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Abstract

We investigate the task switching problem of a robot max-
imizing its long-term average rate of return on work per-
formed. We propose an online method to maximize the aver-
age gain rate based on only past experience. For that we alter
the formulation from optimal foraging theory and recursively
include estimates of global task qualities. We demonstrate
and analyze our method on a puck-foraging example. In sim-
ulation experiments under a variety of conditions we show
that our method performs well compared to results obtained
by brute force method using post-processed foraging data.

Introduction
Many robot applications require a robot to make task switch-
ing decisions in order to maximize its reward. Often this
reward is a diminishing function of the time spent perform-
ing the task. These diminishing returns can either be caused
by (i) exhausting a given task, for example having delivered
all mail in a given building or by (ii) increasing difficulty to
perform the task, e.g. it will be more and more difficult for a
vacuum cleaning robot1 to remove dirt as it cleans the floor.
In fact it will be virtually impossible for a vacuum cleaning
robot to remove all dirt particles and thus this task has no
well defined intrinsic end point.

In both situations the robot has to decide when it is prof-
itable to terminate the current task, pay a switching cost, and
start a new task that yields higher rewards. The switching
cost can come in form of an opportunity cost or an actual
cost such as energy expenditure, transit toll or task acquisi-
tion cost. In other words the robot has to decide when to
switch tasks in order maximize its long-term average reward
rate. This decision depends on a number of factors: how
good is the current task, how high is the switching cost and
what is the average payoff function for tasks in the robot’s
environment?

In an earlier paper (Wawerla and Vaughan, 2009) we pro-
posed a task switching policy based on the Marginal-Value
Theorem (MVT) (see Sec. Marginal-Value Theorem). This

1We assume the robot gets rewarded for the amount of dirt col-
lected and not for time spent vacuuming.

policy required the robot to perform exploration steps in or-
der to evaluate the average quality of the available tasks.
We showed that the performance of the proposed policy was
about 80% of that obtained by a near optimal policy discov-
ered by brute force search.

In this paper we propose a recursive task switching policy
based on locally available information only, hence no ex-
plicit exploration phase and thus no exploration/exploitation
trade-off is required.

The policy is applicable to other task switching situa-
tions that exhibit diminishing returns. We choose forag-
ing as an example task, since it is a canonical task in au-
tonomous robotics (Cao et al., 1997). Robot foraging often
means multi-agentcentral place foraging(Stephens et al.,
2007), where foraged items are delivered to single privi-
leged location. In contrast in this paper and our previous
work (Wawerla and Vaughan, 2009) we use solitary, instant-
consumption foraging in a patchy environment: a single
robot immediately consumes items once they are encoun-
tered obtaining a reward without the need to deliver them to
a centralized location. Items to be foraged are not distributed
uniformly, but in patches defined for Behavioural Ecology as
“an homogeneous resource containing area separated from
others by areas containing little or not resources” (Danchin
et al., 2008).

Marginal-Value Theorem

In behavioural ecology the task switching problem is of-
ten discussed in terms of optimal foraging theory (Stephens
and Krebs, 1986) as a patch leaving decision. In this con-
text patches are subject to diminishing returns and thus re-
quire the forager to make decisions about changing patches.
In this case the task switching cost the inter-patch travel
cost. An important result of optimal foraging theory is
the Marginal-Value Theorem (MVT). Charnov and Orians
(1973); Charnov (1976) proposed the MVT to model forag-
ing decisions made by animals. His key result is the follow-
ing patch leaving rule: “when the intake rate in any patch
drops to the average rate for the habitat, the animal should
move on to another patch” (Charnov and Orians, 1973). As
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a consequence an optimal forager should exploit patches for
a longer time as the inter-patch travel time increases and for
a shorter time as the entire environment becomes more prof-
itable. The simplicity of this rule makes it very appealing
as a task-switching rule for robots, but the theorem and its
validity has been widely and controversially discussed, for
example by Green (1984); McNamara (1982); Stephens and
Krebs (1986). Some of these issues make an implementation
of the MVT as a robot task switching policy impossible. The
main problems are:

• How to measure the marginal gain rate (the derivative of
the gain rate) if the reward comes in discrete lumps. An-
drews et al. (2007) suggest calculating the slope of the
gain function between the last gain function change and
the one two changes prior. In our tests (not shown) this
method proved ineffective due to the stochastic nature of
puck encounter during random foraging in patches with
randomly placed pucks. In previous work (Wawerla and
Vaughan, 2009) we used the expected value of a beta dis-
tribution over time-steps in which the robot found a puck
and those in which it did not, as a proxy for the instan-
taneous rate. While we were able to build a task switch-
ing policy around this estimated gain rate, it is not the
instantaneous gain rate. Thus leaving a patch once this
estimated gain rate equals the long-term average rate does
not maximize the long-term gain rate.

