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Abstract. We present a practical application of sensorimotor self-simulation
for a mobile robot. Using its self-simulation, the robot can reason about
its ability to perform tasks, despite having no model of many of its inter-
nal processes and thus no way to create an a priori configuration space
in which to search. We suggest that this in-the-head rehearsal of tasks
is particularly useful when the tasks carry a high risk of robot “death”,
as it provides a source of negative feedback in perfect safety. This ap-
proach is a useful complement to existing work using forward models
for anticipatory behaviour. A minimal system is shown to be effective
in simulation and real-world experiments. The virtues and limitations of
the approach are discussed and future work suggested.

1 Introduction: Let your hypotheses die in your stead

To solve some problems, autonomous agents must plan ahead. One common
problem that requires planning is finding an efficient route between a set of
places in the world: the family of problems that includes the classical Traveling
Salesman Problem. Finding efficient routes between places of interest can clearly
be seen to be adaptive; for example a squirrel visiting nut caches or a female
lion patrolling and freshening her territorial urine marking sites can save time
and energy for other tasks if a good route is chosen.

Formally, planning is the process of finding continuous trajectories through
the agent’s configuration space between the start and goal states. Configura-
tion space is the set of all possible states that can be achieved by the system.
Conventional planning techniques construct a model of the configuration space:
either a static model such as a traversability map, or a generative model such as
a production system. In either type of model, all possible state transitions are
known.

Now suppose we have an intelligent agent, a robot, that contains some com-
ponents of unknown function. By definition, the agent can not have an a priori
model of its state evolution, due to the unknown internal states of the mysteri-
ous components, and their contribution to the system’s output. Thus it can not
construct an a priori model of configuration space. Such a system does not know
what it can do, so how can it plan its future actions?
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One solution is to learn a model of the mysterious systems by running them
for a while and observing their inputs and outputs. Once a sufficiently good
input/output mapping model of the mystery system is constructed, the model
can be used to create a configuration space. The major flaw with this approach
is that it suffers from the general learning problem of being critically dependent
on the training data samples: the model can only be expected to be correct when
it operates in situations similar to those seen during learning. This is a serious
problem because there is a particular set of situations that are very important,
and can never be experienced in training: the situations that cause the robot to
be destroyed. Avoiding doom is a very important part of adaptive behaviour,
and it can not be learned by negative experience.

This risky-learning problem can be solved by learning in simulation instead
of the real world. It is often possible to construct a good a priori model of
the outcome of a robot’s motor actions in the world in terms of its new sensor
readings: a sensorimotor simulation. It is commonplace for real adaptive systems
to be usefully tested and trained in simulation. For example, commercial pilots
spend a considerable part of their training time in flight simulators. In addition
to routine flying, pilots can rehearse dangerous scenarios such as engine and
instrument failures in complete safety. While we should be mindful of the advice
of Brooks [1] about the limitations of world models, it is a fact that many robot
control programs have been developed, learned, or evolved in simulation and
successfully transferred to the real world with few or no changes, e.g.[2, 3].

Thus a robot with unmodeled mystery components could employ a sensori-
motor simulation, observe its simulated actions and build a model of the mystery
components. The resulting model can be used to construct a configuration space
in which to plan.

But with the sensorimotor simulation in place, we have a simpler alterna-
tive. Why model the mystery components at all? Instead we can just execute
candidate plans in the simulation and evaluate the outcomes. The mystery com-
ponents just run as they would in the real world, remaining an unmodeled mys-
tery, but we can still observe their effects on the world. The only requirement is
that the sensorimotor simulation is a usefully good approximation of the robot’s
interactions with the real world.

Once we have taken this step, an appealing simplification presents itself.
Why have an explicit model of any part of the robot’s control system? If we
have an explicit model M of robot control code C that is intended to implement
process P , there is always a possibility of discrepancies between M , C, and P . An
unfortunately common situation is when the code C contains bugs which prevent
it from implementing the programmer’s intention P correctly. Model M derived
from P will probably not contain the same bugs, but may contain different
bugs of its own. Plans computed in a configuration space from M may not be
executable using C. But plans observed to work in a sensorimotor simulation in
which C runs directly are guaranteed to reflect the actual function of C, bugs
and all. Again, this is limited by the fidelity of the simulation, but only by the
fidelity of the simulation.



