed to discrete
states. Our model is simpler than the aforementioned ones
as we assume that a person predominantly walks in the same
direction.

A. Following behind

Most of the previous work on person following has in-
volved following a user from behind. In [11] Leigh et al
present a human-centered tracking framework which clas-
sifies laser data as human or not human. The detected
person positions are tracked using a Kalman Filter, then
they apply separate PID controllers to obtain the angular
and linear velocities of the robot. An interesting resource-
limited example is Yao et al [12], where the Georgia Tech
Miniature Autonomous Blimp detects and follows a person
using a monocular camera. They use a Haar face detector
and a KLT feature tracker to track the user. In a recent work,
Sun et al [13] present a following behind the leader behavior
using a social forces model.

B. Following ahead

There are very few papers that address the problem of
following in front of a user. Cifuentes et al [14] propose an
approach based on a human gait model that uses a wearable
Inertial Measurement Unit (IMU) for estimating orientation.
Ho et al [2] calculate human orientation using a Kalman filter
with a nonholonomic human model for estimating human
linear and angular velocities, while a special-purpose robot
motion controller aims to align the human-robot poses such
that the robot follows from the front. Eui-Jung et al [4]

present a holonomic motion model for tracking a human
while staying ahead. In [15] Tominaga et al present another
front-following system using simple visual servoing that tries
to keep a person (marked with an AR tag) in the center of the
robot’s view. The heading of the person is not considered,
and the robot can easily lose the person at sharp turns.
Recent work by Moustris et al [3] describes a front-following
model that uses a modified dynamic window planner without
considering the current heading of the person, which we
suggest is important information when predicting motion
relatively far into the future. Their method is extended in
[16], where they assume that a person’s orientation can be
estimated by how off-center (i.e., to the left or right) the user
is from the middle of the robot’s field of view (FOV), which
is not valid at T-junction turns for example.

All of the previous works mentioned for following ahead
of the leader, with the exception of [3], [16], assume that
the environment is obstacle free. Obstacles make the problem
much more challenging as the human may often be occluded
from the robot’s sensor, for example as the robot turns a
corner ahead of the human. The focus of our work is to
address this issue. Our approach assumes that the human
will often be out of view, so it uses its recent estimate of
the human’s position combined with a local model of the
world, and a model of the human’s speed and direction of
motion, to figure out where the human is likely to go or
has gone, when they disappear from view. This mechanism
also provides robust recovery when the robot guesses a turn
incorrectly.

III. SYSTEM OVERVIEW

The system is implemented in ROS [17] on a Pioneer
P3-DX mobile robot. We implemented two alternate sensor
modes for detecting humans: one with a narrow FOV and the
other with a wide FOV. The former uses an RGB and depth
image pair as input while the latter uses a monocular image
from a fisheye camera combined with a 2D laser range scan.
All the images are obtained from Intel® RealSense™ ZR300
development kit and laser scans are obtained from Hokuyo



URG-04LX Laser Range Finder (LRF). Both the sensors are
back-facing with respect to the robot. These positions are fed
to our data association module which fuses the data to give
a measurement of the position of the person to be tracked
relative to the robot.

An EKF is used to estimate the speed and direction of the
person. This information is used to make a naive prediction
of the person’s future pose without taking the environment
into account. This prediction is then updated using our
motion model based on the person’s heading and a map of
the environment.

An occupancy grid map is built incrementally during
runtime as the robot navigates. The map is used in robot
path planning as well as human motion prediction. The robot
performs Simultaneous Localization and Mapping (SLAM)
using the well-known GMap ROS implementation of the
grid mapping technique [18], using odometry and range
data from a front-facing Hokuyo LRF. We use the ROS
navigation module2 to navigate the robot to goal positions.
The trajectory planning module is based on [19].

The processing pipeline is summarized in Fig. 2 and
the main components are described below. The system was
developed using the Stage robot simulator [20] before real-
world testing. In the simulation, we abstracted the details of
the person detection using Stage’s color-blob finder.

IV. PERSON DETECTION

We use YOLOv2 [21] on the narrow RGB or fisheye
grayscale image from the RealSense device to get a Region
of Interest (ROI) corresponding to the person. We use the
ROIs to segment the range data from the calibrated depth
image or laser scan that corresponds to people, as follows.

A. RGB-D camera, narrow field of view mode

Using the depth image, we compute the set of 3D points
that correspond to the detected person’s ROI. We reject
background points inside the ROI using depth thresholding.
The position of the person (in the image plane) is estimated
as the center of the bounding box of the resulting point cloud
while the depth is estimated as the median depth of the cloud.