• The true long-term average gain rate for a given environ-
ment is usually unknown to the forager: all it can know
is the average gain rate it experiences. This experience
is a result of the foragers behaviour, yet the MVT re-
quires the forager to base it’s patch leaving decision on
the obtainable long-term average gain rate. This circu-
lar dependency necessitates that the forager explores the
action space in order to find the maximum long-term av-
erage gain rate. Previously (Wawerla and Vaughan, 2009)
we used this circular dependency and turned the foraging
task into a multi-armed bandit problem and applied stan-
dardε-greedy methods (Sutton and Barto, 1998) to tackle
the exploration-exploitation trade-off.

Stephens and Krebs (1986) summarize these problems as
“The MVT survives not as a rule for foragers to implement,
but as a technique that finds the rate-maximizing rule from
a known set of rules”. Since the MVT does not provide an
implemetable policy, behavioural ecologists proposed other
patch-leaving rules. (1)number rule, “leave after catching
n items” (Gibb, 1958); (2)fixed residence time rule“leave
after being in a patch fort time” (Krebs, 1973); (3)give up
time rule “leave aftert time has elapsed since the last en-
counter” (Krebs et al., 1974); (4)rate rule “leave when the
instantaneous intake rate drops to a critical valuer” (McNa-
mara, 1982). Rules 1-3 have the advantage that the decision
is based on values that are easily measurable by the forager.
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Figure 1: Average gain rate for a fixed patch residence time.
Series of 100 patches with initially 50 pucks and a patch
switching time of 500 seconds.

The rate rule is an extension of the MVT in that it copes
with variance in patch sub-types, but it does not address the
two issues mentioned above. None of these rules address
the question of how to obtain the magic number on which
the decision is based.

To illustrate the difficulty of this task-switching problem
we conducted a brief simulation experiment. For this ex-
periment we generated 100 constant size patches, each with
initially 50 pucks. Next we had the robot forage in each
patch until it was completely exhausted. For each time step
we recorded the number of pucks gained from the current
patch. From the recorded data we then calculated the av-
erage long-term gain rate as a function of patch residence
time. In other words we forced the robot to leave each patch
in a 100 patch series after a fixed time. By sweeping over
patch residence times from 10 to 8000 seconds we obtained
Fig. 1. This graph shows the long-term gain rate for a given
patch residence time for this particular patch configuration
and switching cost. The curve is interesting because it shows
how large an error (i.e. reduction on average reward gain
rate) a task-switching robot can make if switching too early
or too late. It is worth pointing out that a robot is not actually
able to measure this curve and exploit a patch optimally at
the same time. Fortunately the robot only needs to find the
maximum of the long-term gain rate and not determine the
function per se.

Having described the optimization problem, in the fol-
lowing we present a new online adaptive solution that is
grounded in the robot’s perception and achieves foraging re-
sults comparable to an idealized forager that bases its deci-
sions on global, unknowable environmental averages.
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Marginal Gain Rate Task Switching
To derive the MVT Charnov (1976) argued that an optimal
forager should maximize

R=
∑λ j ·g j(t j)− τ ·E

τ +∑λ j · t j
(1)

whereλ j is the proportion of visited patches that are of type
j, g j(t j) is the net gain function for a patch of typej, τ
is the average inter-patch travel time,E the rate of energy
expended while switching patches andt j is the time spent in
a patch of typej. The objective of a forager is to select all
patch residence timest j such thatR is maximized.

