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Abstract

We consider a group of autonomous robots which perform
the classical task of transporting resources from a source to
home. The robots use ant-like emergent trail following to
navigate between home and source. When trails lie close to-
gether, spatial interference between robots navigating in op-
posite directions reduces overall system performance. This
paper proposes a navigation strategy which is effective in sep-
arating trails with different goals. The results of simulation
experiments indicate that the performance of robots is use-
fully increased compared to original algorithm in constrained
environments.

Introduction
This paper presents a navigation strategy to reduce interfer-
ence in ant-inspired foraging-and-trail-following robot sys-
tems. We consider the classical resource transportation task,
in which a team of robots works to transport resources in an
initially unmapped environment. Robots start from a home
position and search for a supply of resources. On reaching
the source, they receive a unit of resource and must return
home with it, then return to fetch more resource repeatedly
for the length of a trial. Achieving this task reliably with
robots will meet a real-world need. It is a canonical multi-
robot task since the work is inherently parallelizable. The
critical factor limiting scalability is mutual spatial interfer-
ence between robots.

Our earlier work Vaughan et al. (2000, 2002) examined
an implementation of ant-inspired trail following that is
suitable for imperfectly-localized mobile robots. In our
“localization-space trails” (LOST) algorithm, robots gener-
ate and share trail data structures composed of waypoints
specified by reference to task-level features that are shared
by all robots. The trails are continuously refined online, and
maintain the ant-algorithm property Dorigo (1992) of con-
verging to near-optimal paths from source to home.

Trails are labelled with their destination, and the trail to
the current goal destination is followed. In previous work,
the other trails were ignored during navigation. However,
trails may overlap in space and robots navigating to differ-
ent goals may interfere with each other’s progress. We ar-

(a) LOST (b) SO-LOST

Figure 1: Trails formed in an obstacle-free “empty” environ-
ment using LOST and SO-LOST. SO-LOST has separated
the trails, achieving better throughput due to reduced inter-
ference.

gued previously that an emergent property of LOST is that
it can produce trails that are separated in space Vaughan
et al. (2000) thus reducing interference. In this paper we
describe a modification to LOST called Spread-Out LOST
(SO-LOST) that greatly improves this effect, creating trails
that share parts of the environment while being far enough
apart to reduce interference. The result is superior perfor-
mance in most of the cases we examine. The innovation
is that the robots’ trail-following behaviour is subtly modi-
fied to avoid competing trails, with the emergent effect that
trails are iteratively spread out until intereference is largely
avoided.

It is reported that some type of ant use repellent
pheromone to mark unrewarding areas so that other ants
avoid foraging that part of the environment (Robinson et al.
(2008)). However, we do not know of any biological sys-
tem that uses similar behaviour to tackle the spatial inter-
ference problem. The new navigation algorithm in this pa-
per is a synthetic technique that improves the efficiency of
a biologically-inspired path finding and sharing algorithm
used in multi-robot systems. The advantage of these type of
synthetic behaviors has been studied before (e.g. Heck and
Ghosh (2002)).
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Related Work
Various different robot implementations of ant-like trail fol-
lowing have been presented. Real chemical marks were
first used to produce true stigmergic trail-following in Rus-
sell et al. (1994). Also recently, Fujisawa et al. Fujisawa
et al. (2008) carried out a study out of communication in a
swarm of robots using pheromone and proposed a behav-
ior algorithm for robots to search for prey and attract other
robots. They used ethanol as pheromone in their real robot
experiments. The challenge of chemical and sensor engi-
neering makes these methods often impractical. A more
parsimonious method was invented by Payton et al. (2001)
where virtual pheromone trails are implemented by direc-
tional infra-red messages transmitted from robot to robot.
Robots echo received messages, incrementing a contained
hop-count which is used to estimate the distance to the mes-
sage source. In both chemical and IR-mediated methods, the
local “gradient” is sensed directly from the environment. If
robots are mutually localized, virtual trails can be created
from global waypoints, which are communicated by wire-
less network. We showed that this scheme can be robust to
large zero-mean localization error (Vaughan et al. (2000)),
and admits a relaxed and practical definition of mutual lo-
calization (Vaughan et al. (2002)).

The diminishing-to-negative-returns effect of increasing
the number of robots on performance has been studied in
related contexts. In a mathematical model of robot foraging
Lerman and Galstyan (2002), it was shown that adding more
robots to the system improved the group performance while
decreasing individual robot’s performance. Based on that
model, an optimal group size was found that maximizes the
group performance. Explicit anti-interference strategies are
studied in real robots in Zuluaga and Vaughan (2005), to
increase performance in the transportation task. Congestion
control in a dense multi-robot system is studied in Scheidler
et al. (2008), where asymmetries that resolve conflicts are
introduced by modifying either the environment or the robot
controllers.