B. Fisheye camera + LRF, Wide field of view mode

Person ROIs in fisheye images are used to filter the
corresponding scans from the LRF. Human leg-detector [22]
is used to find the distance and bearing to candidate humans:
if a candidate is detected at the same bearing as the camera
ROI, we have detected a candidate interaction partner.

Because the FOV of the of LRF (240°) is higher than that
of the fisheye camera (166°), the person can still be tracked
using raw laser data, as explained in Section V. Leg detection
on raw range scans without tracking leads to numerous false
positives, but our data association maintains reliable tracking
of the person we have previously seen with the camera.

The leg-based person detector fails to detect two valid legs
for a person at large distances, often finding just a single leg
which can be used to track a previously-identified person.

2http://ros.org/wiki/navigation

Fig. 3: Data Association Flowchart

We use the leg-only detection only when we have already
selected the person to track (Section V).

V. DATA ASSOCIATION

To ensure that we correctly track the person interacting
with the robot, we designed a tracking state machine using
Nearest Neighbor (NN) data association. This reliably tracks
the user when there are multiple humans in the sensor FOV
or the user goes out of the FOV, or when the detectors
temporarily fail to detect the valid candidate still in the FOV.

We have four tracking states:
• NO PERSON SELECTED
• PERSON UNDER CONSIDERATION
• PERSON SELECTED
• WAITING FOR PERSON
The starting state is NO PERSON SELECTED. When

human(s) are detected it chooses the person closest to
the robot among the candidates that are closer than a
fixed initiation distance. We set this distance to 2.5m
for our experiments. The state is then updated to PER-
SON UNDER CONSIDERATION. In the following N de-
tections, if a person is present in close proximity to
the position of the person in previous iteration the state
is changed to PERSON SELECTED, otherwise the state
goes back to NO PERSON SELECTED. If the selected
person is no longer detected, the state changes to WAIT-
ING FOR PERSON for a fixed time period before going
back to NO PERSON SELECTED. Fig. 3 illustrates the state
machine for data association.

The person position is fed to the EKF only if the tracking
state is PERSON SELECTED. Note that our implementation
does not require the person to always be within a Human
Interaction Zone [3], [14] to be tracked, but requires the
person to be close enough to the robot to initiate the
interaction.



VI. PERSON STATE ESTIMATION

A. Person State representation

Following the nonholonomic model of human motion as
proposed by [23], we represent the state of the person at time
t with position (xt, yt), walking direction θt and velocity
along the walking direction vt. The states are relative to the
map frame of the SLAM system. Additionally, we maintain
the position of the person in the previous time step t − 1.
The state transition from time t to t+ 1 is then given by:

xt+1 = xt + vcos(θ)dt

yt+1 = yt + vsin(θ)dt

vt+1 = (1− αv)vt + αv‖(xt, yt)− (xt−1, yt−1)‖/dt
θt+1 = (1− αθ)θt + αθatan2(yt − yt−1, xt − xt−1)

(1)

where dt is the interval between two consecutive times.
We model velocity and direction as smoothly changing

quantities by implementing updates in the form of an Infinite
Impulse Response (IIR) filter3. The coefficients αv and αθ
of IIR filter lie in the range [0, 1] and represent how fast the
values are expected to change (higher values corresponding
to higher change). We found by trial and error the values
around 0.5 give us the best results.

For the measurement model, we assume that the position
(xt, yt) of the person in the global frame is observable. Our
actual measurement consists of position with respect to the
robot, but given that we have an estimate of the robot position
and orientation from SLAM, we can find the position of
the person in global frame. We propagate the uncertainty
in robot pose to our measurement to make state estimation
more robust, which will be discussed in Section VI-B.

[2] use a similar model in which the state of the person
is computed from the robot’s local frame and transform the
reference frame using odometry readings at every time step.
This is likely to introduce drift in estimates over time with
respect to a global frame. Although the drift in the coordinate
frame itself does not adversely affect the person following
behavior, using just the odometry is likely to give noisy
estimates even over shorter time intervals. Our approach has
the advantage of potentially better state estimates at the cost
of additional sensing and localization/mapping.

We use an EKF for state estimation. Because our mea-
surements are based on the fairly accurate absolute robot
pose from SLAM and relative estimates of human position,
we discount the linearization error inherent to the EKF.
Improved variants of the nonlinear Kalman Filter like the
Unscented Kalman Filter [24] could be substituted to im-
prove the state estimation.

