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ABSTRACT
We demonstrate that a simulated group of robots can co-
operate to robustly transport resource between two areas
in an unknown environment using an algorithm inspired by
the trail following of ants and the waggle dance of honey
bees. Rather than directly marking their environment, the
robots announce their successful paths through a common
localization space. It is found that the algorithm is robust
to signi�cant localization error, suggesting that the method
will be viable for teams of real robots.

1. INTRODUCTION
Ants form supply columns to relocate valuable items through
complex, dynamic environments. Their remarkable e�ec-
tiveness is due to a highly robust strategy of local inter-
actions among a large number of autonomous agents. The
chemical trails formed by ants along their supply routes are
robust with respect to changes in the environment and to the
`failure' of many individual ants [11; 16]. These properties
are attractive to agent designers in general and in particu-
lar to robot builders who can see immediate applications for
robot supply columns in hazardous or tedious environments.

A de�ning characteristic of `ant-inspired' algorithms is the
exploitation of stigmergy; \the production of certain be-
haviour in agents as a consequence of the e�ects produced
in the local environment by previous behaviour"[20]). Ant-
inspired solutions to various search problems have been demon-
strated [6; 4; 2; 9; 5]. Chemical trail laying and following has
been demonstrated in real robots [19; 18], as have chaining
[23], foraging and object sorting behaviours [14]. However it
is often impractical and sometimes undesirable for robots to
physically mark their environment, so we suggest a method
whereby a group of robots deposit landmarks in a shared
localization space. We de�ne localization space as any con-
sistent spatial or topological representation of position. Such
a space is shared if there is some (probably imperfect) cor-

relation between the representations maintained by two or
more individuals. A prime example is the Global Position-
ing System (GPS). Two systems equipped with GPS share
a metric localization space in planetary coordinates. Simi-
larly two robots that start out with known positions in the
same coordinate system and maintain a position estimate
via odometry share a localization space. In both examples
each robot has only an estimate of its position in the true
space, but the true space is common to both. More abstract
localization spaces can be considered, such as the location
of a data byte in a hierarchical database or a URL on the
Internet. In these cases too, there can be some uncertainty
in position; for example if position is described by a fuzzy
matching rule or an ambiguous data query.

In this paper we demonstrate a cooperative transportation
task in a group of simulated mobile robots that communi-
cate by leaving landmarks in shared localization space. The
method is shown to be robust with respect to signi�cant lo-
calization error; indicating that it should be suitable for use
in real robots.

2. TASK AND APPROACH
We examine the ant-like task of having multiple autonomous
robots �nd and repeatedly traverse a path between a known
`home' and an initially unknown `goal' position in an un-
known environment.

Achieving this task reliably with robots would meet a real-
world need. For example a factory may require a supply
of widgets manufactured at position A to be transferred by
robot to position B. In a Flexible Manufacturing System,
the layout of the factory 
oor is expected to change over
time. There will also be occasional robot breakdowns, per-
haps blocking the supply route. There may be considerable
bene�t from a team of robots that can automatically �nd
a new route without an up-to-date map, or exploit several
routes in parallel. There is also a military need for sup-
plies (medicine, food, ammunition) to be transported over
hazardous and uncertain terrain. The start location and
the existence of one or more goal locations may be the only
known features, and these may be a few meters or several
kilometers apart. Establishing a reliable automated supply
column robust with respect to loss of individual robots could
be very valuable.



The experiments described in this paper demonstrate a sim-
ple algorithm for resource transportation by robot teams us-
ing mechanisms loosely analogous to the ant trail following
and the honey bee `waggle dance' [22]. Instead of directly
modifying their physical environment like ants, or perform-
ing an information-transmitting dance like bees, our robots
communicate localization space landmarks over a wireless
network. This communication requires very little bandwidth
and is well within the capabilities of current networks. Our
communication schemes is informed by the minimal strate-
gies described in [10; 15] but are more complex because we
are tackling a more realistic task in a more complex envi-
ronment. Our eventual goal is to perform the task with real
robots in a variety of environments.

