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Abstract— We demonstrate an autonomous ground robot
capable of exploring unknown indoor environments for recon-
structing their 2D maps. This problem has been traditionally
tackled by geometric heuristics and information theory. More
recently, deep learning and reinforcement learning based ap-
proaches have been proposed to learn exploration behavior in
an end-to-end manner. We present a method that combines the
strengths of these different approaches. Specifically, we employ
a state-of-the-art generative neural network to predict unknown
regions of a partially explored map, and use the prediction to
enhance the exploration in an information-theoretic manner.
We evaluate our system in simulation using floor plans of
real buildings. We also present comparisons with traditional
methods which demonstrate the advantage of our method in
terms of exploration efficiency. We retain an advantage over
end-to-end learned exploration methods in that the robot’s
behavior is easily explicable in terms of the predicted map.

I. INTRODUCTION

Modeling a previously-unknown environment is a canon-
ical task in mobile robotics. The task of planning and exe-
cuting robot trajectories to create a world model, henceforth
‘map’, is known as ‘exploration’. Autonomous exploration is
a component of many real-world robotic applications, includ-
ing search and rescue [1], planetary exploration [2], visual
inspection [3], 2D/3D reconstruction [4] and mining [5].
The completeness and efficiency of exploration is important
to facilitate these applications. Here we describe a novel
exploration method that exploits learned priors over maps
to explore more efficiently than current methods.

Exploration is closely related to some well known NP-
complete problems, such as the art gallery problem or the
traveling salesman problem, with the important difference
that the polygon to be covered or graph to be traversed is
discovered dynamically and incrementally during run time.
Previous methods for autonomous exploration can be broadly
classified into two categories: frontier-based methods and
information-theoretic methods. The frontier approach maxi-
mizes map coverage by moving to new frontiers - regions on
the boundary between free space and unexplored space [6].
Path cost and expected information gain (i.e. utility) are
commonly used to determine the next frontier to visit. The
information-theoretic methods formulate the problem as map
entropy minimization, i.e., information gain with probabilis-
tic map representation [7]. Hence, a good information gain
prediction plays a key role in both approaches.
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Fig. 1. Deep learning based map prediction for autonomous explo-
ration. (a) Current incomplete map. (b) Predicted map using the network
trained over many previous maps. (c) Cost transform for explored cells.
Compared to Hector exploration [1], our method chose a more rewarding
direction to explore due to a better estimate of information gain.

Estimating information gain amounts to predicting sensor
measurements in unseen regions of the map. The general
approach is to assume that the robot is faced with a map
that is either somewhat typical for its application domain, or
somewhat regular in itself, or both, so that partial views of
the map can afford useful predictions of the unseen parts.
Methods for achieving this vary in their advantages and
limitations in map prediction and hence information gain
estimation. While this problem is not new, there has been
recent interest and new ideas. Pimentel et al. [8] proposed an
elegantly simple heuristic whereby wall segments at frontiers
are assumed to extend into the unseen area when computing
expected information gain. Cost-utility based exploration [9],
[10] simply estimates information gain by counting unknown
cells within a predefined radius of a frontier point. While
these methods may work locally on simple floor-plans, they
are unlikely to perform well on more complicated floor-
plans. Most recent information-theoretic methods [11], [12]
predict the information gain based on Gaussian Mixture
Models [13] or Gaussian process with Bayesian inference,
by one-step sensor look-ahead measurements using sensor
likelihood prediction models [14], [15], which tacitly assume
the unknown areas are always free. However, this assumption
does not hold in general, thus the final information gain
estimation is often inaccurate.

We propose a data-driven approach that does not rely
on explicit assumptions about the environment, but instead
learns regularities from examples. Specifically, we employ
Variational Autoencoders (VAE) [16] to predict unknown
map regions beyond frontiers. In our chosen indoor setting
this allows us to learn generalizations over many building
floor plans to make informed decisions for faster exploration
of novel floor plans. As illustrated in Figure 1, using our
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Fig. 2. System workflow.