B. Uncertainty Propagation

Assuming a zero-mean Gaussian distribution of noise on
input X with covariance ΣX , the noise propagated to the
function f(X) can be approximated to first order by

Σf ≈ JfΣXJTf (2)

3For averaging angles, we use the orientation of weighted sum of unit
vectors along the angles to avoid angle wraparound discrepancy

where Jf is the Jacobian of f(X).
Let r be the distance estimate and φ the bearing angle

estimate of the person relative to the robot, which are
the actual measurements we receive from our sensors. Let
(xR, yR) and θR be the position and orientation of the robot
respectively, obtained from SLAM. The measurement of our
human position (x, y) is obtained as:

x = −rcos(θR)cos(φ)− rsin(θR)sin(φ) + xR

y = −rcos(θR)sin(φ) + rsin(θR)cos(φ) + yR
(3)

Using the uncertainty propagation formulation of Eq. (2),
we can have estimates of noise in our virtual measurement
(x, y) due to independent components r, φ, (xR, yR) and
θR. This implementation allows us to utilize the difference
in the noise in measurement from the two modes of person
detection we currently have and also uncertainty in the robot
pose while still having a simple kinematic model.

With the estimate of walking direction, we set our naive
goal to be a fixed follow-ahead distance in front of the
person in that direction. To ensure that the direction estimate
is reliable, we take the goal position as valid only when
the estimated velocity is above a threshold and estimated
variance of orientation is below a threshold.

VII. PERSON MOTION MODEL

In open environments without obstacles, the estimated
walking direction of the person from the EKF can be used
trivially to set a navigation goal for the robot. However, in
bounded environments with walls and other structures, we
need a better predictor of the person’s path. We propose a
simple geometric model of person motion that takes into
account both the current heading of the person and the
environment, assuming piecewise linearity of obstacles.

Consider that a person is at point P and the naive predicted
position at G, with O1 and O2 being endpoints of an obstacle
(Fig. 4). Our model predicts that the person is going to
change direction at point P ′, which is a fixed distance from
the obstacle, and walks along one of two directions, D1 and
D2, parallel to the obstacle. The direction is chosen based
on the current heading of the person: the person will walk in
the direction that minimizes the change in heading (D2 in
this case), i.e. the smaller of the angles between vectors

#     »

PG
and D1 and D2. This process is repeated until the distance
covered is equal to the follow-ahead distance and the last
point serves as the final goal position for the robot.

If the vector
#         »

P ′G′ is exactly perpendicular to the obstacle
line (or approximately perpendicular in the presence of
sensor noise), the situation is undecidable. This can be
remedied for the updates to goal positions other than the
original goal G by choosing the direction that has a smaller
angle with

#     »

PG as it represents the direction that is closer to
the person’s heading. Also, we avoid choosing the direction
that immediately leads to obstacles which is particularly
helpful for sharp corners.

Our model is applied using the constantly-updating occu-
pancy grid map from the SLAM system. We perform mor-
phological image operations – dilation followed by erosion



Fig. 4: User motion model illustrated. P is the person
position, with the arrow showing the heading. G is the
naively predicted future position extrapolated from current
velocity. The map-aware motion model predicts that the
person turns at P’ to be parallel to the wall (line segment
(O1, O2) along D2, and turns again in the corner.

– to fill holes in the obstacles. Then we use ray-casting to
detect obstacles between P and G. If obstacles are detected,
we do a Breadth First Search (BFS) for a limited distance
starting from the known obstacle point. We find the best line
that fit these points using a Hough transform.

If the person is no longer in the robot’s FOV, which is the
typical case in sharp turns, the robot simply goes to the last
goal; before the robot gets there the person usually reappears
in the sensor FOV.

VIII. EXPERIMENT

We conduct our experiments in two settings. In the first
setting, the environment is an open rectangular area with
flat walls. The robot has to follow in front of a person who
walks around the room along the walls. The user makes two
laps, turning eight corners. We refer to this as the ‘Easy’
setting. In our second setting, the same perimeter contains
two rectangular obstacles such that there is space for walking
between the obstacles and between obstacles and walls:
topologically a figure eight. The user passes an intersection
four times and turns at corners 6 times, making both right
and left turns. We refer to this as the ‘Difficult’ environment.
Our environments are depicted in Figure 5 along with the
trajectories. The human subject for our experiments is one of
the authors. The subject tries to repeat the same trajectory in
all the experiments for a particular setting, guided by marks
on the floor that are invisible to the robot. The trajectories
of robot and human were recorded using an external Vicon
motion capture system. The size of the test arena was limited
by the usable Vicon area.