3. MULTI-ROBOT SIMULATION
We have written a multi-robot simulator called `Arena' which
is used as a teaching and research tool at the University of
Southern California (USC). It simulates the movement and
sensors of many Pioneer-like robots in a two-dimensional
rectangular arena (Pioneers are small, di�erential steering
robots produced by ActiveMedia Inc.). Each robot can be
provided with any or all of the sensors shown in Table 1. The
navigation strategies presented here use only the odometry,
sonar and region detectors.

The robots' sensors and wheel motors are modeled with low
�delity to achieve a very high update frequency (�200Hz
with 20 robots on a modest 400MHz Pentium II). We believe
this is justi�ed by the presence of noise and wide variation
in characteristics of real transducers. For these experiments
we do not impose arti�cial sensor noise on top of the low
accuracy values reported by the simulator, except in the
position estimates as described below. Collisions are treated
simply; if the robots bump into something they are stuck
unless they turn away from the obstacle.

Arena is implemented as a TCP/IP network server. Robot
controllers are independent client processes communicating
with Arena via a socket. Arena sends a message to each
connected controller at 10Hz indicating the corresponding
robot's current speed, turn rate, position estimate and sen-
sor readings. Controllers asynchronously send messages back
to Arena indicating the latest speed and turn rate demands
for their robot.

Environments are speci�ed as occupancy grids, imported as
black and white bitmaps. We can draw simple environments
with boulder-like obstacles, as used in the experiments in
this paper, or more interestingly, we can import CAD mod-
els of real buildings to provide rich, realistic environments.

4. ALGORITHM
Robots start from a home position and must search for the
goal. On reaching the goal, they receive a unit of resource
and must return home with it, then return to fetch more
resource repeatedly for the length of the trial. Each robot
records its movements as a sequence of landmarks in local-
ization space, each with a position, heading and timestamp.
After each successful traverse, the robot shares the complete
path with its team mates. The algorithm consists of three
decision processes running in parallel. A schematic is shown
in Figure 1.

The trail laying algorithm is independent of the method used
to drive the robot's wheels; rather it can provide a hint of
a `good' heading to go in from the robot's current location.
In this implementation the robots initially search the envi-
ronment by a random walk. This was chosen because it is
simple, requires no a priori knowledge of the environment
and will always �nd a path if one exists, given suÆcient time.
As it moves through the environment each robot records its
current position and heading estimate at regular time inter-
vals. We refer to this as `crumb dropping'. As time goes
by, a robot stores many such records on its initially empty
private crumb list.

If a path to the goal exists, a robot will eventually reach the
goal. Whenever a robot reaches the goal it announces the
contents of its private crumb list on the broadcast channel
of the shared network. All the robots (including the sender)
receive the crumbs and add them to their initially empty
global crumb list. The sender's private crumb list is cleared.
Communicating the route only upon completing a successful
trip corresponds loosely to the honey bee's waggle dance, as
compared to the ant which leaves a trail as it goes along.

The �rst robot to achieve the goal must have used the most
time eÆcient path yet discovered and all robots now have a
list of waypoints describing this path. At each timestep each
robot examines its global crumb list and computes the aver-
age heading of all those crumbs that lie within a threshold
radius of its current position estimate. If there are no such
crumbs, the robot performs random walk, otherwise it at-
tempts to follow their average heading. If a robot is carrying
resource, i.e. it has reached the goal, it will follow the oppo-
site heading back to the home position. On reaching home
a robot also broadcasts and clears its private list. A crumb
stays on the global crumb list for a short time (we used 20
seconds) after which time it is destroyed, corresponding to
the evaporation of ant pheremone trails.

Thus a robot whose position estimate is similar to the po-
sition of a dropped crumb will tend to move in the same
direction as the successful robot that passed that way ear-
lier. By following a trail of crumbs each robot can �nd the
goal much faster than by random walk.

5. EXPERIMENT 1: EFFECTIVENESS
This experiment was performed to evaluate the performance
of the trail-following algorithm described above, by compar-
ing it with a random exploration strategy and a conventional
gradient descent approach.

