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Abstract—Towards autonomous 3D modelling of moving tar-
gets, we present a system where multiple ground-based robots
cooperate to localize, follow and scan from all sides a moving
target. Each robot has a single camera as its only sensor, and
they perform collaborative visual SLAM (CoSLAM). We present
a simple robot controller that maintains the visual constraints
of CoSLAM while orbiting a moving target so as to observe it
from all sides. Real-world experiments demonstrate that multiple
ground robots can successfully track and scan a moving target.

I. INTRODUCTION

We are working towards an autonomous robot system
that can acquire live 3D reconstructions of people moving
outdoors. This would be a widely useful capability with
applications in entertainment, recreation, security and health.

This paper reports on our pilot study, where we investi-
gate the feasibility of performing this task with a team of
robots using cooperative monocular SLAM as the only sensor.
We use slow-moving, low-cost non-holonomic ground robots
with generic web-cam sensors and slow-moving but non-
cooperative targets.

Existing vision-based collaborative SLAM systems [1] [9]
provide a means for localizing robots but are not suitable for
target following because they do not handle dynamic environ-
ments. Other visual approaches to dynamic object detection
involve template matching or machine learning techniques.
These methods usually require instrumentation or extensive
training that limits their applicability.

By contrast, CoSLAM [14] uses multiple camera views to
segment moving objects from the stationary background. This
provides us a means to detect and track targets. CoSLAM
requires certain constraints on the set of camera views, and our
our goal application requires that we observe the target from
all sides as often as possible. We describe a multi-robot system
that scans non-cooperative moving targets by employing a
simple motion controller that causes the robots to orbit the
target while accommodating CoSLAM’s visual constraints. We
validate the approach with real-world experiments.

The contributions of this paper are: (i) the first demonstra-
tion of multi-robot visual-SLAM-only target following and
scanning; (ii) a description of the improvements made to
CoSLAM to improve robustness and permit real-time op-
eration; (iii) description of a simple motion controller that
tracks and orbits targets while respecting SLAM camera pose
constraints.

∗These authors contributed equally to this work.

Fig. 1: Two robots following and orbiting a human using
CoSLAM as the only sensor.

II. RELATED WORK

Our system combines collaborative SLAM and multi-robot
target following.

A. Localization using Multiple Cameras

Recent work uses multiple cameras to collaboratively lo-
calize robots. Chang et al. [5] implement a vision based
localization and tracking system for Nao robots in a soccer
field environment. The system is limited to 2D environments
and shape detection is used to track the other robots and the
ball. Dhiman et al. [7] use reciprocal observations of fiducial
markers for the camera pose estimation. Their approach is not
designed for dynamic scenes and the fiducial markers need
to be present in the image views. Dias et al. [8] proposes
an uncertainty based multi-robot cooperative triangulation
method for target position estimation. However, they did not
solve the camera poses and target detection problem. In [9],
multiple UAVs perform monocular visual SLAM and estimate
their motion individually. A centralized ground station receives
preprocessing results and creates a global coordinate frame.
Due to the lack of cooperation between cameras, the system
is not able to handle dynamic environments.

CoSLAM is a recently-developed cooperative visual SLAM
method, which operates by receiving video frames from in-
dependent moving cameras. By cooperatively tracking and
creating a global 3D map, multiple independent cameras are



able to detect and track dynamic feature points in real time.
CoSLAM was designed and previously demonstrated for

offline processing of pre-recorded, synchronized HD videos.
Since it needs only off-the-shelf color cameras as sensor input,
it is suitable for platforms with limited payload such as mobile
robots. This paper is the first demonstration of an improved,
more robust CoSLAM implementation that is generalized to
work in real time with online video streams.