VAE based map prediction, we estimate the potential areas
that can be mapped from each frontier which we demonstrate
can be more accurate and efficient than a single or multi-step
lookahead in the sensor measurements.

Our system addresses the exploration problem in two
steps: 1) predicting unknown regions to identify navigation
goals that maximize map coverage; 2) navigating to those
goal positions using well-established techniques. We employ
deep learning to tackle the former in isolation, given the re-
cent success of deep generative neural network models [17],
[16]. Navigation is a well-studied problem in robotics where
the traditional methods still outperform deep learning based
methods [18], [19], [20]. By separating the problem into
these two steps, we are able to utilize the strengths of both
deep learning and traditional methods while also maintaining
the comprehensibility of the overall system pipeline.

II. RELATED WORK

Frontier-based exploration methods are easy to understand
and implement and work fairly well in practice. These
methods maintain a list of boundaries between explored and
unexplored regions in the partial map, known as ‘frontiers’.
The robot iterates over choosing the currently most promis-
ing frontier, planning and executing a path that drives through
it while extending the map to eliminate the frontier, until
no frontiers remain. Yamauchi et al. [6] proposed a well-
known Nearest-Frontier Exploration method which always
chooses the closest frontier as the next goal. Bourgault et
al. [9] proposed to use a cost-utility function based on
expected information gain and path cost. There are several
extensions to this idea in [21], [10], [22], [23]. For efficient
information gain computation, Umari et al. [10] used an
RRT tree for frontier detection and counted unknown cells
surrounding a frontier point within a predefined radius to
estimate information gain. Ström et al. [22] presented a
method to match the area beyond the frontiers with the
most similar map in a database, and compute the expected
information gain based on the retrieved match. Pimentel et
al. [8] proposed a simple heuristic map prediction by linearly
extending the walls or turning the walls by 90 degrees to
compute expected information gain. While such simple local
heuristic map completion and information gain computations
can work well on simple floor-plans, we could hope to do
better using more sophisticated priors over maps.

The information-theoretic methods use information theory
to minimize uncertainty of the map. Several authors like
[24], [25], suggest the use of information gain (also called
mutual information in some contexts) as a measure of the
reduction of map uncertainty. In recent work, Vallvé et
al. [26] proposed to compute map and path information gain
densely for the entire configuration space and apply a grid-
step gradient on the potential fields to directly optimize a
path. Jadidi [11] proposed a Gaussian Process (GP) based
method to build an information field for the entire configu-
ration space, but the final decision-making is still based on a
utility function that chooses a goal which balances the path
cost and expected information gain from frontiers extracted
from the GP map. Bai et al. [12] present a method to predict
the information gain in the surrounding partial map of the
current robot pose based on Gaussian process and Bayesian
inference. Their method chooses the point with the largest
expected information gain as the goal for the next step. These
methods, while providing a new perspective on information
gain estimation, often suppose unknown space as free or
suppose Gaussian distribution of occupancy probabilities
which does not hold in real floor-plans, thus the accuracy
of the final information gain is limited.

Researchers have also proposed to use deep learning and
reinforcement learning techniques to solve the autonomous
exploration problem. Bai [27] presented a supervised learn-
ing method that chooses the next step which has a fixed
distance to the robot and maximizes the expected information
gain from 36 candidate actions. Lei et al. [28] proposed
a reinforcement learning based method aiming to avoid
obstacles in exploration.

In contrast to these methods, we propose using deep
learning to auto-complete unseen map regions in geometric
detail and use this filled-in map to measure expected infor-
mation gain. We then combine this prediction with different
exploration strategies to improve exploration efficiency.

III. PROBLEM STATEMENT

Consider a nonholonomic wheeled robot equipped with a
limited visibility laser range scanner, which is operating in
bounded 2D environment E ⊂ R2. It incrementally builds
an occupancy grid representation Mt from the exploration
of environment E, where t is the time step. The goal of
autonomous exploration is to plan a sequence of actions A
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Fig. 3. Some floor-plan examples in KTH dataset.

by which the area of Mt is maximized in every time step
t. Here each action a ∈ A belongs to Lie Algebra [29]
of special Euclidean group SE(2). Due to the NP-hardness
of this problem, we cannot obtain the optimal solution in
polynomial time, thus we relax it as a minimization of
an immediate cost C which is a function of path cost
Cp, possibility of colliding with obstacles Co and expected
information gain I to determine the actions a ∈ A.