5.1 Robot controllers
We devised and tested three robot controllers; one (`Ran-
dom') which has no heading bias and explores the arena
at random; a second (`Directed') which performs gradient
descent towards the goal; and a third (`Ant') implementing
the crumb trail following algorithm described above; Con-
trollers were designed in the behavior-based paradigm [3],
and composed of the following basis behaviors [13]:

1. RandomWalk: If there is an obstacle nearby, turn to a
random heading. Otherwise move forward.



Sensor # Field of view Range Freq. Emulated device

location (x; y) 1 - - 10Hz Pioneer odometry or GPS
heading � 1 �180o 10Hz Magnetic compass

forward speed v 1 - �256ms�1 10Hz Pioneer wheel encoders

rotation speed ! 1 - �256rad:s�1 10Hz Pioneer wheel encoders
low-res range �nder 7 -90,-30,-15,0,+15,+30,+90o 0:5! 5m 10Hz Pioneer sonar turret
high-res range �nder 361 -90 to +90o 0! 8m 5Hz SICK LMS200 laser scanner
region detector 8 binary in/out of rect. region - 5Hz various

Table 1: Sensors provided by the Arena simulator.
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Figure 1: Schematic of the trail laying algorithm. Three decision processes run in parallel to manipulate the
private and public crumb lists.
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2. FollowHeading: The robot is supplied with a desired
heading. Turn towards the desired heading until the
heading error is small, then move straight forward.

3. SteerToAvoid: If there is an obstacle to the left, steer
right; if there is an obstacle to the right, steer left. If
there is an obstacle close in front, stop.

4. Frustration: monitor the robot's speed. If the speed
has been very low for a short time, perform RandomWalk
for 3 seconds.

The composition of each complete controller is shown in
schematic in Figure 2.

1. Random: RandomWalk alone is suÆcient to explore
the environment and avoid crashes with walls and other
robots. This stochastic behavior will explore the whole
environment (except very narrow spaces) given suÆ-
cient time.

2. Directed: FollowHeading and SteerToAvoid work to-
gether to drive the robot towards a desired heading,
steering past most obstacles. However, the steering
is crude, and it is common for the robot to stop fac-
ing an obstacle or another robot. Frustration detects
this condition and allows the robot to become unstuck
using RandomWalk.

The goal heading is obtained by calculating the head-
ing to the center of the goal zone (or the home zone if
the robot is on its way home). This simulates a sen-
sor which can detect a goal landmark such as a visible
target or radio beacon. The directed strategy can be
expected to �nd its way to the goal, but like all such
methods it will be impeded by any dead-ends it en-
counters. However, Frustration latches RandomWalk
for long enough to allow the robot to escape any local
minima in the environments studied here. Directed
does not require a localization estimate.

3. Ant: identical to Directed except that the desired
heading input to FollowHeading is obtained by exam-
ining the global crumb list as described above. Note
that Ant does not need to know the direction of the
goal, but does need a localization estimate.

5.2 Experimental design
5.2.1 Environments
We experimented in two square environments of side corre-
sponding to 33.33m. Robots are 0.6m square. The environ-
ments are shown in Figure 3.

The �rst environment (Figure 3 left) consists of a number of
large boulder-like obstacles of various sizes between a `home'
square and a `goal' square, each of side 5m. This environ-
ment is designed such that there are no signi�cant dead-
ends between home and goal; gradient descent towards the
goal will be successful unless the path is blocked by another
robot. We refer to it as the `easy' environment.

The second environment (Figure 3 right) is similar to the
�rst, except that the narrow gap between two boulders on

the right hand side is now closed. This reduces the number
of possible paths between home and goal, and also creates
a signi�cant local minimum for our gradient descent algo-
rithm. Approximately 50% of possible routes from home to
goal will encounter this obstacle. We refer to this as the
(relatively) `hard' environment.

5.2.2 Procedure and data gathered
At the beginning of each experiment a number of robots
are placed at random orientations in the home zone in the
bottom left corner of the environment. The controllers are
started and the robots start to move around in the environ-
ment. After some time one of the robots reaches the resource
area in the upper right corner of the environment. The time
it takes to get the �rst robot to the goal area is recorded
and after that the simulation is allowed to run for another
two minutes. During the experiment the number of round
trips from home to goal zone and back is recorded and used
as a measurement of the experiment's success.

To evaluate the e�ect of group size on performance, the
experiment was performed with each of the three controllers
for group sizes of 5, 10, 15 and 20 robots. Twelve trials were
performed for each combination of controller and group size
to allow statistical evaluation of the results.

