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Abstract— Area coverage is one of the compelling applica-
tions of UAVs. The existing methods for coverage path planning
assume a uniformly interesting target area. However in many
real world applications items of interest are not uniformly
distributed but form clusters. Here it can be advantageous to
only sample regions of interest while skipping uninteresting
sections of the environment. In this paper, we present a coverage
tree structure that can accommodate non-uniform coverage of
regions in the target area. Three strategies are proposed to
traverse the coverage tree. Experiments indicate that in some
situations our method can cover the interesting regions with
about half the travel time / cost of a naive regular ‘lawnmower’
coverage pattern.

I. INTRODUCTION

UAVs equipped with light-weight sensors are becoming
affordable platforms for fast data acquisition with many
applications. One particular task in which UAVs are used is
area coverage in applications like agriculture [1], surveillance
[2], vegetation monitoring [3], terrain mapping [4], etc.
Informally speaking, in an area coverage task the robot must
move along a path so that the footprint of a specific sensor
on the robot sweeps the whole area of interest.

Many algorithms have been developed to solve the cov-
erage path planning problem [5]. In all these methods, the
area to be covered is assumed to be uniformly interesting and
consequently the robot moves within a specific distance from
the surface. However, in many applications, as a result of
non-uniformity in the environment (Fig. 1), different parts of
the target area can be covered with different resolutions, for
example, by flying at different altitudes. This may allow the
path planner to produce shorter paths due to the fact that the
sensor footprint sweeps a bigger area as the distance between
the sensor and the target surface increases [6]. In many real-
world applications the distribution of interesting sub-areas
is not known in advance. But we may be able to use the
available data to classify a section as possibly interesting or
uninteresting. At high altitude we can decide online whether
there is a need to cover a sub-region from closer viewpoints
or not. Based on this capability, we use a coverage tree
structure that can accommodate non-uniform coverage of
different regions in the target area. Three different strategies
are introduced to cover the area by traversing the coverage
tree. All strategies are complete, i.e. they will cover the target
area up to the required resolution for each sub-region. At the
same time, each strategy has features which might make it
the better choice in different situations.

Simulation experiments were used to compare the effi-
ciency of these strategies with the standard ‘lawnmower’

Fig. 1: Simulated environment for area coverage with UAV.
Interesting regions are colored green. The lines show the
interesting branches of the coverage tree.

coverage pattern of uniform stripes. We also performed two
simulations based on real-world vegetation data; a target
application for the method.

The rest of this paper is organized as follows: related
research is presented in the next section followed by section
III in which the structure of the coverage tree is described.
In section IV the strategies to traverse this tree are proposed.
Experiments and results are discussed in section V followed
by the conclusion and future work in section VI.

II. RELATED WORK

UAVs have been used for aerial imaging in many projects.
A single quad-rotor is used in [7] to cover an irregular
area. The user specifies the requirements (such as resolution,
image overlapping, etc.) of the images as well as the target
area and the system plans and executes a coverage path. In
[1] multiple UAVs are used to take georeferenced images
of farm land. In order to create a full map of the area
using image mosaicking techniques, grid-based coverage
path planning was used to fully cover the target area [8].
Polygon decomposition is used in [9] to allocate members
of a UAV team to different sub-regions based on individual
capabilities. For each sub-region, the sweeping direction of



the lawnmower pattern is selected to minimize the number of
turns. Unmanned helicopters were used in [10] for automatic
crop dusting. Simple back-and-forth motions are used to
cover segments of the field after decomposition. A team of
hex-rotors is used in [11] to take high quality images from
farm fields by visiting a predefined set of waypoints. The
images are then used by agricultural experts to locate weed
pods.