3

Brooks’ aphorism “the world is its own best model” [1] is well known. We
propose the complementary idea: the agent is its own best model. More strongly,
we can say that an agent’s control software (or a provably correct transcoding
of that software) is the only reliable model of itself. Sometimes simulating the
agent’s interaction with the world is relatively easy if you choose the appropriate
level of abstraction [2].

This idea is appealing from an intuitive point of view. We can consciously
observe the imagined results of our actions in the world, but we often do not
have conscious models of what we can do, or how we do it. Few people could
write down a correct dynamical systems or neurophysiological model of them-
selves riding a bicycle, but most riders can imagine themselves cycling down the
street - even a street they have never seen. Similarly, most people can imag-
ine swinging a golf club to strike a ball, even if they have never held a club.
This could be explained by the existence of a generalized model of our mo-
tor interactions with the world, which can be used to rehearse novel situations.
Intriguingly, there is evidence that athletes can improve their performance at
motor tasks by performing such in-the-head rehearsal. The effect is more pro-
nounced among individuals who already have expert skills, suggesting that the
fidelity of the in-the-head model may be important in the successful transfer of
imagined performance to the real world [4, 5].

In this way we relate sensorimotor self-simulation to the folk psychology
notion of imagination as a mechanism to consider the outcomes of our behaviour
without having to fully understand it, and without having to try everything
out for real. The relationship between imagination and simulation is concisely
expressed by Dawkins:

“We all know, from the inside, what it is like to run a simulation of
the world in our heads. We call it imagination and we use it all the time
to steer our decisions in wise and prudent directions” [6].

This informal idea is consistent with the emulation theory of representation,
developed by Rick Grush[7]. In this philosophical framework, phenomena exter-
nal to an agent are represented internally by processes rather than the symbol
systems of conventional cognitive science. This idea can be seen to underly this
paper and much of the related work.

We can also consider an executable plan as a statement of truth about what
the robot can do, and an untested plan as a hypothesis. In this sense we can view
the robot as a Popperian scientist seeking truth by eliminating bad hypotheses
through in-the-head experimentation:

“The scientist can annihilate his theory by his critique, without per-
ishing along with it. In science, we let our hypotheses die in our stead.”[8]

Interpreting this famous statement rather more literally than originally in-
tended, a robot can observe itself dying a thousand times in simulation as a
result of bad plans, and thus eliminate those plans without risking its neck in
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the real world. The robot need have no model of itself beyond the immediate
sensory outcomes of its motor behaviour.

In practical terms, the proposed model offers a method for allowing high-level
strategic or “cognitive” function to reason about the actions of other behaviour-
producing systems without understanding how they work. This could be a useful
engineering strategy for adding strategic layers on to existing behaviour-based
systems. It also may hint at how evolutionarily recent cognitive systems could
come to usefully exploit the functions of more ancient control systems in the
brains of animals. This approach may also be a useful principle for robustness:
if all system components are treated as if they are unknown, then the results of
internal failures will be immediately apparent in the simulation without needing
to update any internal model.

1.1 Related work

In the 1960s, Jewett placed lesions in the brains of cats which eliminated the
inhibition of action commands during the REM sleep stages of dreaming, and
(in Jewett’s interpretation) allowed the cats to act out their dreams. The cats
displayed such behaviours as fighting, grooming, exploring, running away and
showing rage. Jewett concluded that dreams are rehearsal of vital survival activi-
ties that are likely to occur in real life [9]. In [10] rats were trained in a maze while
awake, and could be observed rehearsing the maze experiments while sleeping.

Several authors have described systems in which sensorimotor forward models
are able to predict how sensory information changes through sequences of motor
commands [11–14]. In contrast, this paper shows how the outcomes of plans
consisting of sequences of relatively high-level operations can be predicted. Our
“motor commands” are goto() operations that abstract away a powerful and
complex navigation system that is part of the agent, but completely unmodeled.

A framework that incorporates simulation to speed up learning in an evolu-
tionary experiment is presented in [15]. Their proposed method combines into a
single framework learning from reality and learning from simulation.