5.3 Results
Figure 3 shows screenshots of typical trials. The light dashes
on the black background indicate crumbs on the global crumb
list. Trails of crumbs can be observed running between the
home and goal zones. In the easy environment (left) a trail
can be seen passing through the narrow passage on the right
hand side of the picture. In the hard environment (right),
this passage is blocked and a dense trail can be seen pass-
ing by the top left corner of the obstacle. Due to lack of
space we will not discuss the patterns of behavior that can
be observed in the simulation; we focus here on statistical
observations.

5.3.1 Performance
Figure 4 shows the mean and standard deviation of the num-
ber of units of resource transported in a two minute period
for each of the controllers and group sizes. As could be ex-
pected, the Random controller performed badly in both
environments. In the easy environment (left) the Directed

controller performed better than the Ant controller. This is
to be expected as a gradient descent in a environment with
no dead-ends is well known to produce good paths (but see
[12] for discussion of the general limitations of such meth-
ods). The ant method does slightly worse, achieving approx-
imately 85% of Directed's score.

In all cases the success increases with the group size, but the
increase appears to slow down with the larger robot groups.
This is due to the trade-o� between enhanced exploration
eÆciency and interference e�ects, where robots get in each
other's way. For any �xed environment there is a `critical
mass' of robots that achieves maximum success [1; 7].

In the hard environment (right) we observe that the suc-
cess of all strategies is reduced, but the success of Ant is
now greater than that of Directed, indicating that it is less
e�ected by the changed environment.



Figure 3: Screenshots of the trail laying robots at work in the two environments used in the experiments;
`easy' (left) with no dead-ends between home and goal and `hard' (right) with a signi�cant dead-end area.
The `home' zone is the square at the bottom left; `goal' zone is the square at the top right. Light dashes
correspond to dropped crumbs.
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Figure 4: Units of resource transported plotted against group size for the three robot controllers in the easy
(left) and hard (right) environments.
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easy (left) and hard (right) environments.



f-test Ant, Dir Ran, Dir Ant, Ran

5 0.024 0.025 <0.001
10 0.010 0.095 0.009
15 0.420 0.013 0.006
20 0.029 0.308 <0.001

Table 2: Probabilities of equal variance of data from
controller pairs in the easy environment.

t-test Ant, Dir Ran, Dir Ant, Ran

5 0.018 <0.001 <0.001
10 0.013 <0.001 <0.001
15 0.334 <0.001 <0.001
20 0.001 <0.001 <0.001

Table 3: Probabilities of equal mean of data from
controller pairs in the easy environment.

5.3.2 Start-up time
Figure 5 shows the amount of time taken for the �rst robot
to reach the goal for Ant and Directed controllers.

In the easy environment (left) Directed search reaches the
goal in around 10s in each group size. In contrast Ant
takes longer, with the mean and the standard deviation both
reducing rapidly with increasing group size.

The result for the hard environment (right) has similar char-
acteristics, but for small group sizes the mean time to goal
is longer, as could be expected. For larger group sizes, the
mean time to goal is similar in both environments.

5.4 Statistical Analysis
To determine which algorithm performs best in each envi-
ronment, we must establish that there is a signi�cant di�er-
ence in the distributions of their success scores.

First, we use a two tailed F-test to see if the variances of
the observations are signi�cantly di�erent. Tables 2 and 4
show the probabilities for each pair of controllers that the
variance of their distributions is the same.

The conclusions of the �rst F-test enable us to choose the
appropriate T-test for signi�cance di�erence of means. Ta-
bles 3 and 5 show the probability for each pair of controllers
that their observed means belong to the same distribution.
We can conclude that the samples come from di�erent dis-
tributions for each pair except Ant and Directed in the
easy environment with �fteen robots. We conclude that Di-
rected is found to perform better than Ant in the easy
environment, but the opposite is true in the hard environ-
ment, con�rming the qualitative analysis.

