
To appear in Software Engineering for Experimental Robotics
D. Brugali, editor, Springer Tracts on Advanced Robotics, 2006

Really Reusable Robot Code and the
Player/Stage Project

Richard T. Vaughan1 and Brian P. Gerkey2

1 School of Computing Science, Simon Fraser University, Canada vaughan@sfu.ca
2 Artificial Intelligence Center, SRI International, USA gerkey@ai.sri.com

1 Introduction

This book is one outcome of the ICRA 2005 workshop on the “Principle and
Practice of Software Development in Robotics”. The meeting was held to ex-
amine the role of software engineering concepts and methods in experimental
robotics applications. Everyone at the workshop agreed that extensive reuse
of robot software should help to make robot development faster, easier and
more efficient, and that this was highly desirable. There exist many robot
programming tools and frameworks designed to promote this idea, some of
which have been actively developed for several years using very fine software
engineering techniques. However, very few supposedly reusable systems are
extensively used outside their home institution or their immediate collabora-
tors. Many well-engineered systems are never used at all. This suggests that
there is more to getting code widely reused than nice code design, however
principled.

In terms of enabling experimental robotics, the most elegant, powerful,
reusable code objects are of no use until someone actually uses them. After
the (excellent but simple and inflexible) Lego Mindstorms system, probably
the most reused robot code in the world comes from the Player/Stage Project.
We think this is because it solves some common problems and has relatively
low barriers to reuse, as well as having a sensible code design.

Based on our experience as authors of Player/Stage, we suggest that to be
effectively enable and promote efficiency in robotics software, the practice of
“Software Engineering for Experimental Robotics” needs to include a broad
consideration of all the barriers to code reuse. Some of these are technical
issues of modularity or interoperability, but some, such as licensing, cost,
distribution, documentation and support, are not.

This chapter reviews the Player/Stage robot development system (P/S),
describing its key models and abstractions, and identifying the opportunities
for code reuse presented by its several layers of interfaces. We also discuss some

2 Vaughan & Gerkey

barriers that make code reuse difficult, and describe how P/S has avoided or
solved some of these problems to become widely reused.

Before proceeding, it should be made clear that there is already a great
deal of reused code running on laboratory robots and workstations every day,
but almost all of it is general-purpose computing infrastructure such as Linux,
GCC, glibc, GSL, MATLAB, Java, Python and Windows1. Some specialized
code for computer vision is also commonly used, for example OpenCV2. None
of this code is specific to robot applications, but we can learn from these
successful code reuse examples.

2 Why reuse robot software?

The problem of how to program intelligent robots includes nearly all the sub-
problems of AI, from perception, control, and reasoning under uncertainty,
to planning, scheduling, and coordination. In addition, robot programming
entails solving systems problems, including physical dynamics and real-time
constraints, computation, memory and bandwidth limitations, and unreliable
communications. Many students and researchers are attracted to the par-
ticular challenge presented by this complex combination of AI and systems.
These properties, combined with the community’s emphasis on demonstrating
working systems mean that the products of research can often be quickly and
usefully applied in the real world.

However, there are certain systems aspects of robotics work that are simply
tedious. Consider the wide variety of wheeled mobile robots used in research
labs. Despite the obvious similarity in their functionality and capabilities, the
differences in size, shape, kinematics, and communication protocol mean that
code developed for one robot (usually) must be ported or otherwise adapted to
work on another robot. Simple tasks, like teleoperating a robot or visualizing
its sensor state, require a significant amount of work. When they are available,
interface libraries for robots often restrict the choice of programming language
and/or style. Well-understood algorithms are re-implemented over and over
again in laboratories around the world.

In addition to lost time as researchers duplicate engineering tasks, there is
a negative impact on the quality of the resulting work. We have little shared
equipment, few shared data3, no shared environments, few shared tasks, and
little shared code. As a result, robotic systems are not directly comparable,

1 Respectively, the GNU/Linux operating system, the GNU Compiler Collection,
the GNU C Library, the GNU Science Library, the MATLAB computing envi-
ronment from The MathWorks, the Java programming environment, the Python
programming environment, and Microsoft Windows operating system

2 http://sourceforge.net/projects/opencvlibrary/
3 An exception is the Radish project [http://radish.sourceforge.net], a public

repository for localization and mapping data sets.

Really Reusable Robot Code 3

and competing approaches are often evaluated only in a “trial by video” at
workshops and conferences.

Recently, challenges such as RoboCup and the DARPA Grand Challenge
have focused research efforts and provided clear metrics for evaluating perfor-
mance. These challenges are not a panacea, however; the overhead involved
in entering such a competition is considerable, as is the danger of overfitting
solutions to the peculiarities of the competition environment.

The goal of the Player/Stage Project is to develop Free Software infrastruc-
ture that improves research practice and accelerates development by handling
tedious tasks and providing a standard development platform. More than sim-
ply distributing this infrastructure as a set of tools to the research community,
we invite members of the community to contribute to the project. By collab-
orating on a common system, we share the engineering burden and create a
means for objectively evaluating published work. If you and I use a common
development platform, then you can send me your code and I can replicate
your experiments in my lab. The ability to perform methodical peer evalua-
tion is expected in the natural sciences but lamentably absent from robotics
today.

3 Code reuse from the Player/Stage Projet

Our claim that code from the Player/Stage Project is frequently reused needs
some supporting evidence. Player’s distribution terms, the GNU General Pub-
lic License4 allow anyone to use and distribute the sourcecode. This makes
it impossible to obtain precise numbers of Player users. There is no reliable
mechanism for user registration or reporting. We have four sources of docu-
mentary evidence that Player code is being used:

1. Download statistics;
2. Support forum messages and bug tracker items;
3. Submissions to our user laboratory list;
4. Acknowledgements in published robotics articles.