Seabed coverage using an autonomous under-water vehicle
(AUV), which resembles aerial coverage with UAVs, has also
been studied in recent years. In [12], an AUV is used to
map and visualize a large region of seafloor using the high-
resolution images captured by the camera on the robot. The
high cost of movement in the vertical axis is considered in
[13] to generate coverage paths for non-planar regions of
seafloor. Galceran et. al. in [6], noticed that in lawnmower-
like seafloor coverage, an AUV that stays at a constant depth,
will lead to undesirable coverage overlap among the back-
and-forth laps caused by the change in seafloor height. To al-
leviate this problem, they segmented the area into regions of
constant height and generated lawnmower sweeping patterns
with different inter-lap spacing and sweeping direction. Their
simulations showed that the generated coverage paths were
shorter than those of previous methods. The idea of covering
the regions of interest is also present in [14]. However,
the interesting regions are extracted offline from previous
lawnmower-like surveys, in contrast to our approach which
is online with no prior survey.

A recent review of coverage path planning in general can
be found in [5]. Many approaches generate coverage paths
by decomposing the target area (with possible obstacles) into
simple convex regions and generating simple lawnmower-
like paths to sweep each region. In [15], multi-robot cov-
erage in terrains with non-uniform traversability is studied.
Uniform coverage of structures with complex topology is
studied in [16] motivated by automotive spray painting.

The contributions of this paper are methods for online
coverage path planning that consider non-uniformity in the
unknown environment. The proposed methods can replace
the uniform lawnmower-like patterns (that are almost always
used to cover simple regions) to achieve shorter coverage
paths. Consequently, interesting areas will be covered with
higher resolution sensor coverage than less interesting areas.

III. COVERAGE TREES

Let us assume that the target area A is m×m meters and
free of obstacles. Also, for simplicity, assume that the shape
of the sensor footprint is a square with length of l(h) where
h is the distance of the sensor to the ground. The coverage
tree embedded in the metric space is recursively created as
follows:

i The root of the tree R, is located at the center of A with
a height of hR = l−1(m) (where l−1(.) is the inverse
of the function l(.)), i.e. the sensor footprint covers A at
the root node.

(a) Searching for trees in a
desert-like environment

(b) Covering fields of particu-
lar crop.

Fig. 2: Real environments used in our simulations

ii Let hn and An be the height of node n and the area
covered by the sensor at node n respectively. Then, for
a branching factor1 b ≥ 2, An is decomposed into a
b × b grid with cells of length lc = l(hn)

b and therefore
hc = l−1(lc). For some threshold ht, if hc ≥ ht then
there is a node for each grid cell, with node n as parent,
at the center of the cell and with height hc, i.e. the sensor
covers the grid cell at the child node.

According to the above definition, for a m×m area A, the
root node will be at the center and at a height such that
the whole area is covered by the footprint. Then, assuming
b = 2, the root node will have 4 child nodes forming a 2×2
grid, at lower height h

′
= l−1(m2 ) so that each child node

covers 1
4 of A and so on.

In coverage trees, the child nodes cover exactly the same
area as the parent does but with a higher resolution which
depends on the branching factor b. Also no nodes with
a height less than a threshold ht exist. The parameter
ht determines the lowest height at which the sensor can
sufficiently cover a region at the finest resolution. Therefore
regular path planners for area coverage use this height to
produce a lawnmower pattern (assuming no obstacles in
the area) to sweep the whole area. This simple pattern is
equivalent to visiting all the leaf nodes of the coverage tree
(in an order that yields the minimum path length).

If we know that a region covered by the children of a
node is not interesting, it is enough (and possibly more
efficient) to cover that region with lower-resolution sensing
by only visiting the parent node. Since this information in not
available a priori, one can visit the parent node first and then
decide whether or not the sub-regions covered by each child
node are interesting enough to be visited. We assume that the
sensor data can always correctly indicate which parts of the
footprint are interesting and need closer coverage, i.e., our
interestingness sensor has no false negatives. For example,
images capture by a camera can be processed to recognize
some particular vegetation that makes the green parts in
Figure (2b) interesting and the red parts uninteresting.