In this paper we present a practical application of sensorimotor self-simulation
for a mobile robot. Using self-simulation, the robot can reason about its ability
to perform tasks, despite having no model of many of its internal processes and
thus no way to create an a priori configuration space. This approach is a useful
complement to existing work using forward models for anticipatory behaviour.
A minimal system is shown to be effective in simulation and real-world exper-
iments. The virtues and limitations of the approach are discussed and future
work suggested.

2 The application of imagination

2.1 Task

A robot lives in an office-like environment. At some moment it is asked to visit
a set of places in the world. There is no preferred order of visits: the only re-
quirement is that all of them are visited in the shortest possible time. This task
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Start Naive Planner Trajectory {1, 2, 0} Trajectory {1, 0, 2}

(a) (b) (c) (d)

Fig. 1: (a) Starting state; (b) Naive shortest path, and two actual trajectories (c,d) of
robots guided by VFH.

is a variation of the Travelling Salesman Problem where the traversal cost on
the arcs connecting nodes is initially unknown.

Figure 1 shows such a scenario. Image (a) shows a map containing the robot
start position and 3 goal locations. Image (b) shows the shortest path that
visits all goal points. Image (c) shows the path taken by the robot using VFH
navigation (described below) as it attempts to reach the locations in the order
suggested by the shortest path: {1, 2, 0}. Due to the dynamics of VFH, the robot
is fatally trapped. If the goal locations are submitted to the robot in the order
{1, 0, 2}, the robot easily completes its task, reaching all locations by the path
shown in Image (d). It is very difficult to characterise the configuration space
created by VFH in a traversibility map. The system described below solves this
problem.

2.2 Procedure

A typical lab robot R0, operates in world W0. At any time R0 can run a sensori-
motor simulator that models the interactions between a model robot Ri running
controller C in model world Wi over time S(Ri,Wi, t) ⇒ S(Ri,Wi, t + 1)|i > 0.
The real and simulated robots use the identical controller C. To decide which
order to visit the goal locations in reality, R0 uses its simulator to internally
rehearse all possible visit orders. If there are n possible plans, R0 runs n simu-
lations S(Rm,Wm, t)|m = 1, ..., n.

The simulation results are evaluated and the plan that caused the fastest
traversal in any simulation is selected as the plan for real-world execution.

A naive implementation will not scale well to large values of n, but the
difficulty of scaling is not unique to our approach as the Traveling Salesman
Problem is known to be NP complete, i.e. no scalable solution is known. A
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Fig. 2: Control Architecture (left) and Imagination Engine (right)

sophisticated implementation could prune the space of simulations to improve
performance, and this method is ridiculously parallel (i.e. it parallelizes perfectly
to n processors).

One useful optimization is immediately apparent. If the simulations are real-
time, or a constant multiple of real time, we can evaluate plans trivially: run all
the simulations in parallel, the first to finish must be the route that takes least
time to traverse, and all the others can be aborted without loss.

2.3 Control Architecture

Our control system makes extensive use of Player, a well-known Free Software
system for robot control over a network interface [16]. To greatly simplify the
robot controller, we use the VFH obstacle-avoidance algorithm [17] and the
Adaptive Monte Carlo Localization map-based localization algorithm [18] pro-
vided with Player. The Player server and its VFH and AMCL modules are
treated as “black boxes” of mysterious internal construction.

The robot controller C receives as input an ordered vector of places to visit
P = {p1, . . . , pn} and an initialized index i = 0 marking the current goal, the ith
member of P . pi = (xi, yi, r), where where xi and yi are Cartesian coordinates in
the plane. If the Cartesian distance from the robot to place (xi, yi) is less than
r then the robot is considered to have visited (xi, yi). The controller takes the
initial goal location p0 and submits it to Player’s VFH implementation as a goal
location. Player then attempts to drive the robot to that position while avoiding
obstacles. All locations are specified in the robot’s localization coordinate system,
as determined by the AMCL implementation. Player reports the current robot
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pose back to the controller. When the robot visits its goal location, the location
index is incremented i = i+1 and the new goal location pi is submitted to VFH.
When the last goal location is reached, the task is complete and the robot stops.
A schematic of the controller is given in Figure 2.