The Player/Stage Project has been hosted by Sourceforge5 since December
2001. As of 6 January 2006, Sourceforge reported 42,009 downloads of P/S
software, and a download rate of around 2,000 packages (2.2GB) per month.

Figure 1 is a graph of the number of downloads and bandwidth supplied
by Sourceforge each month of that four-year period 2001 through 2005. Down-
loads show faster-than-linear growth during 2002-4, and were roughly constant
in 2005. No major new releases were made in 2005: most development this year
was towards a forthcoming 2.0 release scheduled for early 2006.

4 http://www.gnu.org/copyleft/gpl.html
5 http://sourceforge.net

4 Vaughan & Gerkey

 0

 500

 1000

 1500

 2000

 2500

01/01/02 01/07/02 01/01/03 01/07/03 01/01/04 01/07/04 01/01/05 01/07/05 01/01/06

Nu
m

be
r o

f d
ow

nl
oa

ds
 /

M
B

pe
r m

on
th

Date, in range Jan 2002 to Dec 2005

download count

 0

 500

 1000

 1500

 2000

 2500

01/01/02 01/07/02 01/01/03 01/07/03 01/01/04 01/07/04 01/01/05 01/07/05 01/01/06

Nu
m

be
r o

f d
ow

nl
oa

ds
 /

M
B

pe
r m

on
th

Date, in range Jan 2002 to Dec 2005

download count
download size (MB)

Fig. 1. Four-year download history for the Player/Stage Project

Fig. 2. Geographical distribution of downloads in December 2005

Really Reusable Robot Code 5

Mailing list Description Subscribers Messages

playerstage-users Player and Stage user support 253 3057
playerstage-developers developer discussion 133 1423
playerstage-gazebo Gazebo user support 99 864
playerstage-design strategic developer discussion 58 130
total messages 5514

Table 1. Mailing list archive in January 2005

Tracker Items

Bugs 159
Patches 99
Feature requests 85
total items 243

Table 2. Issue-tracking database items (including closed items) in January 2005

Google’s web traffic analytics tracking service6 provides (among other
things) a breakdown of the geographical location of visitors to the P/S web
site. In the month of December 2005, a total of 70,920 web page requests were
served. Figure 2 shows the locations of the visitors, demonstrating the global
interest in Player. Unfortunately geographical data for actual software down-
loads (rather than web page requests) is not available, but we can assume that
the distribution of software downloads is similar to that of the web requests.

3.1 Support forum and trackers

P/S uses Sourceforge’s mailing list and issue-tracker services to communicate
with users and developers. Activity on these services suggests active users.
Table 1 shows the number of subscribers and messages on each list at the
beginning of 2006. There were a total of 5514 messages on the lists since their
creation in January 2002; an average of three messages every day. The total
number of subscribers is not meaningful because many people subscribe to
more than one list.

Another indicator of user activity is the issue-tracking database, a mecha-
nism designed to manage issues that can not be immediately resolved on the
mailing lists. Figure 2 shows the number of items on each list from January
2001 to January 2006: a total of 243. Notable here are the 99 code patches
submitted by users to fix bugs or extend P/S software. Many of these patches
have been applied to the tree to become ‘official’ code.

6 http://google.com/analytics

6 Vaughan & Gerkey

3.2 User site list

Users are invited to submit the name of their laboratory for listing on the
P/S web site7 , which is occasionally updated by the maintainers. The list
currently contains 51 entries in 13 countries, including the Boeing Company,
the Australian Centre for Field Robotics, the Chinese National University of
Defense Technology, the Technical University of Munich, the NARA Intitute
of Science and Technology, Georgia Institute of Technology, and Rochester
Institute of Technology’s DARPA Grand Challenge Autonomous Race Team.

3.3 References in scientific articles

Many authors not connected with P/S development or each other have pub-
lished papers that acknowledge the use of Player/Stage Project code in their
experiments. Examples include the papers [AALB05, HHFS05, TC05, iSW05]
all from the IEEE International Conference on Intelligent Robots and Systems
(IROS) in 2005. Others are cited elsewhere in this chapter.

Based on these figures, we conclude that Player/Stage is both a well-known
and well-used source of robot code.

4 Design of the Player robot device interface

All work, including robotics research, is impacted by the tools that are used.
Good tools simplify common tasks, while bad tools complicate them. The
assumptions that are built into a set of tools bias the researcher who uses
them toward particular kinds of solutions.

Our design philosophy is heavily influenced by the operating systems (OS)
community, which has already solved many of the same problems that we
face in robotics research. For example, the principle function of an operating
system is to hide the details of the underlying hardware, which may vary from
machine to machine. Similarly, we want to hide the details of the underlying
robot. Just as I expect my web browser to work with any mouse, I want
my navigation system to work with any robot. Where OS programmers have
POSIX, we want a common development environment for robotic applications.
Operating systems are equipped with standard tools for using and inspecting
the system, such as (in UNIX variants) top, bash, ls, and X11. We desire a
similar variety of high-quality tools to support experimental robotics.

Operating systems also support virtually any programming language and
style. They do this by allowing the low-level OS interface (usually written in C)
to be easily wrapped in other languages, and by providing language-neutral in-
terfaces (e.g., sockets, files) when possible. Importantly, no constraints or nor-
mative judgments are made on how best to structure a program that uses the

7 http://playerstage.sourceforge.net/index.php?src=users

Really Reusable Robot Code 7

OS. We take the same approach in building robotics infrastructure. Though
not strictly part of the OS, another key feature of modern development envi-
ronments is the availability of standard algorithms and related data structures,
such as qsort(), TCP, and the C++ Standard Template Library. We follow
this practice of incorporating polished versions of established algorithms into
the common code repository, so that each researcher need not re-implement,
for example, Monte Carlo localization. Finally, an important but often over-
looked aspect of OS design is that access is provided at all levels. While most
C programmers will manage memory allocation with the library functions
malloc() and free(), when necessary they can dig deeper and invoke the sys-
tem call brk() directly. We need the same multi-level access for robots; while
one researcher may be content to command a robot with high-level “goto”
commands, another will want to directly control wheel velocities.

