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Abstract— We consider the classical task of transporting re-
sources from source to home by a group of autonomous robots.
The robots use ant-like trail following to navigate between home
and source. This paper studies the effect on global performance
of changing the field of view of each robot’s trail-following
sensor. It is shown that, under certain conditions, a narrow
field of view can improve system performance. We argue that
the benefit is obtained by selectively degrading the individuals’
trail-following ability so that more work space is exploited
in parallel, thus decreasing mutual spatial interference. This
“worse-is-better” idea may be applicable to other large-scale
multi-robot systems.

I. INTRODUCTION

We consider the classical resource transportation task, in
which a team of robots works to transport resources in an
initially unmapped environment. Robots start from a home
position and search for a supply of resources. On reaching the
source, they receive a unit of resource and must return home
with it, then return to fetch more resource repeatedly for
the length of a trial. Achieving this task reliably with robots
will meet a real-world need. It is a canonical multi-robot task
since the work is inherently parallelizable. The critical factor
limiting scalability is mutual spatial interference between
robots.

Our earlier work [1], [2] examined an implementation of
ant-inspired trail following that is suitable for imperfectly-
localized mobile robots. In our “localization-space trails”
(LOST) algorithm, robots generate and share trail data struc-
tures composed of waypoints specified by reference to task-
level features that are shared by all robots. The trails are
continuously refined online, and maintain the ant-algorithm
property [3] of converging to near-optimal paths from source
to home.

An attractive feature of LOST and other ant-algorithm
methods is that it is simple and natural to use travel-time
as the distance function to be optimized, so that the system
can discover paths that may be longer in space but shorter
in time since they spread robots out to minimize mutual
spatial interference between robots. As the population size
increases, such interference eventually dominates the travel
cost. However, since ant algorithms (including LOST) tend
to converge to a single “best” trail, in large populations this
trail can become badly congested and performance reduced.
To address this, we seek to perturb the ant algorithm such that

it does not converge to a single trail when the interference is
high, and instead to maintain multiple trails that spread the
robots in space and time.

The contribution of this paper is to examine the effect
of modulating the field of view (FOV) of the robots’ trail-
detecting sensor. We show that global throughput is a func-
tion of robot FOV, where narrower FOVs perform better in
large populations. Experimental evidence suggests that the
narrow FOV causes multiple trails to be maintained, so that
the system can support larger population sizes before satu-
rating due to interference. This simple means of controlling
congestion does not require any change in the original trail
following algorithm, or any additional sensing.

II. RELATED WORK

Various different robot implementations of ant-like trail
following have been presented. Real chemical marks were
first used to produce true stigmergic trail-following in [4].
Also recently, Fujisawa et al. [5] carried on a study out of
communication in a swarm of robots using pheromone and
proposed a behavior algorithm for robots to search for prey
and attract other robots. They used ethanol as pheromone in
their real robot experiments. The challenge of chemical and
sensor engineering makes these methods often impractical.
A more parsimonious method was invented by Payton [6]
where virtual pheromone trails are implemented by direc-
tional infra-red messages transmitted from robot to robot.
Robots echo received messages, incrementing a contained
hop-count which is used to estimate the distance to the
message source. In both chemical and IR-mediated methods,
the local “gradient” is sensed directly from the environment.
If robots are mutually localized, virtual trails can be created
from global waypoints, which are communicated by wireless
network. We showed that this scheme can be robust to large
zero-mean localization error [1], and admits a relaxed and
practical definition of mutual localization [2].

The diminishing-to-negative-returns effect of increasing
the number of robots on performance has been studied in re-
lated contexts. In a mathematical model of robot foraging [7],
it was shown that adding more robots to the system improved
the group performance while decreasing individual robot’s
performance. Based on that model, an optimal group size
was found that maximizes the group performance. Explicit
anti-interference strategies are studied in real robots in [8], to
increase performance in the transportation task. Congestion



control in a dense multi-robot system is studied in [9],
where asymmetries that resolve conflicts are introduced by
modifying either the environment or the robot controllers. In
contrast, the method presented here is symmetric and can be
considered complementary.

III. LOCALIZATION-SPACE TRAILS (LOST) REVIEW

This section briefly reviews the generalized trail-following
method formulated in [2].