The output from the “known”, i.e. non-blackbox part of the controller is
a sequence of commands of the form goto(x, y). The blackbox parts of the
controller attempt to achieve the current goal without crashing into obstacles
by reading from the range sensors and sending a stream of motor commands of
the form move(v, ω), where v is the desired forward velocity and ω is the desired
angular velocity. Though we as designers can state the purpose of these modules,
there is no way for the system to know what they do, and how they would effect
the robot’s configuration space.

In fact VFH has some dynamic properties that are crucial to a planning
system. It is an excellent local planner and obstacle-avoider, but as such it suffers
from local minima problems that cause it to make bad decisions under certain
conditions. Consider the situation presented in Figure 3: the robot is blocked
from reaching its goal by walls to the front and sides. If the side walls are long
enough, VFH is unable to escape from the “trap” and will instead make small
loops indefinitely, eventually exhausting the robot’s energy supply. Depending
on the task and the availability of human assistance, this may be a fatal error
that the robot should never experience for real.

We desire our robot system to be able to take into account the complex
dynamic properties of VFH when choosing the best route to take, with no a
priori model of VFH. The same argument applies to the dynamics of the AMCL
localization system, and the Player TCP server, the details of which we omit for
lack of space.

2.4 Sensorimotor simulation implementation

In the real robot, the move(v, ω) commands are converted by the robot’s em-
bedded computer into pulse-width modulated signals that drive amplifiers that
power the wheel motors. The physical motion of the wheels is reflected in sub-
sequent measurements taken by the robot’s physical sensors.

We can replace the physical part of the system with the well-known Stage
robot simulation engine [19]. Player using simulated Stage devices is known as
Player/Stage, and has been used in published experiments by many authors.
For convenience, we introduce the term Player/real to indicate a Player server
connected to real robot hardware. If reasonably careful in the assumptions made
in the implementation of a robot controller, one can expect grossly similar robot
behaviour in Player/Stage and in Player/real. We have anecdotal evidence from
the community that Stage models real robots reasonably well. We present ex-
perimental evidence below that backs this up (Section2.6).
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(a) (b)

Fig. 3: Pioneer robot in the Real World (a) and VFH trap: The robot’s goal is to reach
the small square outside the room. (b)

(a) (b)

Fig. 4: Simulated world maps showing robot start location and goal locations for (a)
Exp.1: with 3 locations, and (b) Exp.2 with 4 locations.

2.5 Experiment 1: Simulation proof of concept

In this proof of concept we work entirely in simulation, i.e. R0 and W0 are
simulated and model the real robot and world, butR0 is still unique in that only
it can spawn child simulations. R0 must choose the best order in which to visit
n locations, by observing the behaviour of R1 . . . Rn! simulated robots, one for
each possible route.

Figure 4(a) shows the scenario of the first experiment. There are n = 3
places to visit, so P = {p0, p1, p2}. To visit a place, the robot must come within
r = 0.5m of the place. The world map is an approximation of our real robot
arena, and was automatically created with the pmap mapping utility 1.

R0 spawns m = n! = 6 threads, each containing a complete simulation and
robot controller. The first thread in which a robot visits all locations is the

1 pmap was written by Andrew Howard and available from
http://playerstage.sourceforge.net.
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winner Rwin. The other threads are stopped and R0 executes the route taken
by Rwin.

With small values of m, we can run all the simulation threads in real time
on a modest workstation. A more scalable solution would allow threads to be
spawned on multiple computers. On a machine with a single CPU there is little
advantage to be gained from multiple threads and instead we could explicitly
run each simulation in turn for a short time in a single thread, thus avoiding the
thread switching overhead.

Route Time (seconds) Route Time (seconds)
20 40 51 20 40 51

{0,1,2} {0,2,1}

{1,0,2} {1,2,0}

{2,1,0}
Winner
{2,0,1}

Fig. 5: Multi-threaded example: 6 threads are generated, one for each possible route.
Route {2,0,1} is completed in 51 seconds, when this happens all the other threads are
stopped.