In summary, our approach to building tools for robotics research is to ex-
tend useful abstractions from the OS up just enough to enable robotic devices
to be used as easily as normal computer devices such as mice and printers. Like
an OS, we aim to provide resources as transparently as possible, extending
and managing the hardware but otherwise keeping out of the user’s way.

5 Abstractions

Player comprises four key abstractions: The Player Abstract Device Inter-
face (PADI), the message protocol, the transport mechanism, and the imple-
mentation. Each abstraction represents a reusable and separable layer. For
example, the TCP client/server transport could be replaced by a CORBA
transport. Alternatively, an entirely different system could be built atop the
PADI. These four abstractions, described in the following sections, are the re-
sult of a considerable design effort refined over several years of broad use and
are in themselves opportunities for reuse, independent of their P/S software
implementations.

5.1 The Player Abstract Device Interface

The central abstraction that enables portability and code re-use in Player is
the PADI specification. The PADI defines the syntax and semantics of the data
that is exchanged between the robot control code and the robot hardware. For
ease of use, the PADI is currently specified as a set of C message structures; the
same information could instead be written in an Interface Definition Language
(IDL), such as the one used in CORBA systems.

The PADI’s set of abstract robot control interfaces constitutes a virtual
machine, a target platform for robot controllers that is instantiated at run time
by particular devices. The goal of the PADI is to provide a virtual machine
that is rich enough to support any foreseeable robot control system, but simple
enough to allow for an efficient implementation on a wide array of robot

8 Vaughan & Gerkey

hardware. The key concepts used in the PADI, both borrowed from the OS
community, are the character device model and the driver/interface model.

The character device model

The “device-as-file” model, which originated in Multics [FO71] and was popu-
larized by UNIX [RT74], states that all I/O devices can be thought of as data
files. A distinction is made between sequential and random access devices.
Sequential devices such as terminals and tapes produce and consume streams
of data one byte after another, and are called character devices, while random
access devices such as disk drives can manipulate chunks of data in arbitrary
orders, usually through a cache, and are known as block devices. The nature
of sensors and actuators is to produce and consume data in time-extended
streams: they are character devices.

The standard interface to character devices is through five well-defined
operations. Access to devices is controlled by open and close operations. Data
is collected from the device by a read operation, and sent to the device by
a write operation. The asynchronous read and write are sufficient on their
own for many devices, but a third transfer mechanism, the ioctl (input/output
control) provides a synchronous request/reply channel, typically to access data
that is persistent rather than sequential, such as setting and querying the
configuration of the device. All five operations will indicate error conditions
if they fail.

Player uses the character device interface to access its hardware devices.
For example, to begin receiving sensor readings, the appropriate device is first
opened, after which data can be read from it. Likewise to control an actuator,
the appropriate device is opened, after which commands can be written to it.
An ioctl mechanism is used for device configuration and for atomic test/set
and read/clear operations required by some devices. For reasons explained
elsewhere [GVS+01, GVH03], Player does not currently implement exclusive
access to devices, so multiple modules can simultaneously control the same
device. We are considering adding exclusive access modes, which would be
analogous to file-locking mechanisms in operating systems.

The character device model has some drawbacks. In particular, since there
is no interrupt mechanism, clients must poll devices to receive new data. This
is not the best approach for low-latency I/O with high-speed devices, which
are usually interrupt-driven. Player was designed to support update rates of
the order of 5-100Hz, covering the majority of research robots. This model
is unlikely to suffice for devices that operate on the order of 1MHz. Also,
the ioctl channel is often used in a way that breaks device independence and
reduces portability, as discussed below.

Apart from the assumption of sequential access (supplemented with the
ioctl), the character device abstraction is neutral with respect to program-
ming language and style. Almost every programming language supports this
model, and almost any robot control architecture can be (and likely has been)

Really Reusable Robot Code 9

implemented atop the generic read/write/ioctl interface. This model has suc-
cessfully supported UNIX-like operating systems for decades, and Player for
years. We suggest that the character device model is a suitable foundation for
a robot device control standard.

The interface/driver model

The character device model defines only the broadest semantics of its three
channels (roughly: input, output and configuration), but imposes no other
structure on the data streams. Each device could have its own unique data
format, requiring controller code to be written specifically for each device.
Another powerful abstraction, the interface/driver model determines the con-
tent of these streams and provides the device independence that is the key to
portable code.

The interface/driver model groups devices by logical functionality, so that
devices which do approximately the same job appear identical from the user’s
point of view. An interface is a specification for the contents of the data
stream, so an interface for a robotic character device maps the input stream
into sensor readings, output stream into actuator commands, and ioctls into
device configurations. The code that implements the interface, converting be-
tween a device’s native formats and the interface’s required formats is called a
driver. Drivers are usually specific to a particular device, or a family of devices
from the same vendor.

Code that is written to target the interface rather than any specific device
is said to be device independent. When multiple devices have drivers that
implement the same interface, the controlling code is portable among those
devices.

Many hardware devices have unique features that do not appear in the
standard interface. These features are accessed by device-specific ioctls, while
the read and write streams are generally device independent. Interfaces should
be designed to be sufficiently complete so as to not require use of device-
specific ioctls in normal operation, in order to maintain device independence
and portability.

There is not a one-to-one mapping between interface definitions and phys-
ical hardware components. For example, the Pioneer’s native P2OS interface
bundles odometry and sonar data into the same packet, but a Player controller
that only wants to log the robot’s position does not need the range data. For
portability, Player separates the data into two logical devices, decoupling the
logical functionality from the details of the Pioneer’s implementation. The
pioneer driver controls one physical piece of hardware, the Pioneer microcon-
troller, but implements two different devices: position2d and sonar. These
two devices can be opened, closed, and controlled independently, relieving the
user of the burden of remembering details about the internals of the robot.