IV. SYSTEM OVERVIEW

Figure 2 shows the work-flow of the proposed method.
Based on the current explored map Mt, we first detect all the
frontier points Ft, then classify them into clusters Fi

t ⊆ Ft

using the DBSCAN algorithm [30], where i = 1, . . . , N . N
is the number of clusters. Then we use the VAE network
to predict the occupancy of cells in the unseen regions
beyond each frontier cluster Fi

t, to obtain a predicted map
M∗t . We then compute the information gain Iit for each
frontier cluster Fi

t using the predicted map M∗t , as input to
the otherwise-standard Hector exploration [1] or cost-utility
exploration [10], [31] which generates a feasible path for the
robot’s exploration.

V. MAP COMPLETION NETWORK

Recently, generative networks have shown impressive per-
formance in semantic inpainting and inferring large missing
regions in images with high accuracy [32], [33], [34]. Similar
ideas have been applied to predict missing parts of partial
2D maps [35], [36] where a local set of robot-centric sensor
measurements are used to infer a single missing observation.

We use the VAE network [16] for map completion because
of its training/testing speed and the ability to predict large
unknown regions. Alternatives like Generative Adversarial
Networks [17] are too computationally demanding for online
planning. [35], [36] use Deep Sum-Product Networks [37]
to get performance similar to GANs, but the prediction is
limited to a narrow Field of View (FOV).

A. Dataset

We use the KTH dataset [38] (see Figure 3 for some
examples) to generate partial maps and ground truth for
training the map completion network. The KTH dataset
provides 165 floor plans with 6,248 rooms on the KTH
campus. We manually cleaned some repeated floor plans
and randomly split them into training and testing sets with a
proportion of 3:1. We use Hector exploration [1] to explore

E
x

p
lo

re
d
 M

a
p

N
e
tw

o
rk

 I
n

p
u

ts

Fig. 4. Network inputs generation. The upper image shows the current
explored map, frontiers are marked as yellow. Lower row shows three inputs
for the map completion network, whose sizes are all 256×256 with mask
(prediction area) size at 80×80 centered in frontier cluster centers. The
network is trained to generate the true contents of the masked center region
given the input.

the map and record a 256×256 region centered around each
frontier cluster center. We encode obstacles, free space, and
unknown space into different color channels and append
a 80×80 mask to specify the region we want to predict.
Figure 4 shows an example of a generated dataset for the
proposed network.

B. Network Structure

Figure 5 shows the architecture of our map prediction
network. The encoder part of the network learns to output a
latent representation z in a lower dimensional space and the
decoder reconstructs the missing parts of the map using the
compact latent representation.

Encoder: Our encoder is based on the ResNet architecture
[39]. We use the ResNet architecture on account of its
demonstrated performance in the task of image classification
on benchmark datasets and short training time.

The encoder outputs a mean (µ) and a log variance log(σ)
of the encoding of size 8×8×512. The final encoding fed to
decoder network is sampled from the Gaussian distribution
N (µ, σ). We do not use fully connected layers as they
explode the number of parameters in the network and did
not yield a significant improvement in our results.

Decoder: The decoder network is essentially a mirror
image of the encoder. While the encoder reduces the size of
the feature plane while increasing their number, the decoder
does the opposite. This is achieved by transposed convolution
layers (also known as deconvolution layers) [40]. The output
from the decoder network is a probability map of obstacles,
with pixel values in the range 0 to 1. We then apply a
threshold of 0.5 to determine obstacles and free spaces.

The network weights are randomly initialized without pre-
training, because our training data is significantly different
from standard benchmark datasets such as ImageNet [41].