B. Target Following

Robot controllers for target tracking have been widely stud-
ied under different settings in robotics. Dang et al. [6] track a
moving target with multiple UAVs in a formation anchored to
a single leader. In [10], multiple robots localize and encircle
a target in a distributed manner with range-finders. Aranda
et at. [2] propose a general method for enclosing a target
with any 3D geometric formation. Unlike the aforementioned
approaches, our controller must consider the camera sensor
constraints in order to locate the target. Yang et al.’s [13] work
is similar to ours in that the robots move in order to achieve
a desired sensor reading.

III. SYSTEM DESIGN

To solve the problem of generic target following our sys-
tem consists of two components: CoSLAM and the robot
controller. The robots each run a mono camera mounted
orthogonal to its heading (90 degrees counterclockwise here)
and an on-board controller. CoSLAM runs on a base station
receiving video frames from each robot to produce pose
estimations for all robots and the target. Communications
are by commodity WiFi. As CoSLAM was developed with
offline processing of pre-recorded high-quality videos that
are synchronized manually, there are difficulties in applying
it to platforms with limited sensing payload in real time
applications. First, we discuss CoSLAM and modifications
made to the previous system followed by details about the
robot controller.

A. CoSLAM

Following the conventional sequential structure-from-
motion (SFM) pipeline, the CoSLAM system uses multiple
cameras as sensor inputs. Each camera is calibrated beforehand
and can move independently. At the initialization stage, all the
cameras are required to look at the same scene to construct
a global 3D map. After initialization, the cameras start track-
ing their poses by registering the 2D image features to the
corresponding map points. The 2D features for an individual
camera are detected and tracked using a Kanade-Lucas-Tomasi
(KLT) [12] tracker for the sake of efficiency. When the number
of visible map points drops significantly, new map points can
be generated using the feature matches from a single camera
or multiple cameras.

To handle dynamic scenes, map points are classified at every
frame. All the map points are labeled as ’static’ when they are
first triangulated. At each frame, we check the reprojection
error of the visible static map points by projecting them to

(a) (b) (c) (d)

Fig. 2: False feature tracks can be caused by the occlusion of
the target. (a) The original feature location. (b) The feature
starts drifting when the dynamic object enters the local win-
dow. (c) Since the dynamic object moves slowly, the change
over two consecutive frames is small enough to pass the
threshold for tracking. (d) The feature point will be tracked
to a slightly different location, which snaps to the object’s
boundary.

(a) Without false tracking detection

(b) With false tracking detection

Fig. 3: Tracking results with and without false tracking detec-
tion. Falsely tracked features are concentrated on the target’s
boundary (blue rectangle) so that no points can be detected in
the background (red rectangle).

the current and previous frames. A point will have a large
reprojection error for two reasons: the point is dynamic or the
point is generated from false feature matches. We make use
of the observation that the dynamic points should be at the
same position for different cameras at the same time. The 3D
points are re-triangulated using the feature matches in different
cameras at the same time. The points with small reprojection
errors in individual camera are labeled as ’dynamic’ while
the others are ’false’ points and should be discarded. The
next three subsections cover modifications to make CoSLAM
suitable for real-time operation.

1) Time Synchronization and System Initialization: In prac-
tice, robots send compressed images back with timestamps
to the ground station over a wireless network. Time syn-
chronization between frames is needed for dynamic points



Fig. 4: Tracking results of two robots following a walking person at frame 226 (first row) and at frame 1025 (second row).
Dynamic points (blue), static points (green), camera overlap region (polygons) and 3D map (right) are displayed. The estimated
3D position of the target is projected to both image planes as a green circle. The 3D target trajectory is drawn in red.

detection. Network Time Protocol (NTP) is used to synchronize
the robot’s computers and the ground station. The images
are transmitted using Robot Operating System (ROS). A ROS
package called message filters1 synchronizes the images ac-
cording to their timestamp.

