
Swarm Intell (2008) 2: 189–208
DOI 10.1007/s11721-008-0014-4

Massively multi-robot simulation in stage

Richard Vaughan

Received: 5 December 2007 / Accepted: 9 July 2008 / Published online: 22 August 2008
© Springer Science + Business Media, LLC 2008

Abstract Stage is a C++ software library that simulates multiple mobile robots. Stage ver-
sion 2, as the simulation backend for the Player/Stage system, may be the most commonly
used robot simulator in research and university teaching today. Development of Stage ver-
sion 3 has focused on improving scalability, usability, and portability. This paper examines
Stage’s scalability.

We propose a simple benchmark for multi-robot simulator performance, and present re-
sults for Stage. Run time is shown to scale approximately linearly with population size up
to 100,000 robots. For example, Stage simulates 1 simple robot at around 1,000 times faster
than real time, and 1,000 simple robots at around real time. These results suggest that Stage
may be useful for swarm robotics researchers who would otherwise use custom simulators,
with their attendant disadvantages in terms of code reuse and transparency.

Keywords Simulation · Swarm · Multi-robot · Stage · Player/stage

1 Introduction

Stage is a C++ software library that simulates populations of mobile robots. Stage version 2,
as the simulation backend for the Player/Stage system, may be the most commonly used
robot simulator in research and university teaching today. The author is the originator and
lead developer of Stage. The development of Stage version 3 has focused on improving
scalability, usability, and portability. This paper examines Stage’s scalability.

This paper is the first description of using Stage for massively multi-robot experiments,
suitable for swarm robotics and other research where the behavior of large robot populations
is of interest. In a previous paper we described how an earlier version of the Player/Stage
system was useful for experimenting with a few tens of simulated robots, with controllers

Electronic supplementary material The online version of this article
(http://dx.doi.org/10.1007/s11721-008-0014-4) contains supplementary material, which is available to
authorized users.

R. Vaughan (�)
Simon Fraser University, Burnaby, British Columbia, Canada
e-mail: vaughan@sfu.ca

http://dx.doi.org/10.1007/s11721-008-0014-4
mailto:vaughan@sfu.ca

190 Swarm Intell (2008) 2: 189–208

transferring easily to real robots (Gerkey et al. 2003). Here we focus on using Stage stand-
alone (without Player) as a platform for much larger robot experiments. To help researchers
decide whether Stage will be useful for their project, we propose a simple benchmark for
multi-robot simulator performance, and present results for Stage in a range of simulation
scenarios and population sizes. This paper introduces the current development version of
Stage, which will be released as Stage version 3.0.0. This version has been substantially
rewritten since the last release and published description. While it provides similar func-
tionality to version 2, it is considerably faster.

Run time is shown below to scale approximately linearly with population size up to at
least 100,000 simple robots. For example, Stage simulates 1 simple robot at around 1,000
times faster than real time, and 1,000 simple robots at around real time. These results suggest
that Stage may be useful for swarm robotics researchers who would otherwise be using in-
house custom simulators, with their attendant disadvantages in terms of code reuse and
transparency.

1.1 Technical and methodological features

Stage’s most important technical features are (i) it cooperates with Player (Gerkey et al.
2001), currently the most popular robot hardware interface, which allows offline develop-
ment of code designed for real robots; (ii) it is relatively easy to use, yet (iii) it is realistic
enough for many purposes, striking a useful balance between fidelity and abstraction that
is different from many alternative simulators; (iv) it provides models of many of the com-
mon robot sensors; (v) it runs on Linux and other Unix-like platforms including Mac OS X,
which is convenient for most roboticists; and (vi) it supports multiple robots sharing a world.

Stage also has some very important non-technical features: (i) Free Software license,
the GNU General Public License version 2;1 (ii) active community of users and developers
worldwide; and (iii) status as a well-known platform. The positive feedback effect of these
last two features is very important, as it creates the potential to improve research practice by
encouraging replication of experiments and code reuse.

The increased performance of Stage now makes it potentially interesting to researchers
who may have previously rejected using a general-purpose simulator due to lack of scala-
bility. Using Stage (or a derivation of it) instead of building a custom simulator can save
researcher time and money. But perhaps more important is the methodological advantage
of using a well-known, free and open platform, with open source code. Openness encour-
ages transparency, replication and modification of experiments—a vital part of the scientific
method that is uncommon in our field due to the difficulty and cost of reimplementation.

1.2 Scope and outline

This paper is not intended to be a definitive guide to Stage’s internals, nor is it intended to
be a user guide, or even a comprehensive review of the state of the art in robot simulation.
The aim is to concisely present the key features of Stage relevant to the swarm robotics
community, including the first documented performance data and the public introduction of
the Stage API.

The paper proceeds as follows. In Sect. 2 we present evidence for the claims made in
this introduction. In Sect. 3 we identify the current alternatives to Stage. Sections 4 and 5
describe the key implementation details of the simulation engine that are relevant to large-
population performance. Section 6 describes a minimal and prototypical “swarm robotics”

1http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Swarm Intell (2008) 2: 189–208 191

Fig. 1 Stage downloads from SourceForge by month, December 2003 to November 2007 (total 22,121)

robot controller and a set of simulation environments for benchmarking simulator perfor-
mance. Section 7 provides benchmark results for Stage, followed by ideas for further im-
proving performance and adding new features.

2 Evidence of stage impact

It is not practical to make a direct estimate of Stage installations or usage, as Stage’s
Free Software license allows free use and distribution. Most alternatives to Stage have
distribution terms that make their use similarly uncountable, so we cannot know their
relative popularity. Yet, Stage has a presence at the major research conferences and
on university course web pages that suggests it is widely used and useful. For exam-
ple, at least one paper using Stage for multi-robot simulations has appeared at ICRA,
the main annual robotics meeting, every year since its debut in 2001 (Ye et al. 2001;
Fredslund and Matarić 2002; Batalin and Sukhatme 2003; Shell and Matarić 2004; Batalin
and Sukhatme 2004; Lin and Zheng 2005; Batalin and Sukhatme 2005; Chang et al. 2006;
Busch et al. 2007). Only the first of these papers is by an author of Stage.

