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Robot Task Switching under Diminishing Returns

Jens Wawerlaand Richard T. Vaughdn

Abstract— We investigate the problem of a robot maximizing
its long-term average rate of return on work. We present a
means to obtain an estimate of the instantaneous rate of retn
when work is rewarded in discrete atoms, and a method that
uses this to recursively maximize the long-term average ratn
when work is available in localized patches, each with lochi

Should | stay _
or should | go? /
= /

diminishing returns. We examine a puck-foraging scenarioand vy
test our method in simulation under a variety of conditions. \f\, v
However, the analysis and approach applies to the general sa.

. INTRODUCTION

The purpose of a robot is to perform work [8] and thudgig. 1. The robot must maximize global collection rate in ami@nment

earn some reward that justifies its human owner's investmef§f MultiPle work sites, each with locally diminishing retst

Usually more work gives more reward, but the instantaneodige mathematical models of [1]. Another important techhica
rate of reward may either be independent of the amount gffference is mentioned below. _
work done previously, e.g. | sell apples at $1 each, no matter " this paper we consider a single robot foraging for
how long my shop has been open; or it may be dependeﬁfom'c units of resources that are consumed (and reward
e.g. picking the last few apples from a tree is more timeQbtained) as they are encour?tered, instead of del?vered
consuming than the first few apples. This latter ‘diminighin Centrally. This models seif-feeding, for example. Crugial
returns’ is characteristic of many robot foraging taskghsu Units of resource are not distributed uniformly, but exist
as mining, de-mining, and collecting fungus or trash. in regions of locally high density known in the biology
In a previous paper [19] we investigated optimal taskiterature aspatches Danchin [4] defines a patch as an
switching between heterogeneous tasks with constant dewdfoMO0geneous resource containing area (or part of habitat)
gain rate. In this paper we analyze robot behaviour foseparated from others by areas containing little or no re-
homogeneous tasks that exhibit diminishing returns. We u§@urces’. The advantage of patches is two-fold: (1) patches

foraging as an example task, but our analysis and approa@i€ the foragera priori information about the likelihood
applies to any tasks subject to local diminishing returns. of finding resources. For example we expect to find valuable

Foraging is well-studied in behavioural ecology [13], [12]2PPles only on apple trees, and not on the ground; (2) patches
and robotics. Liu [7] and Ulam [15] examine dynamicredulce the _cqmplexny of the deCISIO!’l process: instead of
allocation of the optimal number of workers to a giverfn@king decisions about each apple, it is sufficient to only
foraging task. @stergaard [10], Shell [11] and Lein [6]_make deC|s_|on_s_about each patch. As the number of patches
explore methods to reduce interference between foragify usually significantly smaller than the number of resource

robots by separating them in space in order to improve tH&itS, we can expect reduced complexity of decision-making
system’s performance. However, considering patches instead of atomic units of

Almost all the previous work examines role allocation and€Source introduces the issue of the reward rate per patch,
interference reduction in collaborative multi-robot syss, usually callecpatch quality This may not be knowa priori,
It examinecentral place foraging12], where foraged items @nd may require the forager to forage in the patch for some
are delivered to a single privileged location, e.g. a nestme to determine a good estimate of the patch quality. This
Very little work has been done on high-performance solitarj@MPling cost inevitably harms overall performance.
foraging in robots, though this is well-studied in animals. _ 1he task illustrated in Fig. 1 has the properties of interest

An exception, and the most similar previous work, is byA robot collects apples in an orchard, and is rewarded as it
Andrews et al. [1] which explores the use the MarginalSCllECts each apple. As a tree (patch) is depleted of apples,
Value Theorem (see Section I-A) for task switching. Thdhe marginal cost of picking the next apple increases. How
experiments in this paper are grounded in a complete loiloes the robot decide to abandon the current tree and move

level robot controller in a sensorimotor simulation rattiem {0 the next, such that the overall rate of apple collection is

maximized?
Simon Fraser University, School of Computing Science .
Burnaby, BC, V5K 1S6, Canada A. Marginal-Value Theorem
j wawer | a@f u. ca .
l{,aughan@@%u_ o Charnov [2], [3] proposed the Marginal-Value Theorem
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in a patchy environment. The MVT says a rate-maximizing
forager should leave the current patch once the marginal
gain rate equals the long-term average rate of the habitat. s |
Charnov’s mathematical derivation gives two results: (B t
marginal rate of leaving must be the same for all patches in
a habitat; and (2) as the cost to switch patches increases the _
forager should exploit each patch longer. -