Here we try to keep the notion of interestingness as general
as possible. For instance, there does not have to be an explicit

1Branching factor is usually used to refer to the number of children of
each parent in a tree. However, here we use it to denote the parameter b.



part of the sensor data that shows the interestingness of a
region directly. It can be the result of complex probabilistic
reasoning that leads to the need for closer coverage of a
region. For example, if the goal of the coverage is to find
people in an unknown area, regions with buildings/structures
are more interesting than bushes, and as the UAV descends in
the coverage tree, direct people recognition can be used as the
interestingness metric. Similarly, when the UAV is mapping
the underlying terrain, regions with more uncertainty or local
variation in height can have priority for closer coverage
than the rest of the area. In case of false positives on
interestingness, path length may be increased but coverage
is still guaranteed.

The branching factor b controls the rate of the increase in
resolution of the coverage between a parent node and its chil-
dren. A large branching factor will produce a coverage tree
composed of nodes with coarse coverage at high altitudes
and children that are close to the surface of the area. This
configuration of the tree will be practical if the estimation
of the interestingness is very accurate. Otherwise a smaller
branching factor will be more viable.

The shape of the sensor footprint is assumed to be square
to simplify the systematic decomposition of the area. If the
footprint of a sensor is in another shape e.g. circle, then one
can use the largest square that fits inside the footprint and
use it as the square footprint assumed in coverage trees. For
instance, when the sensor is a camera with wide angle of
view lens, the largest square in the middle of the undistorted
image is used as the effective footprint (see for example
[17]). Both the sensor footprint and the target area can have
an arbitrary shape and the only requirement is a method to
decompose the area into a number of footprint shapes with
minimum overlap. Everything else about the coverage tree
remains the same.

In case of a rectangular target area A, we construct the
coverage tree for the smallest square that contains A. Then
we prune every node k for which Ak∩A = ∅, i.e. the sensor
footprint at node k does not intersect with the target area.
Therefore we can accommodate non-square areas as well.

Note that if the environment has obstacles which prevent
the UAV from flying close to the surface, the corresponding

Fig. 3: Both DF and SH strategies visit nodes 1, 2, 3 and 4 in
order. DF then visits the next unvisited node in the tree (star),
whereas SH visits its nearby child (square) opportunistically.
If (square) is interesting the rest of the children are visited.
In case it is uninteresting the UAV visits the parent node
(star) recursively.

nodes will not be feasible and can be removed from the
tree. In this way we can easily relax the assumption that no
obstacles are present in the area.

Note that similar tree structures have been used before for
e.g. probabilistic search with UAVs [18]. However we define
a more general structure to be used in non-uniform coverage.
The following section describes three strategies for traversing
a coverage tree.

IV. TRAVERSAL STRATEGIES

As mentioned earlier, one way to cover the area is the
lawnmower pattern at ht in which all the leaves of the
coverage tree are visited. However one can start at a higher
altitude in the tree and visit the lower nodes if they happen
to be interesting. In this case the range of the sensor should
also be considered when choosing the highest altitude of the
sensor, i.e. the robot should not go to a height at which the
sensor can no longer distinguish the interesting child nodes
from uninteresting ones. Let us call this highest level in the
tree lmax which refers to a depth in the tree. We propose 3
approaches to traverse the coverage tree:

• Breadth-First strategy (BF): In this strategy the UAV
starts at lmax and visits all the nodes in that level
by performing a lawnmower pattern. Upon reaching
each node, the corresponding child nodes are labeled as
interesting or uninteresting. After the last node of lmax

is visited, the UAV descends to the next depth in the
tree and visits all nodes that were marked interesting in
the previous traverse. Again all children are labeled. For
path planning at each level we use a 2-approximation
TSP tour. This process repeats until there is no node in
the next depth of the tree.

• Depth-First (DF): In the DF strategy, similar to BF,
the UAV starts performing the lawnmower trajectory at
lmax, however, after visiting each node, the UAV de-
scends to the next depth to visit all interesting children
(if any). This behaviour is repeated recursively upon
visiting each child node (see Fig 3).