Player/Stage has been proposed as a “unifying paradigm to improve robotics education”
(Anderson et al. 2007) and is used for classes at many universities (by professors who are
not P/S authors) including Georgia Tech’s CS3630, The University of Delaware’s CISC 849,
Washington University at St. Louis’s CSE 550A, Brown University’s CS 148, the University
of Tennessee’s CS 594, and the University of Southern California’s CSCI 584.2

The “official” Stage distribution is maintained by the author at the Player Project web-
site, hosted at SourceForge.3 SourceForge tracks download statistics for each package, and
the download history for Stage is shown in Fig. 1. Due to occasional failures of the statis-
tics service, these numbers are (presumably slight) underestimates. Stage was downloaded
from SourceForge at least 25,263 times between December 2001 and March 2008. Monthly
downloads have grown steadily to a current rate of around 750 per month.

2Web pages for all these courses, describing assignments using Player/Stage, were available online at the
time of writing (November 2007).
3http://playerstage.sourceforge.net.

http://playerstage.sourceforge.net

192 Swarm Intell (2008) 2: 189–208

3 Related work

An overview of the nature and goals of swarm robotics, and a survey of the field can be
found in Dorigo and Şahin (2004), Şahin and Spears (2005). A survey and comparison
of robot development platforms, including a limited discussion of simulators, is given in
Kramer and Schultz (2007).

A good, detailed comparison of multi-robot simulators is overdue. A recent, flawed4 short
survey paper discussed some popular systems available in Craighead et al. (2007). We do
not have space for a survey here, but the reader should be aware of the following influential
systems.

– TeamBots:5 This simple 2D Java-based multi-robot simulator was in popular use around
2000, due to its ease of use and free distribution terms, and the ability to run the same
code in simulation and on real robots. One of the original Player/Stage goals was to re-
produce the good features of TeamBots without the dependence on Java. TeamBots is still
available, but development appears to have stopped in 2000 (Balch 1998).

– Gazebo:6 A 3D simulator with dynamics from the Player Project, Gazebo is based on
the Open Dynamics Engine.7 Gazebo has become popular as a powerful, high-fidelity
simulator that works with Player and has a GNU GPL license. However, it runs slowly
with large populations (though no benchmarks are published) (Koenig and Howard 2004).

– USARSim:8 Using the “Unreal” video game engine, USARSim is a GPL licensed 3D
simulator that is similar in scope to Gazebo, Webots and Microsoft Robotics Studio. An
important contribution of USARSim is its models of the NIST reference environments
used for the RoboCup Urban Search and Rescue competition. Compatible with Player and
MOAST (Scrapper et al. 2006), USARSim is under active development and has an active
user community. USARSim aims for accurate dynamic models, and has been shown to
support large worlds, though no data are available for large robot populations (Carpin et
al. 2007).

– Webots:9 This very high-quality commercial simulator focuses on accurate dynamical
models of popular robots. It is fast (though no benchmarks are published), easy to use and
has an attractive interface. Webots has a “Fast2DPlugin” extension that is optimized for
simple, fast simulations, based on the Enki engine10 and comes with detailed models of
robots popular in swarm robotics such as the EPFL Alice, K-Team Khepera, Mondada’s
E-Puck robots, plus RoboCup soccer league models. Unfortunately, no scaling data are
available, and Webots is not free to distribute or modify (Michel 2004).

– Microsoft robotics studio:11 Released in early 2007, Microsoft Robotics Studio is func-
tionally very similar to Player and Gazebo, though it works only on Microsoft’s Windows

4Stage and Gazebo, two of the best known simulators, with different goals, scope, technology, scaling charac-
teristics, authors, and user community, are conflated into one score, and surprisingly compared with Microsoft
Flight Simulator (Craighead et al. 2007).
5http://www.cs.cmu.edu/~trb/TeamBots/.
6http://playerstage.sourceforge.net/index.php?src=gazebo.
7http://www.ode.org.
8http://usarsim.sourceforge.net.
9http://www.cyberbotics.com.
10http://home.gna.org/enki.
11http://msdn2.microsoft.com/en-us/robotics/default.aspx.

http://www.cs.cmu.edu/~trb/TeamBots/
http://playerstage.sourceforge.net/index.php?src=gazebo
http://www.ode.org
http://usarsim.sourceforge.net
http://www.cyberbotics.com
http://home.gna.org/enki
http://msdn2.microsoft.com/en-us/robotics/default.aspx

Swarm Intell (2008) 2: 189–208 193

platform. Microsoft is promoting and financially supporting the use of Robotics Studio
at some universities, notably Georgia Institute of Technology and Bryn Mawr College
through the Institute for Personal Robots in Education.12 Like Gazebo and Webots, Ro-
botics Studio is based around a high-fidelity dynamics engine. Currently no examples of
large population sizes seem to be available, but it is likely, provided Microsoft continues
to support the project, that this system will be increasingly used in the coming years. Ro-
botics studio is currently free to use, but not to modify or distribute, and the source code
is not publicly available.

– Swarmbot3d (S-bot simulator):13 The SWARM-BOTS project and s-bot robot system by
Mondada, Dorigo, and colleagues is a highly successful and influential swarm robotics
project. The project has its own swarmbot3d simulator, which necessarily includes dy-
namics as the s-bots interact with rough terrain and by pulling on each other. The sim-
ulator is possibly the most sophisticated considered here and is based on the VortexTM

commercial physics engine. Swarmbot3d is described in detail in (Mondada et al. 2004),
including performance data for models at various levels of detail. It appears to run at
speeds comparable to Stage, and appears to scale approximately linearly. Population sizes
of 1 to 40 robots are reported. While Swarmbot3d is clearly a powerful tool, it is not pub-
licly available.