A related idea using occupancy grids to model multi-robot
interaction is described in Zuluaga and Vaughan (2008).
There, a global histogram of occupancy is constructed, and
areas with high probability of co-location are identified and
fed into an (unrelated) interference reduction method.

Localization-Space Trails (LOST) review
This section briefly reviews the generalized trail-following
method formulated in Vaughan et al. (2002).

LOST generates trails between the locations of Events.
An Event is defined as a task-relevant occurrence that may
happen to any member of the team, and is locally but re-
liably perceived. For example, in our transportation task
the relevant Events would be ‘pick-up-resource’ and ‘drop-
resource’. A robot must be able to recognize these events
in order to switch between resource-seeking behavior and

home-seeking behavior. When an Event occurs to a robot,
its current pose in localization space is recorded to create
an [Event,Pose] tuple called a Place. A robot can then ex-
press information about the world relative to the Places it
has seen. Other robots that have position estimates for the
same Events can interpret the coordinates in their own lo-
cal frame of reference. Thus robots are mutually localized
by the shared experience of the common task, rather than
conventional global localization in some arbitrary coordi-
nate system.

The purpose of LOST is to guide the robot to a Place cur-
rently of interest: the goal. The algorithm provides the robot
controller with two pieces of information; (i) the heading-
hint that is the local direction in which to travel to reach the
goal; (ii) the distance-hint that is the estimated cost (usually
in time) to reach the goal. These hints are extracted by ex-
amining a set of waypoints called Crumbs which are poses
specified relative to a Place. The current set of Crumbs spec-
ified relative to a particular Place is a Trail to that place. A
Crumb is a tuple C = [Pc, Lc, dc, tc] containing the name of
the Place Pc to which it refers, a localization space pose Lc,
an estimate dc of the distance (in some distance function)
from Lc to Pc, and the time tc when the Crumb was created.

Each robot maintains an initially empty temporary trail.
Every S seconds, a robot inserts a new crumb to the tem-
porary trail. The crumb contains the current location of the
robot, the name of the most recent Event experienced by that
robot, the distance from the last event, and the current time.
When another event occurs to the robot (e.g., when a robot
drops off its cargo), the temporary trail is broadcast to all
robots, including itself, then deleted. A new temporary trail
is then created for the recent Event.

Besides the temporary trail, each robot maintains a trail
for each different Event it has learned about from the net-
work. When a broadcast trail is received, the crumb poses
are transformed into the local frame of reference by the rigid
body transform defined by comparing the local and received
poses of the trail’s Place. The transformed crumbs are added
to the local trail for this Place. All trails are periodically
scanned and any Crumb with time stamp older than age
threshold a seconds is discarded. Thus the trail is updated
dynamically, and out-of-date information is expired. The
dynamic response of the trail to changing environments is a
function of a.

Suppose a robot at pose Lr has Place Pg as its goal,
such as Event(Pg) = ‘drop-resource-at-home’. The robot
searches the set of Crumbs with Place = Pg to find the set
of crumbs that lie within its field of view (FOV) i.e., within
radius df of Lr. From this set it finds the crumb CL with the
smallest distance-to-goal dc. This distance is returned as the
distance-hint. The heading-hint is the angle from the robot’s
pose Lr to Lc = Pose(CL). If the robot moves in the di-
rection of the heading hint and repeats this process, it will
encounter crumbs with decreasing distance to goal values,
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Figure 2: Sketch of the new LOST algorithm. While the
robot was following the trail (filled circles), it sees a crumb
with different goal (triangle) and thus changes its direction
to a new point (the empty circle).

and eventually arrive at Pg .
The robot will take the shortest route so far discovered

from that location. By following the Crumbs dropped by
the whole population, each robot benefits from the others’
exploration; robots will find a reasonable route much more
quickly than they would alone. The larger the population
size, the greater the probability of finding a good route and
the more quickly a good route is found.

Spread-Out LOST
In the LOST algorithm, as the robots move they “lay”
crumbs. The goal Place of these crumbs is the place that the
robot has most recently visited. This means that in order to
reinforce a trail, the robots should travel in the opposite di-
rection that the crumbs are showing and consequently robots
following a trail are very likely to interfere with robots lay-
ing (reinforcing) it. With few robots, this does not have
much effect on performance and the ”pick-up-resource” and
”drop-resource” trails converge to one shortest discovered
path. However as the robots’ team size increases, these in-
terferences damage the performance of the system.

To address this, we modify the LOST algorithm so that
when a crumb is created, the Pc data field will be the goal
of the robot rather than the recently visited place. With this
modification, the robots have to perform two searches at the
beginning; one for finding a path from home to source and
another one for a path from source to home. We can avoid
the need for the second search by copying the first discov-
ered trail and changing the goal and reversing the distance
hint along the trail.