Since Player was initially designed as an interface to our Pioneer 2-DX
mobile robots, early versions of the server provided almost transparent access

10 Vaughan & Gerkey

to specific components and peripherals of the Pioneer as it was used in the
USC Robotics Lab. For example, each data packet from the sonars comprised
16 range readings, because the Pioneer has 16 sonar transducers. Likewise,
command packets to the wheel motors comprised two velocities, because the
Pioneer is a non-holonomic, differentially-driven robot.

This Pioneer-specific device model was extensible, but did not encourage
code reuse or portability. When code was added to provide access to a new
device, that device presented a unique, device-specific interface that required
device-specific support in control programs. As a result, programs that con-
trolled the second Player-supported mobile robot, the RWI B21r, used an API
that was completely different from that used to control the Pioneer, despite
the fact the two robots are functionally similar.

In order to more conveniently support different devices, we introduced the
interface/driver distinction to Player. An interface, such as sonar, is a generic
specification of the format for data, command, and configuration interactions
that a device allows. A driver, such as pioneer-sonar, specifies how the low-
level device control will be carried out. In general, more than one driver may
support a given interface; conversely, a given driver may support multiple
interfaces. Thus we have extended to robot control the device model that is
used in most operating systems, where, for example, a wide variety of joysticks
all present the same “joystick” interface to the programmer.

As an example, consider the two drivers pioneer-position and rwi-position,
which control Pioneer mobile robots and RWI mobile robots, respectively.
They both support the position2d interface and thus they both accept com-
mands and generate data in the same format, allowing a client program to
treat them identically, ignoring the details of the underlying hardware. This
model also allows us to implement more sophisticated drivers that do not sim-
ply return sensor data but rather filter or process it in some way. Consider the
lasercspace driver, which supports the laser range-finder interface. Instead
of returning the raw range values, this driver modulates them according to
the dimensions of the robot, creating the configuration-space representation
of free space in the environment.

The primary cost of adherence to a generic interface for an entire class
of devices is that the features and functionality that are unique to each de-
vice are ignored. Imagine a fiducial-finder interface whose data format
includes only the bearing and distance to each fiducial. In order to support
that interface, a driver that can also determine a fiducial’s identity will be
under-utilized, some of its functionality having been sacrificed for the sake
of portability. This issue is usually addressed by either adding configuration
requests to the existing interface or defining a new interface that exposes
the desired features of the device. Consider Player’s Monte-Carlo localization
driver amcl; it can support both the sophisticated localization interface
that includes multiple pose hypotheses, and the simple position2d interface
that includes one pose and is also used by robot odometry systems.

Really Reusable Robot Code 11

5.2 The Player protocol

The Player Protocol implements the PADI along with some additional
structures and rules for multiplexing, ordering, sending and receiving col-
lections of PADI messages, and commands for inspecting and controlling the
behavior of Player itself. For example, part of the protocol specification states
that data and messages are asynchronous and not acknowledged, while con-
figurations are synchronous: every request is guaranteed an acknowledgment
(positive or negative) in response. The protocol also defines a generic header
structure that precedes every message and contains the meta-data necessary to
unambiguously interpret the message. Note the the protocol does not specify
the manner in which packets are serialized, addressed, or transmitted; those
details are handled by the transport layer.

5.3 Transport mechanisms

The PADI and Player Protocol together are sufficient for building a single-
process robot control system. Drivers can be instantiated and bound to in-
terfaces, and the resulting devices can exchange PADI-defined messages (e.g.,
by function calls) according to the rules of the protocol. However, if we want
the ability to move messages among devices or other modules that are in
different processes or on different machines, then we need a transport mech-
anism.8 The job of a transport mechanism is two-fold: handle the addressing
and routing of packets, and perform packet serialization and deserialization
(also called data marshaling). Some transports may also provide higher-level
functionality, such as resource discovery.

TCP client/server transport

Historically Player has relied on a TCP client/server transport, in which de-
vices reside in a server and a control program is a client to the server. To
control a robot, the user first starts the player server, which listens on a
particular TCP port (by default 6665), on the robot. Then a client program,
such as a joystick controller or data visualization GUI, is started and estab-
lishes a TCP socket connection to the server. The client can run on-board the
robot or on any other machine that has network connectivity to the robot.
One client can connect to many servers and many clients can connect to one
server. Importantly, clients can be written in any programming language with
support for TCP sockets.

In order to safely send messages from one machine to another over a TCP
socket, a data marshaling scheme must be defined. The marshaling rules spec-
ify the bit-level details of how, for example, numbers are represented on the

8 With respect to the OSI Network Model [Tan96], we refer collectively to the
Network Layers (Transport and below) and the packet-shuffling machinery in the
Session Layer as the transport.

12 Vaughan & Gerkey

wire. Earlier versions of Player used a custom encoding of messages as packed
C structs that contained integers in network byte-order. Player now uses an
open standard called eXternal Data Representation, or XDR [Net87]. The
XDR specifies an efficient, platform-independent encoding for commonly-used
data types, including integers and floating point values. To reduce the occur-
rence of marshaling bugs, the library that performs the XDR data marshaling
is generated in an automatic fashion directly from the header file that specifies
the PADI.

Other transports

The client/server model has served Player (and many other distributed sys-
tems) well for many years, but it is not the ideal transport mechanism for
every robot system. In order to allow for the use of other transports, Player
was redesigned to be transport-independent. The TCP client/server trans-
port is still available (and will likely continue to be the mostly widely-used),
but other transport mechanisms can be substituted in its place. The drivers,
message structures, and other underlying details remain unchanged.