– (Swarmanoid simulator):14 The Swarmanoid project is the successor to the SWARM-
BOTS project and examines heterogeneous swarms of robots. A distinguishing feature of
ARGoS is its modular design, whereby robot controllers, sensors, actuators, physics en-
gines, and visualizations are implemented as plug-ins. ARGoS provides multiple physics
engines: 2D kinematics (like Stage), 2D dynamics, and 3D dynamics (like Gazebo, Robot
Studio and Swarmbot3d). Uniquely, it is possible to run more than one physics engine in
the same experiment. At the time of writing no benchmarks are published and ARGoS
is not publicly available, though its authors plan to make it so [personal communication,
May 2008].

Unlike most of the above simulators, Stage provides only first-order motion simulation,
i.e., acceleration and momentum are not modeled. Dynamic physics simulation is required
for many engineering modeling applications (and many video games). A short survey of
physics engines is provided in Seugling and Rolin (2006), with additional references in
Koenig and Howard (2004).

4 Stage internals for scaling

Stage’s design philosophy has been described previously (Gerkey et al. 2003). The essential
design feature that enables scaling is that the ray tracing computation required for collision
detection and sensor modeling is approximately O(1) per robot, i.e., it is independent of the
robot population size. Ray tracing is by far the most frequent operation, performed possi-
bly hundreds of times per robot per simulation timestep, and while other operations (such
as hash table lookups) have worse theoretical growth characteristics, they occur relatively
infrequently. Therefore, we can expect that Stage’s overall run-time should grow almost
linearly with population size.

12http://www.roboteducation.org/.
13http://www.swarm-bots.org/index.php?main=3&sub=33.
14http://www.swarmanoid.org/swarmanoid_simulation.php.

http://www.roboteducation.org/
http://www.swarm-bots.org/index.php?main=3&sub=33
http://www.swarmanoid.org/swarmanoid_simulation.php

194 Swarm Intell (2008) 2: 189–208

Fig. 2 Pioneer 3 DX robot (a) from MobileRobots Inc., and two virtual Stage robots, each composed of a
StgModelPosition object (lower polyhedron) and a StgModelLaser object (upper polyhedron). The simple
model (b) uses 2 blocks described by 16 numbers, and requires 12 rays for collision detection. The complex
model (c) uses 11 blocks described by 98 numbers, and requires 74 rays for collision detection. These are our
reference models for scaling experiments

Another performance bottleneck in the past was the graphical interface. This has been
reimplemented using OpenGL. While the interface has become more sophisticated, now
presenting 3-dimensional views, it has also gained a significant performance improvement
due to highly optimized libraries, drivers, and hardware acceleration.

Here we outline how the ray tracing population independence is achieved, and introduce
the OpenGL GUI.

4.1 Physical object model

Stage models physical bodies as tree assemblies of “blocks”. Blocks are specified as arbi-
trary polygons on the [x, y]-plane, extruded into the z-axis. The block data structure con-
sists of a pointer to the model that owns the block, an array of two-dimensional points
[[x, y]0, . . . , [x, y]n], the array length n, and a [zmin, zmax] pair indicating the extent of the
block in z. This implies that the blocks can be rotated only around the z-axis. Because of the
missing degrees of freedom, and adopting terminology from computer graphics and video
games, we describe Stage as a 2.5D (two-and-a-half dimensional) simulator.15 One can think
of blocks as Lego bricks, but with an arbitrary number of side faces.

Block trees can be constructed piecemeal by user code, specified in the worldfile with
arrays of points, or loaded from bitmaps in most common file formats (JPEG, PNG, BMP,
etc.). When interpreting bitmaps, Stage attempts to find a small number of blocks that oc-
cupy the same grid as the black pixels in the image.

Figure 2 shows two models supplied with Stage, both approximating the popular Pioneer
3DX robot. We compare the speed of Stage simulations using these models below.

4.2 Ray tracing

Collisions between blocks and range sensor data are computed using ray tracing. The popu-
lation of 2.5D blocks is rendered into a 2-dimensional discrete occupancy grid by projecting
their shapes onto the ground plane (z = 0). Grid cell size is configurable, with a default size

15http://en.wikipedia.org/wiki/2.5D.

http://en.wikipedia.org/wiki/2.5D

Swarm Intell (2008) 2: 189–208 195

of 0.02 m. Each grid cell contains a list of pointers to the blocks that have been rendered
into that cell. When a block moves, it must be deleted from cells that it no longer occupies
and rendered into newly-occupied cells. Non-moving blocks such as walls are rendered into
the grid only once.

The ray tracing engine uses well-known techniques, so we summarize it only briefly.
For speed and memory efficiency we use a two-level sparse nested grid data structure. Very
fast bit-manipulation and integer arithmetic are used to look up grid cell locations from
simulation world coordinates specified in meters. Ray tracing involves walking through the
nested grid data structure using Cohen’s integer line-drawing algorithm (Heckbert 1994).
This was found empirically to be faster than the well-known floating-point alternative by
Amanatides and Woo (1987). As the ray visits each non-empty cell, we inspect the z-extent
of the blocks at that cell, and the properties of the models owning the block, to see if they
interact with the ray.

We compared quadtree and kd-tree implementations with our nested grid, and found the
grid to run considerably faster, probably due to better memory locality and thus better cache
performance. This new ray tracing engine is the main source of Stage’s recent performance
improvements, and efforts to further improve performance should focus here.

4.3 User interface

New in Stage version 3 is a user interface using OpenGL16 and the Fast Light Toolkit frame-
work (FLTK),17 chosen for speed, ease of use, and wide availability. The new graphics and
user interface implementation is the second most significant performance improvement after
ray tracing. The OpenGL interface provides a full 3D view of the world, and alpha blend-
ing and antialiasing provide scope for sophisticated effects for visualization of sensor data,
motion history, etc.

Figures 4, 5, and 6 show screenshots from Stage demonstrating the new 3D view.
OpenGL takes advantage of graphics processor (GPU) hardware, and we plan to take further
advantage of the GPU and also to design more advanced sensor and robot state visualizations
(see Future work section).