Without loss of generality we ignore the energetic cost of
travelτ ·E, since it is independent of the decision variables,
so Eq. 1 reduces to

R=
∑λ j ·g j(t j)

τ +∑λi ·Tj
(2)
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Figure 2: Typical MVT plot with two quantities on the ab-
scissa: travel time increasing to the left, and patch residence
time increasing to the right. The optimal patch residence
time Γ∗ is found by constructing a tangent to the gain func-
tion g(t) that begins at the patch switching timeτ on the
travel time axis.

Charnov showed thatR is maximized if
∂g j (t j )

∂ t j
= R.

Graphically this is easy to do. As Fig. 2 shows, the optimal
patch residence timeTj is found by constructing a tangent
to the gain function that begins at the patch switching time
τ on the travel time axis (see Stephens and Krebs (1986) for
details).

The gain functiong(t) depends on (i) the actual patch
quality, which varies from patch type to patch type but can
also be variable within a patch type, for example if the pucks
are placed randomly and (ii) on the robot environment in-
teraction, e.g. sensor range, search strategy, motor control
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Figure 3: Average gain function (thin line) for random for-
aging in a 50 puck patch, error bars depict the standard de-
viation. Two instance of the gain function (thick lines) for
patches with the same initial number of pucks.

etc. Thus foraging in two equally sized patches, initially
containing the same number of pucks, that is patches with
the same puck density, may result in two totally different
gain functions and there is no way a forager can predict
the gain function of a particular patch before entering the
patch. Fig. 3 shows two exemplar gain functions and the
average gain function over 100 patches (each patch with ini-
tially 50 pucks). Thus as McNamara (1982) argues, the sub-
patch type variance has to be considered. This immediately
raises the question how does the forager determine the type
of patch in which she is currently foraging ? In some sce-
narios the patch type might be detectable by an external cue,
but in general it is not and the forager is required to forage in
the patch in order to obtain information about the patch. This
adds a patch discrimination problem to the decision process.

To overcome these issues, we suggest dropping the notion
of patch types and treating each patch as its own type. (In
the following we still use the phrase “patch type” to mean
patches with the same initial number of pucks (same puck
density), but we do not perform any form of rate maximiza-
tion based on the notion of patch types.) For unique patches
the long-term average gain rate is

R=
1
n ∑n

i gi(ti)

τ + 1
n ∑n

i ti
(3)

We replaced the patch type indexj with index i referring to
unique patches. The advantage of not having to distinguish
patch types and not having to deal with patch subtype vari-
ance comes at the disadvantage of having a possibly very
large planning horizon ofn timesteps. In fact the planning
horizon is the lifetime of the robot. Since the robot cannot
predict the future, we avoid the large planning horizon by re-
cursively maximizing Eq. 3 based on only past experiences
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and ignoring possible future changes. Then our approxi-
mation of the long-term average gain rate while foraging in
patchi, based on observations from previously encountered
patches 0..i −1 is

R̃i =
gi(ti)+Gi

ti + τ +Ti
(4)

WhereGi is the sum of collected pucks andTi the total time
(patch residence plus travel time) from all previous patches
0..i −1. G0 andT0 can be used as a prior that provides the
robot with an initial estimate of the average patch quality.
BothGi andTi are a simple model of the average patch qual-
ity of the environment. This information (except the prior)
is gained by the forager during exploitation. Hence a for-
ager encountering only one patch type will actually maxi-
mize Eq. 2. But a forager first encountering a series of only
low quality patches and then a series of high quality patches
will maximize a very different average gain rate function
than an omniscient forager. But an uninformed forager max-
imizing Eq. 4, will do as well as possible given the limited
available information.

Robot Controller
The core of our task switching method is to maximize Eq. 4.
This is done by numerically estimating the derivative ofRi

at every time step and leaving the patch once the the deriva-
tive becomes zero. Since the gain function is assumed to be
negatively accelerated, a maximum is found this way.