For example, we have developed a JINI-based transport for Player. JINI
is a Java-based architecture for building distributed systems in a network-
centric manner [Wal99]. JINI has been used in many distributed systems,
including the largest multi-robot system deployed to date [KOV+04]. JINI
offers a number of advantages over the TCP client/server approach, including:
robustness to network delays and dropouts, automatic resource discovery, and
effortless data marshaling using Java’s built-in object serialization mechanism.
On the other hand, it is non-trivial to install, configure, and run the JINI
infrastructure; and of course control programs must be written in Java.

Other trade-offs exist for other popular transport mechanisms, such as
CORBA [Obj02], IPC [SW97], and ACE/TAO [SLM98]. It is highly unlikely
that the robotics community will agree on a single transport for all robotics
software, nor should they; the requirements and constraints exhibited by any
given application area will make particular transports more or less appropri-
ate, and it is important to allow the system designer to choose the best one.
Because the manual construction of a new Player transport layer is a tedious
and bug-prone process, we have taken care with the the PADI and core Player
libraries so as to facilitate the automatic generation of transport code. For ex-
ample, the JINI transport layer uses automatically-generated Java bindings
for Player. We expect to see other transports developed similarly.

The choice of transport is critical for a robotics application as it is the
transport that determines the real-time peformance of the system. Assuming
that the robot software has been designed to avoid any logically unecessary
time delays, the transport and the underlying OS that implements it are the
only source of timing delays due to buffering, message transmissionn, etc.
For control of most slow-moving, statically-stable wheeled robots, TCP over

Really Reusable Robot Code 13

Ethernet (802.3) or WiFi (802.11b/g) is found to have acceptable timing per-
formance and its ubiquity makes it a good choice of general purpose transport.

5.4 Implementations

We have implemented the PADI, the Player Protocol, TCP client/server trans-
port (with XDR data marshaling), and many device drivers as a set of reusable
C/C++ libraries. The most common use of these libraries is in an executable
server, called player. This server is used to parse configuration files, instan-
tiate drivers, and service client connections to devices. It is customary when
using Player to assign to each robot a server that contains all the drivers
used in that robot’s control system. The user’s control program is written as
a client that executes outside of the server (the situation is essentially the
same, with different terminology, when using JINI instead of TCP).

The server represents a privileged space in which modules have better,
faster access to hardware and to each other. Control code on the client side
experiences greater latency and a somewhat lessened ability to interrogate
devices. On the other hand, the client code has fewer constraints with respect
to programming language and structure, and it is relieved of the drivers’
burden of behaving properly to avoid crashing the rest of the system.

In this way, Player is analogous to a monolithic kernel operating system,
in which a privileged kernel space is separated from a non-privileged user
space [SGG05]. Most operating systems, including Linux, employ monolithic
kernels. An alternative approach, used by operating systems such as QnX,
is the microkernel, in which there is no privileged kernel space, but rather a
collection of system processes and a mechanism for efficiently passing mes-
sages between them. There are advantages and drawbacks to each approach
and the topic has been debated, without resolution, in the OS community for
decades. An example of a microkernel-like robot control system is CARMEN
[MRT03]. It is worth noting that although Player more naturally operates as
a monolithic kernel, a microkernel system can be constructed by connecting
multiple servers together, each with a single driver (server-server communica-
tion operates exactly like client-server communication).

As an alternative to our C/C++ system, an equivalent implementation
of Player could be done in, for example, Java. A Java-only Player would
be useful for the many embedded computing platforms that execute Java
bytecode natively. Of course the existing C/C++ drivers could not be used on
a native Java system. Other possible re-implementations include using strictly
C (for systems without C++ runtime support) and removing the reliance on
POSIX threads (which Player uses extensively).

6 Higher-level drivers

While Player’s primary purpose is to provide portable and nearly transparent
access to robot hardware, an increasing number of drivers encapsulate sophis-

14 Vaughan & Gerkey

ticated algorithms that are removed by one or more steps from the physical
hardware. These higher-level drivers use other drivers, instead of hardware,
as sources of data and sinks for commands. The amcl driver, for example, is
an adaptive Monte Carlo localization system [TFBD00] that takes data from
a position2d device, a laser device, and a map device, and in turn provides
robot pose estimates via the localize interface (as mentioned above, amcl
also supports the simpler position2d interface, through which only the most
likely pose estimate is provided). Other Player drivers perform functional-
ity such as path-planning, obstacle avoidance, and various image-processing
tasks.

The development of such higher-level drivers and corresponding interfaces
yields three key benefits. First, we save time and effort by implementing well-
known and useful algorithms in such a way that they are immediately reusable
by the entire community. Just as C programmers can call qsort() instead of
reimplementing quicksort, robotics students and researchers students should
be able to use Player’s vfh driver instead of reimplementing the Vector Field
Histogram navigation algorithm [UB98]. The author of the driver benefits by
having her code tested by other scientists in environments and with robots
to which she may not have access, which can only improve the quality of the
algorithm and its implementation. Second, we create a common development
environment for implementing such algorithms. Player’s C++ Driver API
clearly defines the input/output and startup/shutdown functionality that a
driver must have. Code that is written against this API can enter a community
repository where it is easily understood and can be reused, either in whole
or in part. Finally, we create an environment in which alternative algorithms
can be easily substituted. If a new localization driver implements the familiar
localize interface, then it is a drop-in replacement for Player’s amcl. The two
algorithms can be run in parallel on the same data and the results objectively
compared.