5 Using stage as a library

To date, Stage is most commonly used with Player, to form the Player/Stage system. Robot
controllers are written as Player clients, and communicate with Player/Stage through net-
work sockets. It is not well known that Stage version 2 is quite usable as a stand-alone C
library, allowing users to embed a complete Stage simulation into their programs. This is
done, for example, in MobileSim,18 the simulator shipped by MobileRobots, Inc. to support
their range of robots. MobileSim author Reed Hedges contributes bugfixes and features back
to the Stage library. Until this paper, we have not publicized this way of using Stage. With
the release of version 3, the Stage API will be “officially” documented and supported.

However, Player clients send and receive data asynchronously with Player through the
host’s networking subsystem. This requires significant interaction between the client and

16http://www.opengl.org.
17http://www.fltk.org.
18http://robots.mobilerobots.com/MobileSim.

http://www.opengl.org
http://www.fltk.org
http://robots.mobilerobots.com/MobileSim

196 Swarm Intell (2008) 2: 189–208

#include <stage.hh>

int main(int argc, char* argv[])
{

StgWorld::Init(&argc, &argv); // initialize libstage
StgWorldGui world(800, 600, "My Stage simulation");
world.Load(argv[1]); // load the world file

// get a pointer to a mobile robot model
// char array argv[2] must match a position model named in the worldfile
StgModelPosition* robot = (StgModelPosition*)world.GetModel(argv[2]);
robot->Subscribe();

world.Start(); // start the simulation clock running

while(! world.TestQuit())
if(world.RealTimeUpdate())
{

// [read sensors and decide actions here]

robot->Do(forward_speed, side_speed, turn_speed);
}

delete robot;
exit(0);

}

Fig. 3 Runnable C++ source code for a minimal but complete Stage robot simulation. Error checking is
omitted for brevity. The resulting compiled program could be run with the worldfile of Fig. 4 using: ./mys-
tagesim minimal.world MySimpleRobot. The resulting simulation would look like the screenshot
in Fig. 4

server processes and the host operating system, with frequent context switches and likeli-
hood of messages waiting in queues. This overhead may not be acceptable when attempting
to scale robot populations. As the Player client–server link is asynchronous, it is not gener-
ally possible to run repeatable experiments. Interaction with the OS scheduler and ambient
processes means that Player clients are subject to apparently stochastic time delays and will
produce stochastic robot behavior. Some users (including the author) have found it difficult
to maintain good enough synchronization between client and Player/Stage version 2 when
the host machine is heavily loaded, for example, by a demanding Stage simulation (tens or
hundreds of robots). In particular, the latency experienced by a client is not independent
of robot population size, leading to poor robot behavior. Efforts are underway to solve this
problem. For large scale populations, in cases where Player features (mainly portability to
real robots, but also access to Player’s library of well-known algorithms) we now recom-
mend using Stage directly as a library. Stage is deterministic, so a simulation using only
deterministic robot controllers will be perfectly repeatable. Sensor data and control com-
mands are contained within a single running process, avoiding costly context switches and
exploiting the CPU cache.

Stage version 3 is now a C++ library, which can be used to create a complete simulator
by creating a single “StgWorld” object and accessing its methods. Rather than devote a lot
of text to this subject, we provide a complete minimal instance of Stage program in Fig. 3, a
matching world description file and a screenshot of the resulting world in Fig. 4. This should

Swarm Intell (2008) 2: 189–208 197

Simulation worlds are specified using a simple tree-structured
configuration file, or by user programs making individual object
creation and configuration function calls. This is an example of a
simple configuration file

size of the world in meters [x y z]
size [16 16 3]

create and specify an environment of solid walls loaded from an image
model
(

size of the model in meters [x y z] - fill the whole world
size3 [16 16 0.5]
color "gray30"

draw a 1m grid over this model
gui_grid 1

this model can not be moved around with the mouse
gui_movemask 0

interpret this image file as an occupancy grid and
construct a set of blocks that fill this grid
bitmap "bitmaps/cave.png"

model has a solid boundary wall surrounding the blocks
boundary 1

)

create and specify a mobile robot carrying a laser scanner
position
(
name "MySimpleRobot"
color "red"
size3 [0.5 0.5 0.4]

pose of the model in the world [x y heading]
pose [-2.551 -0.281 -39.206]

laser() # default pose is at parent’s origin facing forwards
)

Fig. 4 Simple example of a Stage configuration file (“world file”), and a screenshot of the world it produces

198 Swarm Intell (2008) 2: 189–208

be sufficient for a programmer to grasp the main ideas. Several examples are provided in the
Stage distribution.

6 A benchmark for swarm simulation

We seek to obtain empirical run-time data for massively multi-robot simulation systems,
in order to evaluate them and compare their performance. Direct comparison with other
simulators is currently not possible as none have published benchmarks to date. However,
even a Stage-only benchmark allows Stage users to evaluate the effect of their code additions
and optimizations. We have been unable to find a suitable benchmark in the literature, so we
propose the following simple procedure that should be possible to reproduce very closely
on any comparable system.

Benchmark procedure A benchmark robot controller and world description are required,
including a population of robot models. For simplicity, we run the identical robot controller
concurrently on every robot, and measure the real time it takes to simulate a fixed amount of
simulated time. To examine scalability, for each [controller, world description] pair, the run-
time test should be performed for a single robot, then a series of exponentially increasing
population sizes. For simulators or controllers with stochastic behavior, each experiment
must be repeated several times to sample the distribution of run times.

6.1 Benchmark robot controller

It is unlikely that any single robot controller will satisfy every user, and any “real” controller
that performs a particular useful swarm behavior from the literature could be argued to be too
specialized. We prefer a controller that uses very little computation and memory compared
to the simulator, to avoid controller costs masking the simulator performance. Yet, we want
to see robot behavior which is somewhat representative of real swarm robotics research.

A canonical application for multi-robot systems, with approaches ranging from swarm
intelligence to centralized planning, is wireless sensor network deployment and mainte-
nance (see, e.g., Winfield 2000; Howard et al. 2006; Chang and Wang 2008; plus several
ICRA articles cited above). This task is also the subject of past and present DARPA pro-
grams. Multi-robot deployment overlaps with other canonical tasks such as exploration and
foraging, though it is not a good model of trail-following or cooperative manipulation.