Algorithm 1 summarizes our task switching method. The
robot forages for one time-step, if it collected a puck the lo-
cal gain functiong(t) is incremented (line 10-15). Next we
calculate an approximation of the long-term gain rate based
on the experience from previous patches (Gi , Ti), an estimate
of the travel timẽτ and the value of local gain function at the
current time. Because of the stochastic and noisy nature of
the gain function the estimate of the long-term gain rate has
to be smoothed. In our implementation we use a low-pass
filter (line 17-21). Other methods maybe substituted, how-
ever it performs well enough for our purpose. As mentioned
earlier the patch leaving decision is based on checking if the
derivative of the long-term gain rate is equal to zero. Again
because of the stochasticity of the gain function we might
experience a local region of zero or negative gradient, which
could be interpreted as a local maximum. A simple count-
ing step helps to overcome those undesired local maxima
(line 22-27). As with the low-pass filter, any suitable method
may substituted. The actual patch leaving decision is made
in line 27. A patch is left once a maximum is found and a
minimum amount of time has been spent in the patch. This
minimum patch residence time is helpful during the initial
time in a patch, since until the first puck is foundg(t) = 0
would cause the robot to leave the patch immediately.

Once the robot leaves the patch it travels to the next patch.
This travel takesτi time. Before starting to forage in the new

Algorithm: patchMax1

init G0, T0, τ̃, k1, k2, k3, k42

i = 13

forall patchesdo4

enter patchi5

t = 06

g(0) = 07

repeat8

t = t +19

randomly forage for one time-step10

if puck collectedthen11

g(t) = g(t −1)+112

else13

g(t) = g(t −1)14

end15

r(t) = g(t)+Gi
t+τ̃+Ti

16

if t == 1 then17

r f ilt (t) = r(t)18

else19

r f ilt (t) = (1− k3) r f ilt (t −1)+ k3r(t)20

end21

if r f ilt (t)− r f ilt (t −1)≤ 0 then22

c= c+123

else24

c= 025

end26

until c> k1 and t> k227

move to next patch inτi time28

Gi+1 = Gi +g(t)29

Ti+1 = Ti + t+ τi30

τ̃ = τ̃ + k4(τi − τ̃)31

i = i +132

end33

Algorithm 1 : Task switching algorithm

patch the estimates for the environment qualityG andT and
the estimate of the switching timẽτ are updated (line 29-30).

Experiments
To investigate the effectiveness of our approach, we con-
ducted a series of simulation experiments consisting of two
phases (i) generate foraging data and (ii) test our task (patch)
switching policy on the generated data (see Sec. Exper-
imental Data). To generate the foraging data we used a
generic mobile robot model in the well known simulator
Stage (Vaughan, 2008). The robot is equipped with a short-
range colour blob tracker to sense ‘pucks’, our unit of re-
sources, in its vicinity. The robot knows (or equivalently
can detect) the boundaries of a puck patch. Patches are 620
times the size of the robot, and contain initially 10, 30, 50,
100, 200 or 300 pucks placed uniformly at random. A min-



Proc. of the Alife XII Conference, Odense, Denmark, 2010 793

imum distance between pucks is enforced to avoid overlap.
To exploit a patch, the robot randomly forages for pucks, by
driving straight until it comes to the patch boundary, where
it chooses a new heading that brings it back into the patch, at
random. When a puck is detected, the robot servos towards
the closest puck and collects it. Collecting a puck takes one
simulation time step, so there is virtually no handling time.
At each simulation time step we record how many pucks the
robot has collected so far in the current patch: this is the gain
function.

As mentioned earlier the gain function is not only depen-
dent on the initial number of pucks per patch but also on
the robot/environment interaction. To get a good sample of
the distribution of gain functions, we randomly generate 100
patches of each of the six patch types and record the gain
functions from the robot foraging in those patches. Note that
at this point in the experiment no patch leaving decisions are
made. The robot simply forages until the patch is exhausted
and the simulation is terminated. Testing our approach on
this recorded data set rather than during the robot simulation
allows us to compare approaches on exactly the same data
and it makes it feasible to determine a near-optimal solution
by brute force solution search.

As a baseline for comparison we need to find ati for each
patch such that the long-term gain rate is maximized. No
closed form solution is known to this problem, and the gain
functions are available as data points only. So we employ a
brute force search. Since each patch is unique this techni-
cally requires us to solve Eq. 3 for all possible combinations
of patch residence times. Because this is computationally
prohibitive we resort to calculating the average gain func-
tion over all 100 instances of a patch type. Then we find
the best patch residence time by solving Eq. 3 for all possi-
ble t (0 ≤ t ≤ Tpatchexhaused) and selecting thet that maxi-
mizes the average gain rate. In case of multiple patch types
we calculate the long-term gain rate for each combination
of residence times on the average gain function. This is only
feasible since the number of patch types considered is small.