7 APIs

We have described above the various interfaces to Player’s components. In
practice, the majority of user code will interact with Player through a client
library; a language-specific interface that the user compiles (or loads, depend-
ing on the language) into their client program. Each client library presents an
‘Application Programming Interface’ (API). The most commonly used client
libraries (and hence APIs) are the libplayerc and libplayerc++ libraries, for C
and C++ respectively. Several other libraries are thin wrappers around one of
these. For example the Python client library is automatically generated from
libplayerc using the SWIG (Simplifiedf Wrapper and Interface Generator) tool
[Bea96]. Using SWIG, changes to the libplayerc interface are correctly pro-
pogated through to APIs in several languages without having to tediously edit
each by hand. As well as saving time, this removes a common source of bugs.

Really Reusable Robot Code 15

There are several advantages for users in using the client libraries instead
of talking to the Player server directly; first, client libraries hide the details of
the client/server communications almost completely, so the user can largely
ignore the socket-level Player protocol, marshalling and serializing data, etc.
Secondly, each API is designed to in a way that is natural way for its language;
for example libplayerc++ presents client-side proxy objects that correspond
to server-side devices. Thus the user can manipulate the proxies as fully-
fledged objects, inherit from them, etc. As required by its language, the C
client library has a similar proxy-based design, but structures and function
calls are used instead.

Client library external APIs must change only when the PADI changes:
they need not change with the client/server protocol, though of course the
libraries must change internally to communicate with the server. The APIs
can often be backwards compatible, for example when the PADI is extended
but existing specifications are not changed the client API will still work, it
will simply not provide access to the newly-defined structures.

As a ‘Presentation Layer’ interface in OSI terms, the client library APIs
are almost independent of the transport layer in that they hide most details
of the transport. However, some high-level transport-related details may leak
through this abstraction. For example, all the client libraries that target the
Player TCP server must be supplied with the hostname and port number of
a running Player server on initialization. After initialization, the TCP con-
nection is completely transparent as user code interacts with Player through
client-side proxy objects (C++, Java, Python) or structures and function calls
(C).

The popularity of the client libraries, particularly libplayerc++ and lib-
playerc, means that their design is very important. As the most-used interface
anywhere in the Player/Stage system, the quality of their design plays a large
part in the utility of the whole system. If the APIs are too complex, or incon-
sistent, or poorly documented, users will be quickly frustrated. Libplayerc was
carefully designed to be as consistent and transparent as the authors could
reasonably make it. It was intended to replace libplayerc++ which was writ-
ten originally to test the Player TCP server and not intended for end-users.
The fact that almost all early users used the C++ library instead of talking
to the server took us by surprise.

For most users, the internal design of the server is of no interest at all, so
long as she is protected from it by a client library. However, code correctness
is equally important throughout the system: a bug anywhere upstream will
eventually appear to the user through this interface. The existence of clean,
maintainable server code is justfied by the increased probability of code cor-
rectness alone.

16 Vaughan & Gerkey

(a) (b)

Fig. 3. Screenshots of: (a) playerv displaying range data from a laser-equipped
robot; and (b) playernav showing poses and planned paths for a team of robots.

8 Tools

As an OS provides the basic services needed to control a computer, Player
provides the basic services necessary to control a robot. An OS is also bundled
with useful tools for common tasks, like listing files and displaying the process
table. Similarly, Player is bundled with several tools:

• playerprint : Fetches and prints sensor data to the console.
• playerv : Fetches and graphically displays sensor data; also provides tele-

operation by mouse movement (Figure 3(a)).
• playerjoy : Provides joystick teleoperation.
• playervcr : Provides remote control of data logging and playback.
• playernav : A graphical operator control unit that provides control over

localization and path-planning for multiple robots (Figure 3(b)).
• playerwritemap : Fetches grid and vector maps (e.g., from a SLAM

driver) and writes them to disk.
• playercam : Remotely displays video imagery from robot-mounted cam-

eras.

Third-party tools have also been developed, including a tool similar to play-
ercam and an OpenGL-based 3-D application that combines some of the
functionality of playerv with some of playernav. The development of such
tools by users outside of the P/S/G project is a testament to the reusability
of the system and the extensibility of the architecture.

Really Reusable Robot Code 17

Fig. 4. A screenshot from the Stage multiple-robot simulation, showing several
robots leaving trails as they explore a small section of a hospital floorplan.

9 Simulation

A significant contribution of the Player/Stage project is to provide robot
simulators. The main benefits to the user of using a simulation over a real
robot are convenience and cost: simulated robots are usually easy to use,
their batteries need not run out, and they are very much cheaper than real
robots.

9.1 Stage

After Player, the next most reused component of the Player/Stage project is
the Stage robot simulation engine. Stage provides a virtual world populated by
mobile robots and sensors, along with various objects for the robots to sense
and manipulate. Designed with multi-agent systems in mind, it provides fairly
simple, computationally cheap models of lots of devices rather than attempt-
ing to emulate any device with great fidelity. This design is intended to be
useful compromise between conventional high-fidelity robot simulations, the
minimal simulations described by Jakobi [Jak97], and the grid-world simula-
tions common in artificial life research [Wil85]. We intend Stage to be just
realistic enough to enable users to move controllers between Stage robots
and real robots, while still being fast enough to simulate large populations.
We also intend Stage to be comprehensible to undergraduate students, yet
sophisticated enough for professional reseachers.

Stage provides several sensor and actuator models, including sonar or in-
frared rangers, scanning laser rangefinder, color-blob tracking, fiducial track-
ing and mobile robot bases with odometric or global localization. Figures 4
and 5 show screenshots from a running simulation.

18 Vaughan & Gerkey

Fig. 5. A close-up screenshot from the Stage multiple-robot simulation, showing
rendered laser and sonar data and several robots.

Stage is most commonly used with Player to form the Player/Stage sys-
tem. Robot controller client programs interact only with Player, so simulated
Stage devices appear identical to real devices. Client programs do not need
to be rewritten or even recompiled to switch from simulated to real devices:
a very convenient feature. Stage is implemented as a Player plugin driver
(libstageplugin), loaded as Player starts up. This allows Stage to be devel-
oped and released on a schedule independent of Player.