• Shortcut Heuristic (SH): This strategy is the same as
DF with one difference: Assume the UAV has visited a
node and the next node to visit, nnext, is located at some
height above the current node. According to DF the
UAV flies directly to nnext. However in SH, the UAV
visits the nearest child (nnearest) of nnext. Now there
are two possible situations: nnearest was interesting
or it was uninteresting. In case it was interesting, we
recursively visit all other unvisited children of nnext

(see Fig 3). Note that we do not have to visit nnext.
Alternatively if the child was uninteresting, the UAV
visits the parent of nnearest.

In the Breadth-First strategy, the whole area is covered
initially with coarse resolution. The paths at higher levels
are relatively short since the footprint of the sensor sweeps
a larger area. Then the sub-regions that might be interesting
in the next levels are determined and visited. It is worthwhile
to note that this strategy provides a complete but coarse



Fig. 4: Sample synthetic environments that are generated for
the first experiment. The squares show interesting areas.

coverage of the whole area after a short time and gradu-
ally provides higher resolution coverage of the interesting
regions. Previous work has assumed that such initial coarse
coverage is available to be used as input to a planner [19],
[20], [21], but our approach is a generalization of this 2-level
method.

The Depth-First and the Shortcut Heuristic, on the other
hand, provide the finest necessary coverage of a sub-region
and then move on to the remaining parts of the area.
Consequently, with DF and SH, the UAV never goes back to
a previously visited region for higher resolution coverage. In-
tuitively, BF provides a complete but low resolution coverage
as early as possible - an “anytime” strategy - while BF and
SH provide the high resolution coverage in the shortest time.
In many applications interesting regions form big patches,
e.g. see Fig (2b). In such situations, the probability that one
node is interesting provided a sibling node is interesting, will
be high. This locality property is exploited by the Shortcut
Heuristic. This causes the UAV to remain close to the lowest
altitude in the interesting regions and unlike the Depth-First
strategy, it eliminates unnecessary visits to the corresponding
parent nodes.

In the next section we describe our experiments and
compare the strategies with the standard lawnmower pattern
as the baseline. Note that when the environment is interesting
at all locations, the lawnmower strategy is optimal in path
length.

V. EXPERIMENTS AND RESULTS

We performed two different sets of experiments in simu-
lation. In the first set the interesting regions are generated
at random from a known distribution. In the second set, the
interesting regions are identified in images of natural terrains.

Fig. 6: Lawnmower-like pattern is used as the baseline
approach. The area is covered with a uniform resolution.

A. Synthetic Environment

In these experiments an 128 × 128 m2 area, free of
obstacles, is considered (Figure 4). The simulated UAV is
equipped with a sensor pointing downwards with l(h) = h,
i.e., the field-of-view of 90◦. In order to examine our methods
in many environment configurations, two parameters are used
to synthetically generate distributions of interesting regions:
p, the percentage of the whole area that is interesting and
c, the number of interesting segments. We assume that the
interesting regions have the same size. For each pair of
(p, c), p ∈ {10, .., 100} and c ∈ {1, .., 10}, 10 random
environments are generated and the four strategies (BF, DF,
SH, lawnmower) are used to cover the area. For the traversal
strategies we use b = 2, lmax = 1 and coverage tree with
maximum depth of 5. For each strategy, the average of the
total distance that the robot travelled is used as a performance
metric. Figures 5 and 8 show the results of these experiments.
In all experiments the variance was below 189 m (the error
bars are very small and difficult to see in the figures).

The results indicate that if the interesting portion of
the environment is less than 20% and forms few patches,
(almost) all coverage tree strategies perform better than the
lawnmower pattern. For example if 25% of the area is
interesting then the shortcut heuristic takes a little more than
half the length of the lawnmower pattern to cover the area.
This means that the UAV could finish the coverage in half
the time. As the number of interesting regions increases, the
BF strategy becomes inefficient quickly. This is because the
BF strategy visits all interesting nodes at the first tree level,
then descends to the next level and revisits all nodes again
and so forth. This also means uninteresting areas between
interesting patches are revisited at higher resolutions. The
revisiting and switching between patches of interest increases
the travel cost quickly. In contrast DF and SH perform one
high level (short distance) traverse and immediately exploit
the available information to visit only interesting areas.