LOST generates trails between the locations of Events.
An Event is defined as a task-relevant occurrence that may
happen to any member of the team, and is locally but
reliably perceived. For example, in our transportation task
the relevant Events would be ‘pick-up-resource’ and ‘drop-
resource’. A robot must be able to recognize these events
in order to switch between resource-seeking behavior and
home-seeking behavior. When an Event occurs to a robot,
its current pose in localization space is recorded to create an
[Event,Pose] tuple called a Place. A robot can then express
information about the world relative to the Places it has seen.
Other robots that have position estimates for the same Events
can interpret the coordinates in their own local frame of
reference. Thus robots are mutually localized by the shared
experience of the common task, rather than conventional
global localization in some arbitrary coordinate system.

The purpose of LOST is to guide the robot to a Place
currently of interest: the goal. The algorithm provides the
robot controller with two pieces of information; (i) the
heading-hint that is the local direction in which to travel to
reach the goal; (ii) the distance-hint that is the estimated cost
(usually in time) to reach the goal. These hints are extracted
by examining a set of waypoints called Crumbs which are
poses specified relative to a Place. The current set of Crumbs
specified relative to a particular Place is a Trail to that place.
A Crumb is a tuple C = [Pc, Lc, dc, tc] containing the name
of the Place Pc to which it refers, a localization space pose
Lc, an estimate dc of the distance (in some distance function)
from Lc to Pc, and the time tc when the Crumb was created.

Each robot maintains an initially empty temporary trail.
Every S seconds, a robot inserts a new crumb to the
temporary trail. The crumb contains the current location of
the robot, the name of the most recent Event experienced by
that robot, the distance from the last event, and the current
time. When another event occurs to the robot (e.g. when a
robot drops off its cargo), the temporary trail is broadcast to
all robots, including itself, then deleted. A new temporary
trail is then created for the recent Event.

Besides the temporary trail, each robot maintains a trail for
each different Event it has learned about from the network.
When a broadcast trail is received, the crumb poses are
transformed into the local frame of reference by the rigid
body transform defined by comparing the local and received
poses of the trail’s Place. The transformed crumbs are added
to the local trail for this Place. All trails are periodically
scanned and any Crumb with timestamp older than age
threshold a seconds is discarded. Thus the trail is updated
dynamically, and out-of-date information is expired. The

dynamic response of the trail to changing environments is
a function of a.

Fig. 1. Sketch of the LOST algorithm, showing a trail of Crumbs with
decreasing distance values leading to a goal Event. The robot moves towards
the crumb within radius df that has the lowest distance estimate.

Suppose a robot at pose Lr has Place Pg as its goal,
such as Event(Pg) = ‘drop-resource-at-home’. The robot
searches the set of Crumbs with Place = Pg to find the set
of crumbs that lie within its field of view, i.e. within radius df

of Lr. From this set it finds the crumb CL with the smallest
distance-to-goal dc. This distance is returned as the distance-
hint. The heading-hint is the angle from the robot’s pose Lr

to Lc = Pose(CL). Figure 1 shows the robot’s field of view
which is a circle about the robots current location with radius
df .

If the robot moves in the direction of the heading hint and
repeats this process, it will encounter crumbs with decreasing
distance to goal values, and eventually arrive at Pg .

The robot will take the shortest route so far discovered
from that location. By following the Crumbs dropped by
the whole population, each robot benefits from the others’
exploration; robots will find a reasonable route much more
quickly than they would alone. The larger the population
size, the greater the probability of finding a good route and
the more quickly a good route is found.

IV. TRAIL CONGESTION

We seek to increase the throughput of our transportation
system by adding more robots. But every added robot
increases the probability of spatial interference, which can
reduce global performance. Eventually the marginal value
of adding another robot goes below zero. Figure 2 shows
this phenomenon in our trail-following robot system imple-
mented in the well known simulator Stage [10]. In Figure
2(a), 10 robots are successfully following a trail between
source and sink (large squares). The small/blue squares are
a normalized histogram of space occupancy over time: the
robots can be seen to be frequenting the same places as
they follow a reasonably direct route. Robots are able to
navigate past each other using local obstacle avoidance and
the throughput is 232 round-trips per hour, which is close to



(a) 10 robots

(b) 50 robots

Fig. 2. Effect of increasing the population in trail-following robots

the ideal of ten times the single robot work rate (18 round-
trips per hour). In Figure 2(b) 50 robots work in the same
space. The histogram shows that the robots are still mostly
working on a single direct trail. The space is now so crowded
that local obstacle avoidance breaks down and robots make
little progress. They also lose the trail frequently and explore
to recover it. The throughput is 368 round-trips per hour,
which is much less than 50 times the single robot workrate.
The method described below aims to ameliorate this problem.