When the environment in which the robots are working

Algorithm 1 The New Trail-Using Algorithm
Require: The distance distobstacle from the robot to the

nearest non-robot obstacle on the left side of the robot.
return the direction Dirrobot to which the robot should
move

Θ = all the crumbs in the robot’s FOV with positions
relative to the robot;
Σ = {c|c ∈ Θ ∧ (c.pc = robot.goal)};
Π = {c|c ∈ Θ ∧ (c.pc 6= robot.goal)};

λ = Min(crumb avoid, distobstacle);

cbest = c s.t. (c ∈ Σ) ∧ (6 ∃c′ ∈ Σ s.t. c.dc > c′.dc);

if (∃canti ∈ Π s.t. dist(canti, robot) <
crumb avoid) ∧ (cbest.dc ≤ 2s) then

Dirrobot =
−−−−−−→
(robot, c) + λ

2 ×
−−−−→
(−1, 0);

else
Dirrobot =

−−−−−−→
(robot, c);

end if

is complicated and contains narrow corridors and doorways,
or is very crowded, LOST may produce trails with different
goals that are either very similar or have many parts in com-
mon. Figures 1(a),3(a),4(a) show this phenomenon in our
trail-following robot system implemented in the well known
simulator Stage (Vaughan (2008)). The trails formed be-
tween source and home are often very close to each other,
leading to problematic interference between robots travel-
ling in opposite directions. Since the crumb trail data struc-
ture does not contain any explicit information about the fixed
obstacles in the environment, there is no way to directly pro-
cess the trail data to avoid robot-robot interference without
risking directing robots into fixed obstacles. Instead, we use
a small modification to the robots’ trail following control
strategy that results in emergent trail separation.

A robot following a trail to get to Pc, can interpret crumbs
with goals other than Pc, as proxies for potentially interfer-
ing robots. If the robot follows the trail to Pc while slightly
avoiding all other nearby crumbs, the new Pc crumbs it lays
will tend to be slightly more distant from other crumbs than
those just followed. This mechanism is essentially similar
to the iterated corner-cutting that drives the ant-algorithm’s
ability to locally improve trail length. The resulting trails
may be slightly longer but may reduce interference signifi-
cantly, as suggested by the results below.

The new trail-using algorithm is presented in Algorithm
1. It first searches for the crumb cbest with minimum dis-
tance to goal that is located in the robot’s FOV. Then if
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(a) LOST (b) SO-LOST

Figure 3: Trails formed in the cave environment using the LOST and the new algorithm after 30 mins of simulation.

(a) LOST (b) SO-LOST

Figure 4: Trails formed in the hospital environment. using the LOST and the new algorithm.

there exists a crumb canti with different goal than the robot’s
goal and it was closer to the robot than a distance threshold
(crumb avoid), the direction to which the robot moves will
turn to the robot’s left. This will change the angular velocity
of the robot so that it keeps away from canti. The shift vector
is orthogonal to the

−−−−−−−−→
(robot, cbest) vector. Also, the magni-

tude λ is calculated based on the obstacles near the robot
such that the robot’s target point does not lie inside an ob-
stacle. Trails with different goals are necessarily very close
to each other around source and home. Thus the shift vec-
tor is not applied when the robot is near the goals to prevent
robot’s circular trajectory in these areas.

Figure 2 illustrates how the behavior of the robot changes
in presence of canti. The robot is following the small cir-
cles. On seeing the triangle crumbs, the robot’s target point
is changed from cbest to another point (the empty circle).
This simple mechanism alters the robots movement so that
different trails are gradually separated from each other. The

divergent movement of trails continues until they are away
enough from each other, if possible.

Experiments
Simulation Setup
We ran Stage simulations to evaluate the new algorithm in
three different environment settings: empty (Figure 1), cave
(Figure 3) and hospital (Figure 4). The size of the empty,
cave and hospital environments are 20x20m, 40x40m and
60x30m respectively, with robot length 0.45m. Robots are
Stage’s Pioneer 3DX and SICK LMS200 laser rangefinder
models. The bottom left (green) square is the source; top
right (red) square the sink of resources. In the screenshots,
robots (red polygons) are shown with yellow diamonds to
indicate they are carrying a unit of resource. Robots start ev-
ery trial at the same randomly-chosen uniformly distributed
positions, do not know the initial location of source and sink
locations, and must find them by exploration at the start of
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Figure 5: The result of the experiments in the 3 environments. The mean performance over 10 trials are shown with errorbars
showing the standard deviation for both the original LOST and the new algorithm. The dotted line shows the data point for
which the two algorithm do not show significant difference in distribution.

the trial. Each trial runs for 60 minutes, and the total number
of resources delivered at the end of the trial is our perfor-
mance metric. 10 trials are performed for each population
size. LOST is deterministic but the local obstacle avoidance
and searching is stochastic (for robustness), hence the need
for repeated trials. For all experiments the crumb avoid pa-
rameter is set to 2m.