A minimal version of the deployment problem is dispersal into the environment, which
can be achieved using a mobile robot with n directional range sensors using the following
trivial algorithm:

1. Gather array of range sensor vectors v0, . . . ,vn−1

2. Compute vector sum of array, w = ∑n−1
m=0 vm

3. IF((current_heading − direction_of (w) ≈ 0) AND (free space ahead))
THEN (go forwards)
ELSE (turn to reduce heading error)

4. GOTO 1

With suitable parameter choices depending on robot speed, number of sensors, maximum
obstacle detection ranges, etc., this algorithm is highly effective at dispersing the robots until
each robot has no object inside its sensor range. The algorithm is a simple approximation of
Howard’s approach (Howard et al. 2002), is trivial to implement, uses a single, commonly

Swarm Intell (2008) 2: 189–208 199

available class of sensor, and has the advantages of being stateless, thus requiring no per-
robot storage between updates, and deterministic, avoiding the need for repeated trials.

Dispersal presents a worst-case scenario for grid-based simulations like Stage, as the
amount of free space through which rays must propagate is maximized. Geometric simula-
tions and those that track object bounding boxes may have an easier time, as the frequency of
bounding box overlaps is minimized. If it is desirable to test the simulation performance for
tightly clustered robots, the controller can trivially be inverted to produce local clustering.

We use this controller for the following benchmarking experiments, and hope that it may
be useful for others or inspire (or provoke) the design of a superior method.

An evaluation approach that is often used in systems engineering is to have a family
of benchmark controllers each capturing a different aspect of performance, and to present
a vector of benchmark scores. In this context, our benchmark could be considered for a
component of a future benchmark suite.

7 Stage benchmarks

We present benchmark results for Stage version 3 using multiple simulation scenarios. It is
impractical to exhaustively explore the huge space of Stage configurations, but our choices
span a range intended to be of interest to different types of user. The configurations described
here should be straightforward to reproduce on most alternative simulators, and the files used
to implement them will be included with the Stage version 3 distribution.

7.1 Ray tracing resolution

The spatial resolution of the underlying ray tracing engine was fixed for all tests at 0.02 m.
This is Stage’s default setting, and an informal survey of users suggests that few people
ever change this parameter. This means that range sensors and collision detection is accu-
rate to this value. By default, Stage contains no noise models for range data, so ranges are
effectively quantized at 0.02 m. The justification for Stage’s lack of sensor noise has been
discussed elsewhere (Gerkey et al. 2003) and is based on the idea that Stage’s ray trac-
ing model imposes aliasing effects that play the role of noise, without the extra overhead.
However, Stage version 3 comes with a an example plug-in sensor noise model that can be
customized locally should the user desire particular noise effects.

7.2 Environments

We use two different environments created by the author, included for several years in the
Stage distribution and used in papers by multiple researchers: the “Cave world” and the
“Hospital world”. The Cave environment was drawn by hand in 1998, and models a mod-
erately constrained environment, either a crude artificial structure or a regular natural struc-
ture. The Hospital environment was created in 1999 by hand-editing a CAD drawing of the
floorplan of the disused military Hospital at Fort Sam Houston, San Antonio, Texas, site of
previous DARPA robot demonstrations. The bottom-left hand corner of the Hospital world is
popularly used as a generic indoor environment, and is referred to as the “Hospital section”.

Once loaded from their original bitmap files, the Cave consists of 489 blocks and is scaled
to fill a 16 m by 16 m world. The Hospital consists of 5,744 blocks, and is approximately
actual size at 140 m by 60 m. All blocks are rectangular polyhedra, with edges aligned with
the global axes. The Cave and Hospital maps are shown in Figures 5 and 6, respectively.

200 Swarm Intell (2008) 2: 189–208

Fig. 5 The Cave world with 100 complex Pioneer models with lasers in the initial state (top left); after 600
simulated seconds (top right); and a 3D view of the center of the world at 60 seconds (bottom). A video of
this simulation is available as Video 1–Cave world in the online supplementary material

7.3 Mobile robot models

We use the two mobile robot models shown in Fig. 2, similar but for the number and com-
plexity of the blocks that make up their bodies. They are 0.44 m long by 0.38 m wide by
0.22 m high. Compared to the octagonal “simple” robot model, the “complex” robot model
requires 6 times as many ray tracing operations to detect collisions (or lack of collisions) at
each simulation update. It is also more expensive to draw in the GUI window, though the
relative costs are hard to estimate without detailed knowledge of the specific OpenGL and
rendering implementation. A third model, the “minibot” is used for larger scale experiments,
and is similar in shape to the “simple” model, but is smaller, occupying a cube with sides of
0.2 m (shrunk to 0.1 m for the large-scale experiments reported in Table 3, to fit the robots
into the world).

7.4 Sensor models

The “simple” and “complex” mobile robot models are identically equipped with generic
Stage range finder models, 16 sensors distributed around the robot’s boundary, each com-

Swarm Intell (2008) 2: 189–208 201

Fig. 6 The Hospital world with 2,000 minibots in its initial state (top) (robots are tightly packed and appear
as a dark horizontal band); after 600 simulated seconds (middle); and a 3D view of the center of the world
at 60 seconds (bottom). A video of this simulation is available as Video 2–Hospital world in the online
supplementary material

202 Swarm Intell (2008) 2: 189–208

Table 1 Cave world results: real-world run time for 600 seconds of simulation time, for the Cave world in
40 different configurations. Cave world is shown in Fig. 5. Simple and Complex models are shown in Fig. 2

Model type Laser Graphics Run time for population size

1 10 50 100

Simple – – 0.55 4.98 24.78 46.23
′′ – yes 1.21 5.2 26.69 50.44
′′ yes – 4.06 42.70 229.48 449.44
′′ yes yes 4.83 45.71 243.28 476.34

Complex – – 1.23 12.03 59.15 116.69
′′ – yes 1.71 13.35 65.71 137.15
′′ yes – 5.21 53.61 278.47 550.11
′′ yes yes 6.05 58.44 315.83 659.66

puted by casting a single ray through free-space until a sonar-reflecting object is struck.
Their maximum range matches the Pioneer robot’s sonar sensors at 5 m.