V. CHANGING THE FIELD OF VIEW

Using LOST, each robot moves toward the visible crumb
with the minimum distance to goal. The more that two
robots’ fields of view overlap, the higher the probability that
they will select the same crumb and thus follow the same
trail. Our approach to congestion reduction is to modify the
robots’ field of view so that trail-following is still achieved,
but to increase the probability of different best crumbs being
detected. The hypothesis is that this can cause different trails
to be followed and thus reinforced and maintained, spreading
robots out in the environment to reduce interference while
still making progress on the transportation task.

An analogous mechanism may be used in biological sys-
tems. For example in the recruitment behavior of honey bee
colonies, unemployed foragers will select at random a single
bee displaying food source information, while ignoring all
the others. Thus individual bees are not fully informed, and
may choose to forage sources other than the best available. It
has been argued that this has advantages for the colony over-
all by preventing overconvergence, for example maintaining
exploration of the environment as it changes [11].

To selectively hide crumbs from the LOST forager, we
simply vary the radius df and reception angle αf of their
virtual crumb-detecting sensor. The FOV of the robot always
points forward. In all previous work, αf was effectively
360◦.

VI. EXPERIMENT 1

A. Simulation Setup

To test our hypothesis, we ran Stage simulations with the
task environment shown in Figure 2. The arena is 20x20m,
with robot length 0.45m, and free of obstacles. Robots are
Stage’s Pioneer 3DX and SICK LMS200 laser rangefinder
models. The bottom left (green) square is the source; top
right (red) square the sink of resources. In the screenshots,
robots (red polygons) are shown with yellow diamonds to
indicate they are carrying a unit of resource. Robots start ev-
ery trial at the same randomly-chosen uniformly distributed
positions, do not know the initial location of source and
sink locations, and must find them by exploration at the
start of the trial. Each trial runs for 30 minutes, and the
total number of resources delivered at the end of the trial
is our performance metric. 10 trials are performed for each
of a range of settings of radius df , reception angle αf , and
population size. LOST is deterministic but the local obstacle
avoidance and searching is stochastic (for robustness), hence
the need for repeated trials.

Experiment 1 examined all permutations of df =
[1.5, 2.0, 2.5] meters, αf = [10, 20, . . . 360] degrees, popu-
lation P = [10, 20, . . . 100] robots.

B. Results

The results of the first experiment are summarized in
Figure 3, with mean performance over 10 repeated trials
plotted for each [df , αf , P ] configuration. Error bars are
ommitted for clarity: the variance is < 12% in 80% of
experiments.

The FOV range parameter df appears to have relatively
little effect on the performance, but the FOV angle αf

appears to have an important effect. The results show that,
with a constant df , a small team of 10 robots has about
the same performance for any αf above 90 degrees. As
the population size increases, the performance is better for
smaller αf , until a lower bound is reached. Performance falls
off quickly with αf below 90 degrees in all cases.

To verify that the performance results are significantly
different for different values of αf , we performed hypothesis
testing using a T-test. The P values for the hypothesis that
the performance values for αf =90 and αf =180 are from



(a) With lookahead distance df = 1.5m

(b) With lookahead distance df = 2m

(c) With lookahead distance df = 2.5m

Fig. 3. Results of Experiment 1, in a world with no obstacles, showing the
mean number of resources transported by robots with different populations
and field of view configuration. Variance is < 10% for each point.

the same distribution are given Table I. For all population
sizes above 10, the test suggests that the distributions are
significantly different, and combined with the higher mean
scores for αf = 90, we conclude that αf = 90 performs
better than αf = 180 for all populations above 10.

These results show improved performance at large pop-
ulation sizes, suggesting we have achieved a reduction in
interference.

To explain how this is happening, see Figure 5, which
shows normalized histograms of the last 5 minutes of robot
positions at 10, 20 and 30 minutes during one of the trials
of Experiment 1 [df = 2, αf = 90, P = 70]. Multiple trails
between source and sink can be perceived, and the robots
spread out in the environment, using these trails. Comparing
Figure 6, with a wider FOV [df = 2, αf = 180, P = 70],
we see fewer, wider trails and robots closer together.