We need to solve two issues before we can use camera
poses obtained from CoSLAM to control the robots. First,
the 3D map from CoSLAM has scale ambiguity. Second, the
rigid transformation CTW needs to be known between the
camera frame FC and the world frame FW for all robots.
We solve the two problems simultaneously by introducing AR
tags to the initialization stage. Each AR tag is assigned 3D
coordinates in FW. We obtain the positions of the AR tags
in the images using a ROS package called ar track alvar2.
The 3D coordinates of the AR tags in FC are triangulated
using the initial estimated camera poses. The scaling factor
s and the rigid transformation CTW are solved by registering
the 3D coordinates of the AR tags in FC and FW. The tags
are removed after the system is successfully initialized. The
camera poses are transformed into Fw before being sent to the
controller. Note, that since scale is not corrected again once
the system is running, it will degrade over time.

2) False Feature Tracking Detection: In our system, FAST
feature points [11] are tracked using a sparse iterative version
of the Lucas-Kanade optical flow algorithm [3]. Sufficient fea-
ture tracks should be maintained for accurate pose estimation
and dynamic object detection. An OpenCL-accelerated KLT
tracker in OpenCV is used to track around 1000 points within
5 ms for every frame.

During experiments, we observed that the static points in the
background tend to be falsely tracked to the boundary of the
moving object when the points are about to be occluded. Com-

1http://wiki.ros.org/message filters
2 http://wiki.ros.org/ar track alvar

paring only two consecutive frames, the KLT tracker tracks
the feature point by searching within a local window. Since
the target moves in slowly, the change over two consecutive
frames is small enough to pass the threshold for tracking.
As the original point is gradually occluded by the target, the
tracked point starts drifting to a slightly different location,
which will snap to the object’s boundary. This is illustrated in
Figure 2.

False feature tracks due to occlusion are a fatal issue for the
original system since most of the background points would
eventually be falsely tracked to the target’s boundary. To ad-
dress this problem, we have to re-check the feature’s descriptor
over a longer time period. We extract and compare the BRIEF
feature descriptor [4] for the tracked feature points every 10
frames. A false feature track will be detected and discarded
by computing the Hamming distance between the current
descriptor and the previous one. The Hamming distance is
large if the local window of the original feature position
is partially occluded by the moving object. The comparison
between the tracking results with and without the false feature
tracking detection is shown in Figure 3.

3) Target Position Estimation: As feature points on the
dynamic object are difficult to track, the distribution of dy-
namic points on the target changes over time. Moreover, point
location inaccuracies are caused by motion blur and the rolling
shutter effect during camera movement. These factors lead to
noisy 3D reconstruction of dynamic points.

To obtain a stable position estimation of the target, we adopt
a simple and effective approach. Since most of the dynamic
points should be distributed in a constrained space of similar
size to the target, we discard the points that are further than
the expected distance travelled from the last observed target
location. The geometric median of the remaining dynamic
points is used to estimate the target’s position. We further

http://wiki.ros.org/message_filters
http://wiki.ros.org/ar_track_alvar


smooth out the target’s trajectory with a low-pass filter. The
tracking results of a walking person are presented in Figure 4.

B. Controller

We implement a robot controller sympathetic to the require-
ments of CoSLAM for following a moving target; specifically,
keeping the target in view of each camera and maintaining
overlap between neighbouring cameras. By fulfilling these two
requirements the robots are able to detect and follow a moving
target with CoSLAM. Furthermore, we would like to ensure
that the target does not occupy too much, or too little, of the
camera view. In other words, there is a desired distance to
keep from the target based on the target’s size.

1) Orbiting: An orbiting controller similar to [10] allows
our non-holonomic robots adapt easily to a variety of motions.
The robots are able to keep up with a moving target assuming
they move a magnitude faster than the target. As the optical
axis of the camera is perpendicular to the robot heading, the
goal is to drive perpendicular to the vector between robot and
target to ensure that the target is centered in the camera view.
In addition, the smoother rotations produced by orbiting are
preferable to CoSLAM as opposed to sharp or erratic motions.