An area with large segments of interesting regions (i.e.
small c) results in a high locality property in which SH
outperforms the lawnmower and DF strategies. However,
as the distribution of interesting regions varies from few
large segments to a more uniform one, i.e. c becomes large,
the locality property decreases and lawnmower becomes
superior to both DF and SH. This is due to the fact that
the lawnmower pattern never revisits a location.

Figure 8 shows the path length of each strategy for
different percentages of interesting area in the environment.
Only one single patch is used in these experiments. As the
interesting patch grows, we expect that the Shortcut Heuristic
keeps the UAV close to the ground to cover the interesting
neighbourhood which yields a better performance compared
to Depth-First. As the fraction of interesting area grows,
the Shortcut Heuristic is eventually outperformed by the
lawnmower which is optimal when 100% of the environment
is interesting.
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Fig. 5: Results of the simulations: each graph shows the average length of the coverage paths generated by each strategy
for different distribution of interesting regions.

Fig. 7: Sample real environments are simulated in the second experiment. These figures show the coverage plan (generated by
TSP 2-approximation) for each level of the tree in the BF strategy. At the first level with no prior interestingness information,
coarse lawnmower pattern is performed. Light green (light grey) pixels are interesting.

B. Simulated Environment

We also used example images of natural environments for
our simulated UAV. Figure 2 shows two sample environ-
ments. In Figure 2a the bushes and Figure 2b fields with a
particular vegetation are considered interesting respectively.
The interestingness detector checks if the color of a pixel
falls in a certain color range. The area shown in Fig.2a
represents an environment with a number of small interesting
segments (Environment 1) whereas Figure 2b demonstrate
an area with few large continuous interesting regions (En-
vironment 2). We ran the same experiments as described in
the previous section on these two environments, with results

Strategy Environment 1 Environment 2
Breadth-First 0.86 1.04
Depth-First 0.56 0.81
Shortcut Heuristic 0.59 0.69
Lawnmower pattern 1 1

TABLE I: Ratio of coverage paths lengths generated by the
coverage tree strategies to the length of the lawnmower-like
pattern.

shown in Table I.
The results indicate that the lawnmower pattern performs

worse than the DF and SH in these maps. This is because the
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Fig. 8: Results of the experiments with a single patch.

majority of the area is uninteresting and the two mentioned
strategies are able to behave accordingly. In the first envi-
ronment (Fig. 2a), Depth-First performs a little better than
the Shortcut Heuristic due to the low locality. However in
the second map (Fig. 2b) the large interesting regions are
covered more efficiently with the SH strategy compared to
DF.

VI. CONCLUSION AND FUTURE WORK

Aerial coverage is a practical application of UAVs. Ef-
ficient coverage planning will increase the amount of use-
ful area covered in a fixed flying time. In this paper we
proposed methods that perform adaptive coverage according
to the distribution of interesting regions in the environment.
Simulation experiments show that our methods are effec-
tive in environments with certain types of interestingness
distributions, namely sparse and patchy which are common
in natural environments. We further showed that in some
situations our two best methods outperformed the standard
lawnmower approach by a factor of almost 1.7 overall.

In future we will perform experiments with real UAVs.
We will also explore using lawnmower pattern for locally
interesting patches. Furthermore, we will consider different
energy consumption models for vertical/horizontal move-
ments and compare the proposed strategies in terms of energy
consumption. Also concrete metrics of interestingness should
be developed to be used in real-world experiments. In this
work, no time constraint was imposed and the assumption
was that the UAV has enough battery life to finish the
whole traverse. However in practice these vehicles (i.e.
quadrotors) can only perform short flights and thus they
are unable to perform complete coverage in large areas as
discussed. Research on what would be a good strategy in
these situations is very interesting.
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