The “minibot” has 12 range finders spaced evenly around its body, with a maximum
range of 2 m. This models a long-range infrared range-finder or a short range sonar, such as
is typically found on small robots designed for swarm experiments.

In addition, we test some scenarios with a model of a scanning laser rangefinder, pa-
rameterized to approximate the popular SICK LMS 200 device, except that it gathers 180
samples over its 180 degree field of view, instead of the 361 samples of the real device. The
laser model has a maximum range of 8 m: the default on the real SICK. Due to its long
range and large number of samples, the laser range model is much more computationally
expensive than the sonar/infrared model.

7.5 Graphics

To examine the performance impact of the graphics rendering and user interface, the exper-
iments were performed with and without the user interface. With the interface enabled, the
window is repainted at the default interval of 100 milliseconds. We expect that Stage should
run faster with the interface disabled.

7.6 Host computer

The host computer was an Apple MacBook Pro, with a 2.33 GHz Intel Core 2 Duo processor
and 2 GB RAM, with a ATI Radeon X1600 graphics chipset with 256 MB VRAM, running
Mac OS X 10.5.1. At the time of writing this is a high-end laptop, equivalent to a mid-range
desktop PC.

7.7 Results

The benchmark robot controller was run in the Cave world for all 8 permutations of [model
type, laser enabled/disabled, graphics enabled/disabled]. Each permutation was run for 600
seconds with population sizes of 1, 10, 50, and 100 robots. The real-world run times are
recorded in Table 1. The success of the robot-dispersal algorithm can be seen in Fig. 5,
which shows a global view of the Cave world with 100 complex robots at zero seconds and
600 seconds, and an intermediate 3D view of the center of the world at 60 seconds.

Swarm Intell (2008) 2: 189–208 203

Table 2 Small-to-medium-scale Hospital world results: real-world run time for 600 seconds of simulation
time, for the Hospital world in 10 different configurations. Hospital world and minibot model are shown in
Fig. 6

Model type Graphics Run time for population size

1 10 100 1,000 2,000

Minibot (20 cm) – 0.63 3.41 31.13 325.77 674.00

Minibot (20 cm) yes 1.70 8.00 73.87 546.67 935.41

Table 3 Large-scale Hospital world results: real-world run time for 60 seconds of simulation time, for the
Hospital world in 3 different configurations. Hospital world and minibot model are shown in Fig. 6

Model type Graphics Run time for population size

2,000 10,000 100,000

Minibot (10 cm) yes 92.7 309.98 2,998.8

The benchmark robot controller was also run for 600 seconds in the Hospital world,
with graphics enabled and disabled, for population sizes of 1, 10, 100, 1,000, and 2,000
robots. The real-world run times are recorded in Table 2. The success of the robot-dispersal
controller can be seen again in Fig. 6, where 2,000 minibots are shown in the Hospital world
at zero and 600 seconds, and in an intermediate 3D view at 60 seconds.

A final experiment investigates scaling to very large populations. We run 2,000, 10,000,
and 100,000 minibots in the Hospital world. In order to fit the robots in the map, we shrink
each robot’s body to fit in a 10 cm cube. To keep the real-world run time reasonable, we run
the simulation for only 60 simulated seconds. Otherwise this experiment is identical to its
predecessor. The results are reported in Table 3. Again, we find that run time scales linearly
with population size. However, with a population of 100,000 simple robots, Stage runs at
around one-fiftieth of real time.

We see that, as expected, larger population sizes take longer to run. Use of the complex
model and the laser scanner also increased run time, as we would expect from their ray
tracing demands.

To compare the run time data between trials, we plot the ratio of simulated to real time
(i.e., multiples of real time (MRT), or “speed-up factor”) in Fig. 7. The population size is
plotted against MRT on a log/log scale, and scenarios differing only in population size are
connected with lines to form a scaling curve. We see that all the curves are approximately
linear, indicating that Stage run time does increase linearly with population size as hoped.
We also see that all but the six most demanding simulations ran faster than real time.

Figure 7 is rather cluttered, so we aim to clarify things by clustering the data. We observe
that the differences in performance between experiments depends more on the sensors used
than the robot body and the environment map. Grouping all experiments into one of the three
sensor types used: (1) 16 sonar beams (range 5 m) + 180 laser beams (range 8 m); (2) 16
sonar beams (range 5 m); (3) 12 sonar beams (range 2 m), and plotting the mean real-world
run time against population size, we obtain Fig. 8, which more clearly shows the roughly
10-fold performance cost of using the laser model.

To summarize the results, these data show that with a trivial robot controller, Stage can
simulate small populations of complex robots much faster than real time. Populations of
around 100 complex robots or 1,000 simple robots can run in real time or less. In addition,

204 Swarm Intell (2008) 2: 189–208

Fig. 7 Summary of benchmark results. The ratio of simulation time to real time is plotted against population
size on a log/log scale, for each world configuration. Anything above the x = 1 line is running faster than real
time. The run-time performance scales approximately linearly with population size in the range tested

we have shown that Stage scales to simulating up to 100,000 robots, though slower than real
time. Long-duration experiments with such large populations, while possible, are still costly
in terms of experimenter time.

8 Future work

8.1 Performance and scaling

Our 100,000 robot experiment ran at around one-fiftieth of real-time, which limits its useful-
ness for simulating long periods of time. Populations of 10,000 to 100,000 robots are in the
regime of interesting natural swarms, so the swarm robotics community could benefit from
a further speed increase. To achieve the required 10 to 100 times increase in performance
to achieve real time performance with these populations, or to make simulating a million
robots at all practical, without fundamentally changing our simulation model, we have three
main areas of investigation, listed in reverse order of potential scaling benefit:

8.1.1 Optimize code efficiency

There is certainly scope for improvement in the performance of Stage’s frequently run inner
loops—mainly ray tracing and graphics rendering. In addition, to date little attention has
been paid to per-robot memory size and layout. More careful memory use could improve
cache hit rates, and allow larger populations before exceeding a host machine’s physical
memory.