Given poses of the robot and target from the base station a
desired global yaw angle θD for the robot is computed using
Equation 1. In the 2D global polar coordinate system shown
in Figure 5, θT is the polar angle of the vector VT from
robot to target and θO is the polar angle of VO which is
perpendicular to VT. ρ is a weight between zero and one
computed as a function of distance to target in Equation 2.
We denote the distance between the target and image plane
by dT. As dT increases, the robot needs to move closer to the
target. The desired distance to target d̂T is determined a priori
based on the desired target height as it appears in the image
hD (pixels). d̂T can be computed using hD, focal length f of
the camera, and the estimated physical height HT of the target
(See Equation 3). In practice the target’s height may be fixed
if a prior is available, or estimated from the 3D pose given by
CoSLAM.

θD = ρ · θT + (1− ρ) · θO (1)

ρ = min(1,max(0,−(d̂T/dT) + 1)) (2)

d̂T =
f ·HT

hD
(3)

The combination of angles used to produce θD lets the robot
adjust its distance to the target dynamically. Figure 5 provides
an overview of the 2D geometry between robot and target. A
PID controller is used to throttle the robot’s rotational velocity
in order to approach θD. This PID controller with a constant
velocity produces trajectories similar to Figure 6.

2) Keeping Target in View: It is possible that rotational
motions produced by the orbiting controller cause the target to
be outside field-of-view (FOV) θFOV of the camera. To prevent
losing sight of the target an upper bound θUB = θO+θFOV/2

Fig. 5: A robot (blue) and its neighbor (green) are orbiting a
moving target (red).

Fig. 6: The trajectory of a single robot orbiting a moving target
in simulation.

and lower bound θLB = θO − θFOV/2 are computed for θD.
A check is done to see if the vector produced by θD is to the
left of its upper bound or to the right of its lower bound and
clamped accordingly. This constraint is particularly useful if
the target is first detected too far away and the robots need to
close the gap without losing sight. In the event that the target
cannot be detected, the robots will use the target’s last known
position in an attempt to recover.

3) Maintaining Overlap: So far we have only considered a
single robot orbiting a target, but in order to detect a dynamic
target CoSLAM requires camera overlap. Therefore, we apply
a final constraint that will throttle the robot’s forward velocity
given the position of its nearest neighbour. The idea is to
have each robot maintain a distance with another robot in the
orbit. A neighbour robot can be chosen a priori or dynamically
simply by choosing the closest robot.

A desired distance d̂N to a robot’s neighbour is computed
with Equation 4. θ̂N is the desired angle between a robot and
its neighbour in the orbit. As θ̂N becomes smaller more overlap
is created between cameras. If the actual distance to a robot’s
neighbour is less than d̂N, then the robot is too close and
risks collision. Likewise, if the distance is greater than d̂N,
then the robot is too far away, reducing overlap. Next, the
bearing to a neighbour is used to determine if the robot is in



front or behind. Each robot follows a simple set of rules listed
in Table I to set its velocity. A PID-controller helps smooth
changes in velocity.

d̂N = 2d̂T · sin(θ̂N/2) (4)

TABLE I: Rules for adjusting robot velocity.

Neighbour distance Bearing to neighbour Result
Too close Behind Decrease velocity
Too close Front Increase velocity
Too far Behind Increase velocity
Too far Front Decrease velocity

IV. EXPERIMENTS

The prototype system was tested in two different envi-
ronments: a visual-feature-rich lab (Figure 1) and a sparsely
featured boardroom. The data described below is from a
representative run in the lab environment. The accompanying
video3 shows a demonstration in the boardroom environment.

A. Apparatus

The robots in our experiments were the iRobot Create 1 with
an onboard Odroid U3 (cellphone-class) computer to compress
and transmit camera frames and a Gumstix computer for robot
control. The base station was a laptop with an Intel Core i7 (2.5
GHz) processor and NVIDIA GeForce GTX 850M graphics
card. CoSLAM ran on the laptop posting pose information to
a Redis server. The target was a stuffed teddy bear attached
to a non-cooperating robot standing 0.86 metres tall.