In all of the following experiments we used the obtained
long-term average gain rate as a metric for comparison. All
algorithm parameters required were set manually and kept
constant without any attempt to optimize them. The priors
G0 andT0 were set to zero. To investigate our task switching
method under a wide range of conditions we altered the task
(patch) switching timeτ from very short 10 seconds to very
long 5×106 seconds (≈6 days). To put this in perspective
we report the mean and standard deviation of observed times
required to exhaustively forage patches in Table 1. The spec-
trum reaches from almost no switching cost to a switching
cost about 200 times the average time required to exhaust a
patch.

initial pucks per patch
10 30 50 100 200 300

µ [s] 1858 2909 3631 4556 5171 5475
σ 825 1184 1271 1337 1206 1208

Table 1: Mean and standard deviation of the time required
to exhaustively forage patches

Single Patch Type

In a first experiment we had the robot forage in a series of
100 patches with the same initial number of pucks. Fig-
ure 4(a)-(f) shows the achieved long-term average gain rate
for each patch type over a variety of switching times com-
pared to the brute force solution. From the graphs we can
draw three conclusions. (i) If the task switching times are
short (i.e. much lower than the patch residence times) the
performance of our method is in general lower than that
of the near-optimal brute force method. The MVT predicts
short patch residence times in situations where patch switch-
ing is cheap. But because of the various filters (filter param-
eters kept constant for all experiments over all conditions)
our method’s responsiveness is too slow in these short resi-
dence time situations. We say the performance is lower, but
it is still above 78% (except in the 10 puck patches, where
the performance drops to 50%). (ii) Under low patch qual-
ity situations (10 pucks, 30 pucks) our method performs less
well than the brute force method. Again the reason is in the
choice of parameters. The filters are too slow for the opti-
mal, short patch residence time. (iii) The method described
in this paper achieves similar long-term rates as the brute
force method in all other cases examined. Recall that it uses
only locally obtained information, in contrast to the omni-
scient brute force method.

Multiple Patch Types

A more challenging problem is the case where patches of
very different quality are encountered. As the MVT predicts
the patch leaving decision is not only dependent on the qual-
ity of a given patch but on the global quality. To illustrate
the difficulty of this decision we give a brief example. Let
th be the optimal patch residence time if a forager only en-
counters patches of a fixed, high quality. If the same forager
now encounters a mixture of high and low quality patches,
th is no longer the optimal patch residence time for the high
quality patches. The reason is that the cost of lost opportu-
nity has increased due to the patches of low quality. As a
consequence the forager should increaseth under these cir-
cumstances.

To investigate our system under these conditions we con-
ducted a series of experiments. In a first experiment we had
the robot encounter 100 patches of type A and 100 patches of
type B in a random order. Figure 4(g) and 4(h) show the av-
eraged results over 20 trials for patch configurations 50:100
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Figure 4: Long-term average gain rates achived by the bruteforce method (red line with circle) and our online method (green
line with cross, blue with asterix). Inter patch travel timeτ in seconds on the x-axis and long-term gain rate in pucks per seconds
on the y-axis. More details in the text.
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pucks and 50:300 pucks respectively. Errorbars were omit-
ted because of the small standard deviation. As in the single
patch type experiments and for the same reasons, the perfor-
mance is somewhat lower under short switching time con-
ditions, but in the general the graphs show that our method
copes well with randomly encountered patches of different
qualities.

An even harder problem is to encounter a longer series of
patches of type A followed by a series of patches of type
B, where the forager does not know anything about type B
patches while it forages in type A patches. On encounter-
ing type B patches, the robot has built a strong prior ex-
pecting type A patches. In this experiment the robot was
faced with a series of 100 patch of one type followed by 100
patch of a different type. The results for 50:100 and 50:300
patches with a stepwise change in both directions is shown in
Fig. 4(i) and 4(j) respectively. Here the brute force method
is at a significant advantage because the patch leaving de-
cisions are derived with full knowledge of the future patch
change. Our method does not/can not anticipate the patch
quality change and thus for the first 100 patches acts under
the “assumption” of a constant environment. The error re-
sulting from this “assumption” grows with the difference in
patch qualities. That is why the performance difference in
the 50:300 scenario (Fig. 4(j)) is larger than in the 50:100
case (Fig. 4(i)).