Results Figure 5 shows the progress in time of all 6 threads that execute all
possible routes. Plots of the route travelled by each simulated robot at 20-second
intervals. At 50 seconds the robot executing route {2, 0, 1} finishes and all the
other simulations are stopped. All routes except the winner and Route {0, 1, 2}
were in looping states (the fatal situations we want the real robot to avoid)
and were not chosen for execution. Route {0, 1, 2} appears to be on its way to
accomplishing the task, but it is taking a longer path than the winning route.
R0 now executes the winning route, and its path is shown in Figure 6.
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Fig. 6: The path taken by R0, having selected the winning route {2, 0, 1}.

2.6 Experiment 2: R0 in the real world

In this experiment we use the real-world Pioneer 3DX robot shown in Figure 3
for R0 and increase the number of places to visit n = 4, located as shown in
Figure 4(b). There are now m = n! = 24 possible routes, and the robot’s onboard
computer could not run 24 simulations in real time, so we implemented a single-
threaded imagination. Figure 7 (top-row) shows the simulated robot path in 5
of the 24 possible routes.

Results Route {3, 0, 1, 2} 7 (top-row, left-most plot) was the first to finish and
was selected for execution by the real robot. The path taken by the real-world
robot (as estimated by the AMCL localization system) is shown directly below,
in Figure 7(bottom-row, left-most plot). The real robot path is qualitatively
similar to the simulation path, and completes the task successfully.

In order to examine how closely the behvaiour of the Stage-simulated robots
predicts the real-world behaviour, we run four other possible routes on the real-
world R0. Compare the paths taken by the simulated robots in the top row of
Figure 7 with their real-world executions in the bottom row.

Route {3, 0, 1, 2} and Route {3, 0, 2, 1} are qualitatively similar in simulation
and reality. Unfortunately there is no standard metric for quantifying the simi-
larity of robot trajectories. Route {3, 1, 2, 0} did not finish but shows the same
behaviour in simulation and reality. Routes {0, 1, 2, 3} and {3, 2, 1, 0} finished in
reality but stayed in a cycle during simulation. Though the eventual outcome
in simulation and reality was different for these routes, they showed similar dy-
namics in that they spent most of their time stuck in a VFH trap. Note that
because neither of these routes was the winner, the divergence of simulated and
real behaviour did not effect the performance of the real-world robot.

3 Future Work

In the short term we plan to create more complex experiments that explore the
possibilites of this approach. Some ideas include:

– Optimized simulations: We can explore the use of heuristics and the reuse
of previous simulatons to speed up exploration of imagined worlds.
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Route {3, 0, 1, 2} Route {3, 0, 2, 1} Route {0, 1, 2, 3} Route {3, 2, 1, 0} Route {3, 1, 2, 0}

Fig. 7: Simulation (top row) vs. Reality (bottom row)

– On-line world model aquisition: Requiring a complete world model for
simulation is a serious constraint. We seek to aquire world models on-line
and simulate using the latest models.

– Dynamic worlds: The worlds in this paper have been static apart from the
motion of the single robot. We seek to include models of other agents that
can effect the environment and behaviour of our robot.

– Concurrent imagination: While acting in the real world, a robot can still
imagine alternative scenarios, to anticipate its reaction to unexpected events.

– Recursive imagination: Currently only R0 can spawn simulations. There
may be utility in allowing simulated robots to spawn their own simulations,
creating a tree of imaginary robots, rooted at R0.

– Multiple objective optimization: In this paper we chose a simple task
with a single objective function. A natural progression of this problem is to
allow for multiple goals.

4 Conclusion

We have described a novel framework loosely analagous to imagination, in which
agents can use sensorimotor self-simulation to reason about their ability to per-
form tasks, despite having no model of most of their internal processes and
thus no way to create an a priori state-evolution model with which to search.
This in-the-head rehearsal of tasks is particularly useful when the tasks carry
a high risk of agent robot “death”, as it provides a source of negative feedback
in perfect safety. This approach is a useful complement to existing work using
forward models for anticipatory behaviour. A simple but useful implementation
was shown to be effective in simulation and real-world experiments, and future
directions outlined.
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