C. Network Loss Functions

1) Prediction Loss: The prediction task in our case can be
viewed as a pixel-wise binary classification: for each pixel
we have to predict whether it is an obstacle (label 1) or free
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Fig. 5. The architecture of our map prediction network. The input is a
four-channel image containing obstacles (red), free space (green), unknown
space (blue) and a mask for prediction the region. The output is a single-
channel image representing the probability of obstacles. We use a threshold
of 0.5 to binarize output into obstacle and free space.

space (label 0). Hence, we choose Binary Cross Entropy loss
between network output xn and its true label yn for pixel n.
The loss for a single pixel n is given as:

ln = −[yn · logxn + (1− yn) · log(1− xn)] (1)

The total loss of the prediction is the sum of all the pixel-
wise losses for the masked 80×80 region,

Lprediction =
∑

ln. (2)

2) Kullback-Leibler (KL) Divergence Loss: The KL-
divergence on the latent encoding is used as a loss function
to penalize the divergence of the encoding from a Standard
Normal distribution The loss is given as:

Lkld = σ2 + µ2 − log(σ)− 1 (3)

Please refer to [16] for its justification.
The final loss is the weighted sum of the two losses

Lprediction and Lkld from Equation (2) and Equation (3).

Lfinal = γLprediction + (1− γ)Lkld (4)

where γ ∈ (0, 1) controls the relative importance of two
losses. We use γ = 0.99 for training our network.

VI. MAP COMPLETION AUGMENTED EXPLORATION

A. Information Gain Computation
For estimating the information gain we need to find the

regions that can be immediately explored from a frontier
cluster, which is achieved by using the flood-fill algorithm.
Starting from a frontier point, a Depth First Search is
performed to find all the connected pixels that are unknown
in the current map Mt, but are free according to the predicted
map M∗t . Figure 6 illustrate the flood-fill regions with and
without map prediction.

The canonical definition of information gain for each
frontier cluster Fi

t is:

Iit(M, xi) = H(M)−H(M|xi), (5)

where H(M) is the current entropy of the map at time t
and H(M|xi) is the posterior entropy of the predicted map
with the new flood-filled map information xi. The Shannon’s
entropy [42] over an occupancy grid map M is defined as

H(M) = −
∑
j

p(mj) log p(mj)+(1−p(mj)) log(1−p(mj)),

(6)

(b) (c)(a)

I = 633 I = 35

Fig. 6. Comparison of flood-filled region without and with map prediction.
Frontiers and flood-filled regions are marked as yellow and blue respectively.
(a) Current explored map. (b) and (c) are flood-fill regions without and
with map prediction. The information gain of the frontiers can be truthfully
reflected from the map prediction in (c).

where p(mj) is the probability of the cell mj being occupied.
An unknown cell mj in M decreases the entropy by 1,
since p(mj) = 0.5. In comparison, the known cells do not
contribute to the information gain. The information gain Iit is
then equal to the number of unknown cells that will become
known which is in keeping with our flood-fill based method.

B. Augmenting Exploration Planners

The expected information gain Iit from the proposed map
prediction can be used to augment different kinds of goal
planners or path optimizers instead of just a specific method.
Here we choose an exploration transform [43] based planner:
Hector exploration planner [1] and cost-utility function based
planner [10], [9] as base methods, which are two repre-
sentative methods for path optimization and navigation goal
planning respectively.

1) Augmented Hector Planner: Original Hector explo-
ration [1] builds a costmap known as an exploration trans-
form [43] which assigns a cost to every explored free cell in
the current map Mt. The cost has two parts, i.e. the path cost
to the nearest frontier point, and a obstacle cost to the nearest
obstacle. Inspired by this idea, we build our cost transform
C(m) for the free cell m by additionally considering our
information gain estimate as follows:

C(m) = min
Fi

t⊆Ft

{
min
f∈Fi

t

Cp(f)− α
√

Iit

}
+ βCo, (7)

where Cp(f) is the path cost from cell m to frontier cell
f , Iit is the information gain for frontier cluster Fi

t, and
Co is the collision cost of the cell m formulated as a
thresholded distance to nearest obstacle. α and β are the
weights for information gain and collision cost respectively.
Since information gain is proportional to expected unmapped
free areas (m2) while path cost is related with length (m),
we use square root for information gain Iit to keep their units
consistent. The square root response function for information
gain cost also helps to dampen the high information gain
estimates due to potential mispredictions. Note that the cost
transform C(m) for each cell m can be computed efficiently
in an incremental way by propagating the costs starting from
the frontiers points.