Swarm Intell (2008) 2: 189–208 205

Fig. 8 Benchmark results clustered by sensor type and averaged. The mean ratio of simulation time to real
time is plotted against population size on a log/log scale, for each of the following three types of sensor
model: (1) 16∗5 m range sonar beams + 180∗8 m range laser beams; (2) 16∗ 5 m range sonar beams;
(3) 12∗2 m range sonar beams. The run-time performance scales approximately linearly with population
size in the range tested

8.1.2 Concurrency—threads

Multi-core CPUs and multi-CPU machines have become common. In principle, Stage can
benefit from parallel computation. Sections of the world that do not interact with each other
can run concurrently without any synchronization overhead. Thus, we could, in principle,
obtain a near N -times speed increase with N additional processor cores. Currently fast ma-
chines with 8 cores are available. The difficulty comes in maintaining suitable partitions, and
finding linear time or better algorithms for partitioning physical simulations is an interesting
area for research.

8.1.3 Concurrency—cluster computing

The greatest opportunity for massive scaling comes with cluster computing, in which many
hosts can be pooled into a distributed system (e.g., Google’s huge systems; see Barroso et
al. 2003). Distributing Stage over a cluster is a similar problem to using threads, but with
much greater between-partition communication costs, and the addition of reliability issues
that can usually be ignored on single machines.

Both multi-thread and cluster implementations face additional overhead in maintaining
a causal ordering of events to ensure that Stage simulations are repeatable in concurrent
implementations. We plan to investigate a distributed implementation of Stage.

206 Swarm Intell (2008) 2: 189–208

8.2 Other plans relevant to swarm robotics

8.2.1 Multi-robot visualization tools

We would like tools for analyzing, debugging, and presenting the state evolution of large-
scale multi-robot systems. We wish to visualize the external and internal state of thousands
of agents; to obtain insight into important events, causal relationships, patterns and prob-
lems. Exploiting the new OpenGL view of the world, we will gradually add visualizations
to the main distribution. For example, Stage version 3 provides various views of the robot’s
movement history.

8.2.2 Standard API

Stage currently offers a custom API for creating simulations and writing robot controllers.
It would be more useful if user’s robot controllers were directly portable to Player, and other
robot interfaces or simulators. The Player Project has begun work on creating a portable
robot controller API, based on the Player Abstract Device Interface, to be implemented
initially in Player and Stage. This is a long term community effort.

8.2.3 Portability

Stage version 3 is designed to be portable. It currently runs on most Unix-like systems,
including Linux, OS X, Solaris, and the BSD family. It does not currently run out-of-the-
box on Microsoft Windows, due to POSIX incompatibilities. We aim to have Stage build
and run on Windows as standard in 2008. The main goal of this effort is to make Stage more
accessible to students.

9 Critical limitations

While we have mentioned various limitations of Stage in the text above, it may be worth-
while to state the main issues all together, as follows.

Stage’s key limitation is that it is a first-order geometric simulator: it ignores dynamics.
It is a 2D simulator with some 3D extensions (commonly referred to as a 2.5D simulator).
The ray tracing model is based on an occupancy tree, so the sensing and collision detection
resolution is limited by the fixed size of the leaf cells. No bitmapped camera model is cur-
rently available, though this is planned for the near future. A simple odometry noise model
is built in, and a demonstration sensor noise model is provided as an optional plugin, but
otherwise Stage ignores sensor noise (relying on the aliasing effects of the low resolution
ray tracing to provide a noise-like function). At the time of writing Stage does not run on
Microsoft Windows.

10 Conclusion

We have argued that Stage may be useful to swarm robotics researchers because (i) it sup-
ports large numbers of robots at real time or better; and (ii) it is well known in the multi-robot
systems community, and therefore has methodological advantages compared to a dedicated
simulator.

Swarm Intell (2008) 2: 189–208 207

To demonstrate the new performance of Stage version 3, we presented and used a simple
benchmark for mobile robot simulators. Stage’s run time was shown to scale approximately
linearly with population size up to 100 complex robots or 100,000 simple robots. Popula-
tions of around 1,000 simple robots or 100 complex robots can be simulated in real time.

Stage is not useful for every mobile robot simulation project, but version 2 has proved
itself useful to many. Stage version 3 adds a significant performance increase to this open,
free and well-known platform.

Supporting files

All source code and configuration files required to reproduce these benchmarks are in-
cluded in Stage source code distributions since Stage -3.0.0, in the directory worlds/
benchmark. The configuration files are either human-readable text files or PNG format
bitmaps. These files and this paper should be sufficient information to adapt the benchmark
for another simulator.

Acknowledgements Thanks to Brian Gerkey, Toby Collett, Reed Hedges, Radu Rogan Rusu, Pooya
Karimian, and the Player Project development community. Thanks to Andrew Howard for his work on earlier
versions of Stage. Thanks to the editors and four anonymous reviewers for assistance in improving this paper.
This work was supported by a Strategic Project Grant and a Discovery Grant from NSERC, and a research
contract from DRDC in Canada.

References

Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Proceedings of the con-
ference of the European association for computer graphics (Eurographics ’87) (pp. 3–10). Amsterdam:
Elsevier Science.

Anderson, M., Thaete, L., & Wiegand, N. (2007). Player/Stage: a unifying paradigm to improve robotics
education delivery. In Workshop on research in robots for education at robotics: science and systems
conference.

Balch, T. Behavioral diversity in learning robot teams. PhD thesis, College of Computing, Georgia Institute
of Technology, 1998.

Barroso, L. A., Dean, J., & Holzle, U. (2003). Web search for a planet: the Google cluster architecture. IEEE
Micro, 23(2), 22–28.

Batalin, M. A., & Sukhatme, G. S. (2003). Efficient exploration without localization. In Proceedings of the
IEEE international conference on robotics and automation (pp. 2714–2719). Los Alamitos: IEEE Com-
puter Society Press.