6. EXPERIMENT 2: ROBUSTNESS
The presence of sensor noise means that localization is usu-
ally inaccurate. The error in a position estimate can be
large but approximately constant as with GPS, or start o�
small but accumulate signi�cantly as with odometric meth-
ods. The a�ordability and accuracy of GPS is improving
rapidly. Several authors have described methods for reduc-
ing the growth rate of odometric error and for keeping errors
within reasonable bounds [21; 17].

f-test Ant, Dir Ran, Dir Ant, Ran

5 0.016 0.059 <0.001
10 0.268 0.004 <0.001
15 0.297 0.006 <0.001
20 0.074 0.130 0.001

Table 4: Probabilities of equal variance of data from
controller pairs in the hard environment.

t-test Ant, Dir Ran, Dir Ant, Ran

5 0.001 <0.001 <0.001
10 0.004 <0.001 <0.001
15 0.002 <0.001 <0.001
20 <0.001 <0.001 <0.001

Table 5: Probabilities of equal mean of data from
controller pairs in the hard environment.

In this section we demonstrate that the Ant controller is
robust with respect to signi�cant error in its localization
estimate. The controller is identical to that used in the pre-
vious experiment and we emphasize that there is no explicit
mechanism to model or compensate for localization error.

6.1 Experimental design
In order to test the robustness of the Ant controller, we
measured its success at the transportation task for increas-
ing levels of localization error. The error was modeled by
adding Gaussian noise to the correct robot position gener-
ated by Arena before being passed to the controller program.
Twelve trials were performed for each combination of 5, 10,
15 and 20 robots, with noise variance of 0, 1, 2, 4 and 8m.

A success score is measured for each trial, along with the
proportion of time the controllers spend in RandomWalk,
indicating time spent not doing useful transportation.

6.2 Results
Figure 6 shows a plot of the mean success of 12 trials for
each group-size/noise pair, in the easy (left) and hard (right)
environments. A decrease in the success score can be seen
as the localization error increases, apparently independent
of the group size. In both environments a localization error
of variance 8m results in a success rate around 80% of that
when perfect localization is available. As there are several
choices of real-world localization scheme that can exceed
this accuracy, we can be con�dent that this method will be
reasonably successful when implemented on our real robots.

Figure 7 shows the proportion of time spent in RandomWalk.
It is seen to increase with the number of robots, the local-
ization error and the diÆculty of the environment. The be-
havior is activated when the robot is unable to steer around
an obstacle, so its usage gives an (inverse) measure of how
smoothly the robot could navigate its environment [8].

Two factors can in
uence the smoothness; interference from
other robots and the correctness of the crumb trail. The
increase in RandomWalk with group size is expected and is
due to interference. The increase with localization noise is
due to the widening of the trails as the crumbs become more
scattered in localization space. This makes it more diÆcult
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Figure 6: Units of resource transported against localization error and group size in each of the environments.
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Figure 8: Example direction �elds produced by the trail-laying algorithm in each environment.



for robots to follow trails around obstacles and through nar-
row spaces. We speculate that if localization noise is random
and unbiased, the quality of trails will increase over time as
larger numbers of crumbs are averaged. The data are not
yet available to examine this.

6.3 Interpreting trails as maps
Over time the e�ect of the trail laying algorithm is to an-
notate (in localization space) the whole of the explored en-
vironment. The longer the lifetime of the crumbs on the
public list, the better the coverage and the less variable the
average heading, at the cost of some more memory and pro-
cessing time. Wherever a robot �nds itself it can obtain a
hint of which way to go to achieve the goal. Those parts of
the environment that are most often traversed will contain
the most crumbs, and these will give an average heading
most likely to point along a route towards the goal. If the
local average crumb heading is obtained at regularly-spaced
positions and the results plotted, we obtain a map of the
Ant's navigation environment (Figure 8). Notice that close
to obstacles the recommended heading tends to be parallel
to the obstacle surface; further away the heading tends to
point between obstacles. We intend to examine the proper-
ties of these maps and to compare them with those produced
by more formal path planning methods.

7. CONCLUSIONS AND FURTHER WORK
We have demonstrated that trail-laying behaviors can be
usefully implemented in a shared localization space, rather
than directly in the real world, despite the presence of sig-
ni�cant localization error. A simple algorithm was described
that robustly performs a transportation task between a known
start and initially unknown goal locations, using information
readily available to real robots.

We aim to expand on several aspects of this work:

� Demonstrate the utility of this method for real robots;

� Characterize the maps produced and compare them to
the results of other techniques;

� Examine the possibilities of this approach in more ab-
stract localization spaces;

� Increase competence in the transportation task.
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