B. Method

In each experiment a target travelled a pre-planned rectangu-
lar trajectory until it covered a set distance. Two or three robots
were given the task of tracking the target. After CoSLAM
initialization, the target started driving into view of the robot’s
cameras. Once detected, the controller was engaged and the
robots began their encirclement. We let the system run until
the target completed a full traversal of a three metre by one
metre rectangle.

The target drove at a speed of 0.06m/s, while the robots
drove at around 0.3m/s. Slow speeds were chosen to avoid
motion blur and rolling shutter artifacts. The target height of
0.86m was set a priori and desired height ratio in the view
was 0.6. This means that the robots should encircle with a
radius of around 1.92m. Neighbours were manually assigned
to maintain 30 degrees between them in the circle.

C. Results

We consider three errors: yaw error, ratio error and neigh-
bour error. Yaw error is defined as the difference between
θC and robots yaw. Ratio error is the difference between
ratio of the target’s height in the image and the desired ratio.
Neighbour error is the difference between θN and θ̂N . These
three errors reflect the constraints outlined in III-B.

3https://www.youtube.com/watch?v=uYQ Bmv3LkI

Fig. 7: Yaw error over time (blue) compared to error obtained
from ground truth (green). Although error fluctuates target
never leaves field-of-view (red).

Fig. 8: Ratio error (blue) compared with error obtained from
ground truth (green). The ratio measured is the target’s height
in the camera view.

We want to show that the errors measured by the system
actually correspond to the errors in the real world. To support
this assertion, we examined the video recorded by the cameras
on the robots themselves. By manually annotating the videos
we gained a ground truth measurement for the yaw error and
ratio error over time. We were unable to obtain ground truth
measurements for the neighbour error.

The representative results shown are from a run performed
in the lab environment with two robots. Yaw error for one of
the robots can be seen in Figure 7. The correlation between
the measured and actual error shows that CoSLAM provides
reasonable localization that is required to keep the target in
view. Discrepancies are caused by changes in the distribution
of features on the target due to changes in viewing angle.
Different distributions move the median around the target’s
actual centre.

A similar correlation can be observed in Figure 8 for ratio
error, again showing reasonable localization from CoSLAM.
However, the difference between the measured and actual
error increases over time caused by scale drift in CoSLAM’s
measurements. Robots will continue to increase their radius

https://www.youtube.com/watch?v=uYQ_Bmv3LkI


Fig. 9: Neighbour error (blue) over time. Lower error increases
overlap with neighbours camera view. The red line indicates
that the robots are too close and risk colliding.

from the target increasing the risk of collision with the
environment’s boundary. Correcting scale drift in the future
will allow for a more stable system.

It is difficult to infer how accurately the measured neigh-
bour error reflects their actual error without a ground truth.
However, the neighbour error in Figure 9 accurately reflects
the fact that the robots never collided.

We find that the system is able to successfully track the
moving target, keeping it in view of at least two cameras at
all times. CoSLAM provides the necessary pose information to
direct the controllers and the robots move to allow CoSLAM
to continue target tracking. The robots orbit the target as it
travels, so it is observed from all sides over time. This is the
behaviour we seek for our system to eventually capture 3D
models of the target in real time.

V. CONCLUSION

This is an initial demonstration of the feasibility of coop-
erative visual-SLAM-only control for robot teams to scan a
moving target. The system currently captures 3D point clouds
of the target, but we have not yet investigated their quality or
scope for building solid, time-varying target models - this is
a next step for this work. Our future work will also include
larger robot teams, where managing the wireless bandwidth is
a practical problem, and using faster robots with more degrees
of freedom of motion, including UAVs. Also of interest is
creating a fully distributed version of CoSLAM, that could be
tolerant of intermittent communications or individual vehicle
failures.
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