Results

The results of the experiments are summarized in Figure 5,
showing the mean and standard deviation of performance
over 10 repeated trials plotted for each population size. The
plot shows a marked improvement in many cases (in some
cases 3 times better) in performance with the new algorithm.

As expected, with few robots (20), there is not much dif-
ference in performance since the interference among robots
is small. In the empty environment with population size of
10, the LOST outperforms the new algorithm. This is be-
cause the benefit of interference reduction can not outweigh
the penalty of increase in the length of the trails. As the pop-

ulation size increases and the environment becomes more
constrained, improvement in performance gets bigger. This
can be seen in the plot showing the results of the experiments
in the hospital environment; For the smallest populations,
the two methods perform about the same; however, since the
hospital environment contains corridors and doorways (Fig-
ure 4(b)), there is a degradation in the LOST performance
with more robots whereas the new algorithm improves the
performance in some populations up to 3 times.

To verify that the performance results are significantly
different for different algorithms, we performed hypothesis
testing using a T-test. The P values for the hypothesis that
the performance values for LOST and the new algorithm are
from the same distribution are calcuated. For all population
sizes, the test suggests that the distributions are significantly
different (P << 0.02), except for the pairs identified in Fig-
ure 5 with dotted line.
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Figure 6: The histograms showing the number of times the goal crumb was shifted. The time bin is 30 seconds of simulation
time. 30 robots are used in the empty environment and 50 robots are used in the other environments.

Discussion
The new algorithm is based on the idea that laying crumbs
near other crumbs with different goals increases the proba-
bility of co-location among the robots performing different
tasks. This is more clear in transportation task in which the
trails for ‘pick-up-resource’ and ‘drop-resource’ tasks can be
formed very close to each other. In the new algorithm robots
follow the trails and also try to keep a distance from other
crumbs and therefore new trails are laid at a safe distance
from each other. Figures 1(b), 3(b), 4(b) show the trails
formed with the new algorithm. It is visible that different
trails are separated from each other and consequently robots
do not approach the unattractive trails. The magnitude of the
shift vector (crumb avoid) determines the distance of the
trails from each other and should be large enough to keep
robots away from each other.

In order to see if the trails converge to a stable state we
plotted the number of simulation cycles in which the shift
vector was applied in each 30 sec of simulation time (Figure
6). In the cave and hospital environments, after the trails
are formed they are gradually separated from each other due
to the high use of shift vector. After some time, the trails
come into a relatively stable state. The shift vector is still
applied occasionally since the trails in some narrow parts
of the environment (like doorways) are at their maximum
distance from each other and can not go farther away. For
the empty environment since the area is small and there is
a short distance between source and sink, the robots tend to
be pushed towards other trails which results in the high use

of shift vector throughout the experiment.
We do not know of any biological system that uses a sim-

ilar approach to reduce destructive effects of interference
among individuals, but still we believe that these techniques
can be used in systems inspired from animals and social
insects to improve the efficiency of robots in performing a
task.

Conclusion and Future Works
In this paper we presented SO-LOST, a new navigation strat-
egy to reduce interference in ant-inspired foraging-and-trail-
following robot systems. The method makes use of the dif-
ferent trails formed in the environment to prevent robots
with different goals from getting in each other’s way. It
is quantitatively evaluated through simulation experiments
and shown to be effective in relatively constrained environ-
ments. Qualitatively, the screenshots of simulation experi-
ments show that distinct separate trails with different goals
were formed while keeping a distance from each other hence
reducing the interference.

In future work we will implement the new algorithm on
real robots and run experiments to verify our findings in sim-
ulation. Also, we will investigate methods of congestion
resolution in trail-following robot systems. The algorithm
presented in this paper is used to avoid congestion and con-
flicts between robots. However, there is plenty of room for
improvement in mutual robot-robot avoidance methods, and
development here would have an impact in many multi-robot
systems.
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The LOST and SO-LOST framework allows us to add
various kinds of meta-data to the crumb and trail data struc-
tures. Here we have allowed all nearby trails to influence the
behaviour of a trail-follower. We expect that performance
could be further improved by clever use of other meta-data
embedded into crumbs, perhaps by gathering some global
statistics. This would be unusual in ant-inspired systems,
and perhaps powerful.

For now, we believe SO-LOST may be the most real-
world practical trail-following algorithm yet described,
since it explicitly manages the spatial interference that
plagues real-world robots in any number.
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