Batalin, M. A., & Sukhatme, G. S. (2004). Using a sensor network for distributed multi-robot task allocation.
In Proceedings of the IEEE international conference on robotics and automation (pp. 158–164). Los
Alamitos: IEEE Computer Society Press.

Batalin, M., & Sukhatme, G. (2005). The analysis of an efficient algorithm for robot coverage and exploration
based on sensor network deployment. In Proceedings of the IEEE international conference on robotics
and automation (pp. 3478–3485). Los Alamitos: IEEE Computer Society Press.

Busch, M., Skubic, M., Keller, J., & Stone, K. (2007). A robot in a water maze: learning a spatial memory
task. In Proceedings of the IEEE international conference on robotics and automation (pp. 1727–1732).
Los Alamitos: IEEE Computer Society Press.

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., & Scrapper, C. (2007). USARSim: a robot simulator for
research and education. In Proceedings of the IEEE international conference on robotics and automation
(pp. 1400–1405). Los Alamitos: IEEE Computer Society Press.

Chang, R. S., & Wang, S. H. (2008). Self-deployment by density control in sensor networks. IEEE Transac-
tions on Vehicular Technology, 57(3), 1745–1755.

Chang, H., Lee, C., Lu, Y., & Hu, Y. (2006). Simultaneous localization and mapping with environmental
structure prediction. In Proceedings of the IEEE international conference on robotics and automation
(pp. 4069–4074). Los Alamitos: IEEE Computer Society Press.

208 Swarm Intell (2008) 2: 189–208

Craighead, J., Murphy, R., Burke, J., & Goldiez, B. (2007). A survey of commercial & open source unmanned
vehicle simulators. In Proceedings of the IEEE international conference on robotics and automation (pp.
852–857). Los Alamitos: IEEE Computer Society Press.

Dorigo, M., & Şahin, E. (Eds.) Special issue: swarm robotics. Autonomous Robots, 17(2–3), 2004.
Fredslund, J., & Matarić, M. J. (2002). Huey, Dewey, Louie, and GUI—commanding robot formations.

In Proceedings of the IEEE international conference on robotics and automation (pp. 175–180). Los
Alamitos: IEEE Computer Society Press.

Gerkey, B. P., Vaughan, R. T., Støy, K., Howard, A., Sukhatme, G., & Matarić, M. J. (2001). Most valuable
player: a robot device server for distributed control. In Proceedings of the IEEE/RSJ international con-
ference on intelligent robotic systems (pp. 1226–1231). Los Alamitos: IEEE Computer Society Press.

Gerkey, B., Vaughan, R. T., & Howard, A. (2003). The player/stage project: tools for multi-robot and dis-
tributed sensor systems. In Proceedings of the 11th international conference on advanced robotics (pp.
317–323). Los Alamitos: IEEE Computer Society Press.

Heckbert, P. (Ed). (1994). Graphics gems IV. Boston: Academic Press.
Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential

fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the international
symposium on distributed autonomous robotic systems (pp. 299–308). New York: Springer.

Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with large heterogeneous mobile robot
team: exploration, mapping, deployment and detection. International Journal of Robotics Research,
25(5), 431–447.

Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot sim-
ulator. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp.
2149–2154). Los Alamitos: IEEE Computer Society Press.

Kramer, J., & Schultz, M. (2007). Development environments for autonomous mobile robots: a survey. Au-
tonomous Robots, 22(2), 101–132.

Lin, L., & Zheng, Z. (2005). Combinatorial bids based multi-robot task allocation method. In Proceedings of
the IEEE international conference on robotics and automation (pp. 1145–1150). Los Alamitos: IEEE
Computer Society Press.

Michel, O. (2004). Webots: Professional mobile robot simulation. International Journal of Advanced Robotic
Systems, 1(1), 39–42.

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gam-
bardella, L., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Ro-
bots, 17(2-3), 193–221.

Şahin, E., & Spears, W. (2005). In Lecture notes in computer science: Vol. 3342. Swarm robotics: SAB 2004
international workshop, Revised Selected Papers Santa Monica, CA, USA, July 17, 2004. Heidelberg:
Springer.

Scrapper, C., Balakirsky, S., & Messina, E. (2006). MOAST and USARSim–a combined framework for the
development and testing of autonomous systems. In Proceedings of the SPIE. Bellingham: SPIE.

Shell, D., & Matarić, M. (2004). Directional audio beacon deployment: an assistive multi-robot application.
In Proceedings of the IEEE international conference on robotics and automation (pp. 2588–2594). Los
Alamitos: IEEE Computer Society Press.

Seugling, A., & Rolin, M. (2006). Evaluation of physics engines and implementation of a physics module in
a 3D authoring tool. Department of Computer Science, Umeoa University, Sweden: Master’s thesis.

Winfield, A.F.T. (2000). Distributed sensing and data collection via broken ad hoc wireless connected
networks of mobile robots. In Distributed autonomous robotic systems (pp. 273–282). Heidelberg:
Springer.

Ye, W., Vaughan, R. T., Sukhatme, G. S., Heidemann, J., Estrin, D., & Matarić, M. J. (2001). Evaluating
control strategies for wireless-networked robots using an integrated robot and network simulation. In
Proceedings of the IEEE international conference on robotics and automation (pp. 2941–2947). Los
Alamitos: IEEE Computer Society Press.

	Massively multi-robot simulation in stage
	Abstract
	Introduction
	Technical and methodological features
	Scope and outline

	Evidence of stage impact
	Related work
	Stage internals for scaling
	Physical object model
	Ray tracing
	User interface

	Using stage as a library
	A benchmark for swarm simulation
	Benchmark procedure
	Benchmark robot controller

	Stage benchmarks
	Ray tracing resolution
	Environments
	Mobile robot models
	Sensor models
	Graphics
	Host computer
	Results

	Future work
	Performance and scaling
	Optimize code efficiency
	Concurrency-threads
	Concurrency-cluster computing

	Other plans relevant to swarm robotics
	 Multi-robot visualization tools
	Standard API
	Portability

	Critical limitations
	Conclusion
	Supporting files
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