#include "stage.h"

int main(int argc, char* argv[])
{
stg_init(argc, argv);
stg_world_t* world = stg_world_create_from_file(argv[1]);

while((stg_world_update(world,TRUE)==0))
{
/* use the simulation */

}

stg_world_destroy(world);
return 0;

}

Fig. 6. Creating a complete multiple-robot simulation in C with libstage.

Really Reusable Robot Code 19

The Stage simulation engine is implemented as the standalone C library
libstage; libstageplugin is a wrapper around libstage that connects it to
Player’s driver architecture. Libstage can be used to very easily create a
robot simulation in user code. This is useful for users who wish to have
more control over the internals of a simulation than they can get through
Player’s simulation interface. It also allows for perfectly repeatable exper-
iments, without the unpredictable timing inevitably introduced by Player’s
TCP transport.

Using Stage directly without Player also saves a little computational over-
head for those with very high performance requirements. The main downside
is the loss of Player’s high-level drivers (VFH, AMCL, etc.). Using the libstage
in this way is very simple, as illustrated Figure 6 showing the C code required
to instantiate a complete multiple robot simulator, similar to that shown in
the screenshot above.

Stage is probably the most-used robot simulator, with research papers
acknowledging the use of Player/Stage appearing in most major journals and
conferences. The first published paper to use libstage directly was [ZV06],
but libstage has also the basis of a the commercial product “MobileSim”
from MobileRobots Inc. since 2005. This is noteworthy because none of the
Stage maintainers have any relationship with the company or MobileSim, but
MobileRobots have been active in contributing patches back to libstage.

9.2 Gazebo

Gazebo is also a robot simulator that works with Player. Unlike Stage, it
provides realistic kinematics and dynamics in three-dimensional environments.
Figure 7 shows a screenshot from Gazebo. Client programs written using
one simulator can usually be run on the other with little or no modification.
Gazebo is more realistic than Stage, but much more computationally intensive.
Stage is designed to simulate a large robot population with low fidelity, and
Gazebo is designed to simulated a fairly small population with high fidelity.
Thus the two simulators are complimentary, and users may switch between
them without cost due to the common Player interface.

Like Stage, Gazebo is implemented as a standalone library and can be
used without Player. Due to its complexity, Gazebo is currently more difficult
to install and run than Stage, and is less frequently used.

10 Barriers to reuse

Why are most robot code tools used by no one but their authors? Robot
infrastructure code will not be widely used if it is

1. very buggy, or otherwise of poor quality;
2. undocumented;

20 Vaughan & Gerkey

Fig. 7. A screenshot from the Gazebo 3D robot simulator, showing a model of a
Pioneer robot carrying a SICK laser scanner and pan/tilt/zoom camera, with some
environmental objects.

3. too expensive;
4. tied to a specific robot platform.
5. not solving the problems that lots of people really have;
6. difficult for the user to express their intentions;
7. overwhelmingly complex or cumbersome to use;
8. not distributed.

The first three reasons are self-explanatory, but the others may require
some elaboration.

Several well-known pieces of software are produced and/or distributed by
robot manufacturers to add value to their products. They deliberately only
work with that company’s robots. The market for robots is small and diverse,
and many robots are still custom-built. Robot companies often (perhaps usu-
ally?) go out of business. When evaluating the software from a vendor, the
researcher has to decide if the software is worth the investment in time and
money (if the software is not free) to invest in software that restricts her choice
of robot, and for which the support from someone with access to sourcecode
could disappear at any time. These problems are the same with all commmer-
cial software, but the small size and volatility of the research robot business
makes this particularly risky.

The next two reasons are closely related. Producing software that does not
solve anyone’s real problems is a trap that is often fallen in to. For example,
one feature that is repeatedly proposed to make robot programming easier is
graphical programming, i.e. building systems by connecting boxes with lines

Really Reusable Robot Code 21

using some spatial layout tool. This seems to ignore the fact that the popula-
tion of robot programmers are overwhelmingly graduates of computer science
or engineering, most of whom have no difficulty expressing themselves in code.
Being artificially constrained to thinking about a problem only graphically,
can be frustrating. Some common code structures, such as loops and recur-
sion, are difficult to represent graphically. As anyone who has used Simulink
knows, complex programs quickly lead to cluttered screens and so lots of time
is spent arranging objects spatially: an arrangement that has no meaning at
all for the code. Great complexity is also a problem: users are quick to aban-
don a system if they feel overwhelmed or can not get their robot equivalent
of “Hello World” working in a few hours.

Another problem is of overwhelmingly complex or cumbersome software.
Many of the proposed solutions to robot programming problems require in-
frastructure that may take more time to install and debug than they can
save. The application of middleware such as CORBA, TAO and JINI, attrac-
tive though it is to software engineers, must be carefully justified to a robot
programmer on a tight time budget, with no one in the lab with past expe-
rience in these systems. Even world-famous laboratories have “rapid” robot
development systems that are so complex that the in-bouse engineers will not
use them for real projects.

The final, and very basic reason that many systems are not widely used
is that they are not distributed. This is usually due to institutional rules
that prevent code from being given away free. The robot software market is
very small and few people will pay to license software, so it stays within its
development team only.

Notice that of these eight reasons, only the first two would automatically
be addressed by conventional software engineering techniques. The rest are
strategic, marketing and political problems that can not be solved by applying
object-oriented techniques or client-server, publish-subscribe design patterns.