Figure 4(k) shows the results for a stepwise sequence of
50:100:200:300 puck patches and the reverse ordering. The
results are qualitatively very similar to those discussed pre-
viously. In one last experiment of this type we choose step
wise patch encounter with larger step sizes. The ordering
chosen was 50:300:100:200. Results are shown in Fig. 4(l).
The performance results are again qualitatively similar, sug-
gesting the our method handles this type of variance well.

Variable Switching Cost
So far we tested different switching costs but kept them con-
stant in the single patch type as well as multi patch type
experiments. To investigate varying inter-patch travel time,
we conducted an experiment in which the travel time be-
tween patches was drawn from a normal distribution with
mean 1000 seconds and standard deviation 100, 500 and 700
seconds respectively. Table 2 shows the results in percent
compared to the long-term gain rate of the brute force so-
lutions. Because of the computational complexity the brute
force solution was only calculated using the mean and not
the actual randomly drawn travel times. As in the previ-
ous experiments we see generally good performance and the
usual drop in situations with low patch quality.

Discussion
Task switching under diminishing returns is daily routine
for many animals and important for many conceivable au-
tonomous robots. Maximizing the long-term average gain

initial pucks per patch
σ 10 30 50 100 200 300

100 74.0 92.2 96.0 96.4 95.3 92.2
500 76.3 90.2 93.9 94.5 89.7 92.3
700 67.8 89.5 96.9 92.6 88.7 90.1

Table 2: Percent performance for variable patch switch-
ing time with mean 1000 sec. and standard deviationσ =
{100,500,700}

or reward rate under these conditions requires the robot to
have knowledge of future gain functions. This is not achiev-
able by a robot relying solely on information obtained by
its own actions. To the best of our knowledge no solution
to this problem is known. In this paper we have argued
that the MVT is not implementable because an instantaneous
gain rate is meaningless in the case of rewards obtained in
chunks. It also requires a continuous exploration phase in
order to find the global maximum rate, but the MVT itself
does not explore the action space.

Instead we proposed a task switching method that bases
its decision only on previously obtained information, well
aware that we therefore maximize a different function. Thus
we may make suboptimal task switching decisions, but these
decisions are as good as possible given no information about
the future.

An important issue to discuss is how large the time win-
dow of past experiences should be, that are considered in the
task-switching decision. In this paper we simply included all
past foraging experiences when modelling the global patch
quality. This is reasonable as long as the past is a good pre-
dictor for the future. On the other hand in situations where
the future strongly deviates from the past, forgetting or a
short memory can be beneficial. The memory size is also
interesting from a behavioural ecology point of view, be-
cause it might explain why animals often appear to maxi-
mize the short-term and not the long-term intake rate (Real
et al., 1990). In future it would be interesting to investigate
what influence the memory size has on the rate maximiza-
tion of a robot and what the optimal size is.

We draw a lot of insight from behavioural ecology, but we
make no claims about mechanisms employed by animals.

Acknowledgements
The authors thank Yaroslav Litus for very valuable discus-
sions on the work that led to this paper. This work was sup-
ported by NSERC and DRDC in Canada.

Experimental Data
In accordance with the Autonomy Lab’s policy on
code publication, the foraging data and the imple-
mentation of the experiments are made available on-
line at git://github.com/jwawerla/tsw_



Proc. of the Alife XII Conference, Odense, Denmark, 2010 796

experiment.git. The exact data that led to the
presented results can be accessed via the commit hash
4f84a82d09f2c181df57ab5d7faa2e53cc3348f3.

References
Andrews, B. W., Passino, K. M., and Waite, T. A. (2007). Foraging

theory for autonomous vehicle decision-making system de-
sign. Journal of Intelligent and Robotic Systems, 49:39–65.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative
mobile robotics: Antecedents and directions.Autonomous
Robots, 4:226–234.

Charnov, E. L. (1976). Optimal foraging: Attack strategy ofa man-
tid. The American Naturalist, 110:141–151.

Charnov, E. L. and Orians, G. H. (1973). Optimal foraging: Some
theoretical explorations. Unpublished manuscripthttp://
hdl.handle.net/1928/1649.
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