After evaluating our cost transform, we can plan a path
from the current robot pose by following the steepest gradient
of the transform until it reaches a frontier point.
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2) Augmented Cost-Utility Planner: The cost-utility ex-
ploration scheme [10], [9], [44] assigns a cost to each frontier
point based on its travel cost Cp(f): length of the shortest
path to the frontier f , and utility (information gain), which
is
√

I(f) in our case.

C(f) = Cp(f)− λ
√

I(f) (8)

where I(f) = Iit for f ∈ Fi
t and λ is a weight to adjust

relative importance between the cost and the utility. The
frontier with the minimum cost is then chosen to be the next
navigation goal and a global path planner (Dijkstra algorithm
in our implementation) is used to generate a path to the goal.

VII. EXPERIMENTS

A. Experimental Setup

1) Simulation: The simulations for both dataset gen-
eration and evaluations were performed using the Stage
simulator [45] Pioneer P2-DX mobile robot and SICK LMS
scanning laser rangefinder (LRF) models. The FOV and
range of the LRF were limited to 270° and 5m respectively
with 512 samples. The sensor update rate was 10 Hz in
simulation time. The system is implemented in ROS [46].

The environment map is a 2D occupancy grid with a
resolution of 0.1m per pixel. Map updates are done by ray-
casting range measurements for each laser range reading to
label free and obstacle cells. To allow fast dataset generation
and evaluations, we use ground truth localization from the
simulation rather than running SLAM. Since we assume
good localization/mapping and do not aim to optimize the
path for lower pose uncertainty [47], the use of ground truth
localization is justified.

2) Baselines for Comparison: The comparison baselines
we use for our evaluations are: Nearest Frontier Explo-
ration (“nearest frontier”) [6], Hector exploration planner
(“original hector”) [1] and cost-utility exploration (“origi-
nal cost utility”) [9].

The Hector exploration planner augmented with our in-
formation gain is referred to as “ig hector” and the cost-
utility planner is “ig cost utility”. As an upper bound we also
compare the performance of the Hector planner augmented
by information gain from ground truth map (“ig hector gt”):
the impossible perfect oracle for map prediction. Note that
the use of ground truth information gain does not guarantee
a perfect exploration as it is still a greedy heuristic that in
general will not lead to a globally optimal solution for the
coverage of whole map. Thus, this provides a tight upper
bound for a well-informed local exploration method.

3) Configuration Settings: For fair comparison, we
set the weights for information gain in “ig hector” and
“ig cost utility” the same, viz. α = 3 (Equation (7)) and
λ = 3 (Equation (8)). And we set β = 5 in Equation (7).

B. Map Completion Network Evaluation

1) Evaluation Metrics: Following prior authors [8], [12],
we measure the average percentage of area coverage against
exploration time to evaluate exploration efficiency. We also
report the average time and travel distances taken to achieve
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Fig. 7. Four map prediction results by the VAE network. In the first three
columns, the topology of the map is correctly predicted while the fourth
column shows an incorrect but plausible prediction.

85% map coverage. This approach is similar to the one
proposed in [8] where the exploration is stopped after a fixed
duration of time. This strategy allows us to ignore some
minor unmapped corners to better reflect the exploration
efficiency. Since the size of our maps vary, selecting a
constant time threshold will not lead to a fair comparison.
Hence, we choose percentage of area covered instead.

We present the results for 12 different maps from the
testing dataset of the KTH floor-plans. For each map and
each method, we run 20 tests from different initial robot
poses chosen at random and evaluate their performance.