11 Conclusion

The most obvious way is to use code from the Player/Stage Project is to use
the software packages as distributed. We have presented evidence above that
this is happening frequently. However, the resources developed in and around
the Player/Stage Project can be re-used in several different ways:

1. use the software packages as provided;
2. extend Player with new drivers and/or interfaces;
3. extend Stage or Gazebo with new simulation models;
4. use the simulation, driver or server libraries as part of custom software;
5. use the interface specification (PADI) as is, or as a guideline for creating

custom interfaces
6. use the non-code resources, such as the Stage environment bitmaps that

have become well-known;

22 Vaughan & Gerkey

7. use Player as middleware

This last option will become important in the near future. The drivers,
PADI and Player Protocol specifications in Player are very valuable resources.
Player’s strength is the transparency it provides by trying to avoid placing con-
straints on the robot programmer. A Player-equipped robot is a blank slate,
with a loose collection of easily accessible, commonly-used devices. A very
suitable use for Player is as a substrate, or middleware layer, for more struc-
tured robot programming frameworks. If such a framework targetted Player
instead of robot hardware directly, it would automatically inherit the large
base of supported robots and implemented algorithms, saving the authors a
great deal of development time.

Code has a good chance of being widely reused if it is

1. solving a user’s problems
2. supported by their robots, or easy to port;
3. easy enough to use;
4. easy to obtain;
5. good enough quality;
6. well documented;
7. affordable;
8. supported by a knowledgable group of people;

We believe that Player/Stage is popular and widely used because it meets
these criteria better than any other current system. It is not perfect, it is not
finished, and it is not the right choice for every application. It is the product
of a community of robot programmers, and it works for us.

References

[AALB05] G. Alankus, N. Atay, C. Lu, and B. Bayazit, Spatiotemporal query strate-
gies for navigation in dynamic sensor network environments, Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2005.

[Bea96] David M. Beazley, Swig : An easy to use tool for integrating scripting
languages with c and c++, Fourth Annual USENIX Tcl/Tk Workshop
(Livermore, California), USENIX, July 1996.

[FO71] R.J. Feiertag and E.I. Organick, The Multics input/output system, Proc.
of the Symposium on Operating Systems Principles (New York), October
1971, pp. 35–41.

[GVH03] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard, The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Sys-
tems, Proc. of the Intl. Conf. on Advanced Robotics (ICAR) (Coimbra,
Portugal), June 2003, pp. 317–323.

[GVS+01] Brian P. Gerkey, Richard T. Vaughan, Kasper Støy, Andrew Howard,
Gaurav S Sukhtame, and Maja J Matarić, Most Valuable Player: A Robot
Device Server for Distributed Control, Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS) (Wailea, Hawaii), October
2001, pp. 1226–1231.

[HHFS05] A. Hassch, N. Hofemann, J. Fritsch, and G. Sagerer, A multi-modal object
attention system for a mobile robot, Proc. of the IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems (IROS), 2005.

[iSW05] Junzhi Yu inyan Shao, Guangming Xie and Long Wang, A tracking con-
troller for motion coordination of multiple mobile robots, Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2005.

[Jak97] Nick Jakobi, Evolutionary robotics and the radical envelope of noise hy-
pothesis, Adaptive Behavior 6 (1997), no. 2, 325–368.

[KOV+04] Kurt Konolige, Charlie Ortiz, Regis Vincent, Benoit Morisset, Andrew
Agno, Michael Eriksen, Dieter Fox, Benson Limketkai, Jonathan Ko, Ben-
jamin Stewart, and Dirk Schulz, Centibots: Very large scale distributed
robotic teams, Proc. of the International Symp. on Experimental Robotics
(ISER) (Singapore), June 2004.

[MRT03] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun, Perspectives
on standardization in mobile robot programming: The Carnegie Mellon
Navigation (CARMEN) toolkit, Proc. of the IEEE/RSJ Intl. Conf. on

24 References

Intelligent Robots and Systems (IROS) (Las Vegas, Nevada), October
2003, pp. 2436–2441.

[Net87] Network Working Group, Sun Microsystems, Inc., RFC 1014 – XDR:
External data representation standard, June 1987.

[Obj02] Object Management Group, Inc., The Common Object Request Broker:
Architecture and Specification, Version 3.0, July 2002.

[RT74] Dennis M. Ritchie and Ken Thompson, The UNIX Time-Sharing System,
Communications of the ACM 17 (1974), no. 7, 365–375.

[SGG05] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne, Operating system
concepts, Seventh ed., J. Wiley & Sons, Inc., New York, 2005.

[SLM98] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee, The design
of the TAO real-time object request broker, Computer Communications
21 (1998), no. 4, 291–403.

[SW97] Reid Simmons and Gregory Whelan, Visualization tools for validating
software of autonomous spacecraft, Proc. of the Intl. Symp. on Artificial
Intelligence, Robotics, and Automation in Space, July 1997.

[Tan96] Andrew S. Tannenbaum, Computer networks, Third ed., Prentice Hall
PTR, Upper Saddle River, New Jersey, 1996.

[TC05] E. Topp and H. Christensen, Tracking for following and passing persons,
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2005.

[TFBD00] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, Robust monte carlo
localization for mobile robots, Artificial Intelligence 128 (2000), no. 1-2,
99–141.

[UB98] Iwan Ulrich and Johann Borenstein, VFH+: Reliable Obstacle for Fast
Mobile Robots, Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA) (Leuven, Belgium), May 1998, pp. 1572–1577.

[Wal99] Jim Waldo, The Jini Architecture for Network-Centric Computing, Com-
munications of the ACM 42 (1999), no. 7, 76–82.

[Wil85] Stuart W. Wilson, Knowledge growth in an artificial animal, Proc. Int.
Conf. Genetic Algorithms and their applications (ICGA85), Pittsburgh
PA. (Hillsdale NJ.) (J. J. Grefenstette, ed.), Lawrence Erlbaum Asso-
ciates, 1985.

[ZV06] Yinan Zhang and Richard Vaughan, Ganging up: Team-based aggression
expands the population/performance envelope in a multi-robot system,
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), 2006.