VII. EXPERIMENT 2
To test larger populations and a more challenging search

task, we performed a similar experiment in a 4 times larger
world (40x40m) containing obstacles. The experimental pro-
cedure is identical, testing all permutations of df = 2.0
meters, αf = [10, 20, . . . 360] degrees, population P =
[10, 20, . . . 100, 120, 160, 200] robots.

The results are plotted in Figure 4, showing a similar trend
to Experiment 1. Performance is not improved by employing
more than 100 robots, but performance is better for smaller
values of αf > 60 once the population rises above 50 robots.
Hypothesis testing supports this interpretation (Table I right
side).

Occupancy histograms are shown in Figures 7 [df =
2, αf = 90, P = 120] and 8 [df = 2, αf = 180, P =
120]. The smaller FOV angle produces more trails that are
spread around the space. The larger FOV angle produces
fewer trails, the shortest of which are heavily used, creating
congestion.

A second important feature (we believe) is the lack of
congestion at the source and sink locations when the smaller
FOV angle is used. Congestion at these areas is very signif-
icant since all robots must access them eventually.

Fig. 4. Results of second experiment



TABLE I
RESULTS OF HYPOTHESIS TESTING, SHOWING THE RESULT OF A T-TEST

BETWEEN THE DATASETS GATHERED USING α1 = 90, α2 = 180 FOR

DIFFERENT POPULATION SIZES IN BOTH EXPERIMENTS.

Population Size Parameter p Parameter p
Experiment 1 Experiment 2

10 0.25 0.69
20 < 0.005 0.93
30 < 0.005 0.25
40 < 0.005 0.12
50 < 0.005 < 0.015
60 < 0.005 < 0.03
70 < 0.005 < 0.024
80 < 0.005 < 0.001
90 < 0.005 < 0.0001
100 < 0.005 < 0.0001
120 - < 0.0001
160 - < 0.0001
200 - < 0.0001

VIII. DISCUSSION

The results above support our hypothesis that LOST robots
with a narrow (60 < α < 120 degree) field of view perform
better than the original 360 degree FOV. The occupancy
histograms show that when the FOV is restricted, robots form
a number of less-direct paths, each with a reduced probability
of interference. But when the robots have a larger field of
view, they converge to a smaller number of more-direct paths,
with increased probability of interference.

The dispersal of narrow FOV robots over multiple trails
can be seen as a spontaneous load balancing on the routes.
Consequently, the robots enter/exit home and source from
different sides which leads to another mechanism to dis-
tribute robots into trails. This also reduces the congestion
near home/source.

With small population sizes where interference is not
significant, the narrow field of view performs no differently
than the original 360 degrees.

IX. CONCLUSION AND FUTURE WORK

In this paper we showed how changing the field of view
of a sensor can influence the overall system performance
of an ant-inspired foraging-and-trail-following robot system.
It was shown through simulation experiments that if the
receptive angle of the trail-marker sensor is narrow, but not
too narrow, (about 90 degrees) the overall performance of
our swarm was maximized. To the best of our knowledge,
this is the first study that shows hiding some information
from the agents can reduce the congestion and improve the
overall performance. The “worse-is-better” data-hiding idea
used here may be applicable to other large-scale multi-robot
systems.

In future work we will investigate navigation strategies
for trail-following multi-robot systems. To date, our LOST
robots use a very simple controller for trail-following and
local obstacle avoidance. We expect that performance can be
improved by adding more data into crumbs, and exploiting

the trails more intelligently. Also, local coordination strate-
gies such as flocking or formations could increase navigation
efficiency and possibly throughput while maintaining the
attractive features of the LOST method.
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(a) t1 = 10min (b) t2 = 20min

(c) t3 = 30min

Fig. 5. Histograms of robots’ locations in the last 5 mins with α =
90, df = 2m

(a) t1 = 10min (b) t2 = 20min

(c) t3 = 30min

Fig. 6. Histograms of robots’ locations in the last 5 mins with α =
180, df = 2m

(a) t2 = 20min

(b) t3 = 30min

Fig. 7. Histograms of robots’ locations in the last 5 mins with α =
90, df = 2m

(a) t2 = 20min

(b) t3 = 30min

Fig. 8. Histograms of robots’ locations in the last 5 mins with α =
180, df = 2m