For training the map completion network, we first run 50
explorations using the original Hector planner for each map
in the training dataset and crop a 256×256 region around
each frontier cluster. This results in a training dataset of
1.5 million partial maps. Then we test the map prediction
performance on the testing maps with about 140,000 in-
puts. The network takes an avergae of 5 milliseconds with
1 millisecond standard deviation to predict one batch of
frontiers (32 inputs) on a Nvidia GTX980 GPU. We obtain
overall map cell contents prediction accuracy of 92.5%; with
precision and recall for free space prediction of 95.0% and
96.3% respectively. The precision/recall for obstacle predic-
tions are 77.0% and 70.6% respectively. Some examples of
our network’s predictions are shown in Figure 7. From these
evaluations and Figure 7, we can see the proposed VAE
network can complete maps with high accuracy.

C. Analysis of Exploration Efficiency

1) Area Coverage Over Time: Figure 8 shows the percent-
age of total map coverage over exploration time. We compare
our “ig hector” and “ig cost utility” methods with baselines
as well as the Hector planner [1] augmented by oracular in-
formation gain from ground truth maps (“ig hector gt”). The
curves of Figure 8 show that the map-prediction augmented
methods explore the map more quickly than the baselines
in the exploration process. All methods eventually converge
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Fig. 8. Percentage map coverage against time for 4 floor plans. Results
are averaged over 20 experiments.

to near-perfect coverage, but the augmented methods do so
earlier than the baselines. We notice that the nearest fron-
tier planner and original cost-utility methods show similar
performance while the original Hector is slightly better than
the other two. In contrast, the proposed “ig hector” perform
much better, reaching nearly the same exploration efficiency
of the upper bound oracle-informed method.

The results suggest the VAE network has learned to
predict unseen map areas well enough to usefully improve
exploration efficiency.

2) Travel Distance and Time: Figures 9(a) and (c) show
the median time taken and distance traveled to cover 85%
of the total area using different methods for the 12 test floor
plans.

To assess the statistical significance of the difference
between map completion time and distance traveled for the
baseline methods against our methods, we use Welch’s t-
test [48]. We choose the proposed “ig hector” as our basis for
comparison. A higher t-value implies a higher confidence that
baselines’ map completion times or traveled distances are
longer than the proposed “ig hector” method. Figures 9(b)
and (d) show the t-values for map completion times and
travel distances of all the tests in 12 floor-plans. The t-value
corresponding to 95% confidence level is shown in the graph
as a dotted line.

Figures 9(a)–(d) show that the proposed methods
“ig hector’ and “ig cost utility” always have lower map
completion time and distance traveled compared to the
baseline methods they were based on viz. “original hector”
and “original cost utility” respectively. The measured perfor-
mance distribution of the enhanced methods are better, and
differs with a large confidence interval, compared to their
baselines.

Our method “ig cost utility” has similar travel distance
to “original hector” in some of the maps. This is likely
explained by the superior performance of hector exploration
compared to cost-utility exploration canceling out the advan-
tage of better predictions.

Fig. 9. For each method, we show the median task completion time
and trajectory length for 12 different floor-plans, over 20 trials each with
different initial robot pose. Smaller values indicate better performance.

Overall, these experiments show that the map prediction
from the proposed VAE network results in a performance
increase in travel time and distance traveled compared to
previous methods in the maps we tested.

VIII. CONCLUSION AND FUTURE WORK

We describe a VAE deep neural network that learns to
predict unseen regions of building floor plans. This model
is used to enhance exploration performance by improving
estimates used in path planning, leading to increased effi-
ciency. We suggest that the navigation behavior of our system
is more intelligible than that of end-to-end deep learning
techniques as it splits the system into a learned generative
model with a map output that is easily interpreted by humans,
within a well known information-theoretic framework.

In future work, we aim to implement our system on
real robots and evaluate its performance. The work can
be extended to 3D reconstruction rather than 2D, using
ground or aerial robots. Furthermore, we assume accurate
localization and mapping so far. Removing this assumption
and actively planning for efficient exploration and with good
quality localization and mapping would be an interesting
extension.

Reproduction, code and data products

All code, data and models used in the experiments are
available at https://git.io/fAX7k.
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