Our performance error metric is the percentage of total
trial time the user had to wait for the robot to come in
front and resume correct following-ahead behavior. A robot
that predicts the user’s motion perfectly (impossible in the
‘Difficult’ setting) and always stays ahead would score 0%. A
robot that stayed still or followed behind would score 100%.
These evaluations are done at the corners and turnings. We
run 13 trials for each of the settings. The results (minimum,

Fig. 5: Experiment settings, Left: ‘Easy’, Right: ‘Difficult’.
The red line is the trajectory of the robot and blue that of
the user. Person and robot markers represent their respective
start positions. The blue square is the final position of the
person and the red circle is the final position of robot

median and maximum waiting time) are summarized in Table
I. The evaluations were done using the wide FOV mode of
detection (Section IV-B).

Setting Minimum Median Maximum
Easy 2.4 5.0 12.0

Difficult 14.1 21.1 32.3

TABLE I: User waiting time each setting, as a percentage
of total trial time, over 13 repeated trials. This is an error
measure of the total time a user had to stop walking and
wait for the robot to resume correct following-ahead behavior
after making a prediction mistake.

IX. DISCUSSION

The ‘Difficult’ setting has a significant number of sharp
turns located close together. Either the person or the robot
(or both) are turning almost all the time. When the user
starts to turn down the middle passage the robot is usually
already past the turning, having incorrectly predicted the
user’s trajectory. Once the human is seen to start turning,
the robot quickly updates its user model and travels back
to be in front of the person. Since the robot is limited to
safe speeds close to people, the human has to wait for it to
catch up. Fig. 8 shows this behavior. This is the cause of the
long waiting times for this setting. The robot is usually able
to recover after overshooting and moves ahead of the user
again. There were 2 cases in the ‘Easy’ setting and 4 cases
in the ‘Difficult’ setting (not included in our analysis) where
the robot made an erroneous prediction (causing it to turn
in the wrong direction), and the user then falls out of the
robot’s FOV. As a result, the robot strayed away from the
user’s intended path. Additional error checks on the predicted
goal can help remedy this problem which will be explored
in future works.

Fig. 6 and 7 visualizes the robot’s performance in one trial
for each of the settings. The top plot shows samples of the
absolute positions of the person and robot at evenly-spaced



Fig. 6: Evaluation of ‘Easy’ setting. Top: cyan lines show
the corresponding simultaneous positions of robot (red dots)
and person (blue stars) over time. Middle: Distance between
the robot and person over time. Bottom: Bearing angle of
the person with respect to the robot over time.

Fig. 7: Evaluation of ‘Difficult’ setting. Top: cyan lines show
the corresponding simultaneous positions of robot (red dots)
and person (blue stars) over time. Middle: Distance between
the robot and person over time. Bottom: Bearing angle of
the person with respect to the robot over time (measurement
between 30 to 40 seconds is missing data due to the user
being out of the robot’s FOV).

Fig. 8: User waiting due to incorrect motion prediction and recovery (red circle: goal point estimated by motion model.
Green square: actual goal position of the user. [1] Robot is following-ahead just before the human starts to turn to his right.
[2] Robot perceives new receives updated goal position along the new walking direction of the person [3] Subject pauses
briefly, waiting for the robot to get in front [4] Front-following resumes.



time intervals, joined by a line segment (only one loop is
shown for clarity). The middle plot shows the distance in
meters between the robot and person while the bottom plot
shows the bearing angle of the person with respect to the
robot. The trajectory and distances were obtained from a
Vicon motion capture system while the bearing information
was obtained from the estimated relative positions.

The system has consistent performance except in cases
where the off-the-shelf path planner fails to navigate to a
valid goal position. We conducted additional experiments on
a real building hallway with two dogleg intersections using
both wide and narrow FOV modes of detection. No ground
truth data from a motion capture system were available, but
the trials can be seen in supplementary videos4.

X. CONCLUSION

We propose a “following in front of the leader” robot
behavior. Our implementation improves on previous work
by featuring a motion model which predicts the trajectory
of the person by reasoning about walking direction in the
context of the immediate surroundings. We use state-of-the-
art CNN-based object detection, and all our code is freely
available online as ROS modules. We proposed a simple error
metric for this behavior and evaluated our system in easy and
hard settings. The results are qualitatively good, especially
for the easy setting. A user study would be required to make
a formal claim, but informally we believe our following
behavior feels natural and easy in our experiments.

In future work, we aim to integrate gesture recognition
and other cues to resolve ambiguity in user intention, which
can happen when the walking direction is normal to the
obstacle line. There is also much room for improvement
in our motion model – for instance, we could remove the
piecewise linearity of obstacle constraint. The user’s heading
could possibly be anticipated from the gaze direction like in
the work of [25].
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