The simplicity of the rule makes it very appealing, but 2000 ’
the theorem and its validity has also been widely and }H
controversially discussed, for example by [5], [9], [13. | 1000 L iiﬂ%***“**”
has been argued that the rule is circular in that the long- gt
term average needs to be known in order to select the best st gt
leaving threshold. But the choice of the leaving threshold S 20 i n £
influences the long-term average. We think the rule is gfearl Pucks collected
circular, in fa_lCt we will exploit this circular depen_denCyF_ig. 2. Time required to collect all 50 pucks in a patch usingdom
between leaving threshold and long-term average gainmatedearch and systematic search.
our robot controller. Another important issue often paihte
out is that the MVT uses the instantaneous gain rate. But  between legs in the pattern is small enough to guaran-
how does the forager measure the instantaneous rate when tee that the whole patch is searched.
resources are found in discrete lumps? We will show one These policies exhibit different reward dynamics. To il-
possible solution below. lustrate this we tested each policy on 100 patches of 50

The MVT is not the only patch-leaving rule proposeduniform random placed pucks each. Fig. 2 shows the average
by behavioural ecologists. A number of similar rules havéime required to collect a certain number of pucks under
been discussed by [18], differing in the parameter used the two policies. The random foraging policy suffers from
make the patch-leaving decision. Candidates are (1) taé totiminishing returns, since over time it is increasingly or
patch residence time; (2) the time since the last item wdikely to re-visit previously cleared, now unproductiverts
encountered; and (3) the number of collected items. Waf the patch. The systematic forager has an approximately
favour the instantaneous gain rate because it has some-impwonstant collection rate. While we might prefer the system-
tant practical advantages over the other proposed parenetatic forager because of this property, it may be much more
For example, if the forager encounters an exceptionally lowostly to implement than the random forager. Real-world
quality (e.g. empty) patch, a patch-leaving policy based olow-cost robots like the iRobot Roomba use a randomized
instantaneous gain rate would leave the patch quickly (theethod that suffers from diminishing returns.
desired behaviour), where a constant time policy would stay The point here is not to choose the best policy, but to
for the whole length of the residence interval and a policyllustrate that low-level robot control policy can fundame
based on the number of collected items would cause thally influence the nature of the overall optimization task,

forager to never leave the patch. and to show that single-robot random foraging is subject to
Below we present the robot control policy and demonstrat@iminishing returns and thus provides a suitable model for
its effectiveness in series of simulation experiments. all tasks of this domain.

Given this randomized foraging policy, the robot needs to
Il. ROBOT CONTROLLER determine when to abandon the current patch and move on.

We use a generic mobile robot model in the well knowms suggested by Charnov's MVT [2], our robot abandons
simulator Stage[16]. It is equipped with a short-range @plo 3 patch once the instantaneous gain rate drops below a
blob tracker to sense pucks, our unit of resource. Th@reshold. To do this we must (1) determine the instantasieou
robot knows (or equivalently can detect) the boundaries fain rate of atomic items (pucks) encountered at every time-

puck patches. Patches are 620 times the size of the robglep and (2) select a leaving threshold that maximizes the
and contain 10, 30 or 50 uniform randomly placed puck$eng-term average gain rate.

A minimum distance between pucks is enforced to avoid
overlap. To exploit a patch, the foraging robot can use o Instantaneous Gain Rate
of two foraging policies: Measuring the instantaneous rate of atomic events is
1) Under therandom foraging policy the robot drives impossible. [1] suggest calculating the slope using theeritr
straight until it comes to the patch boundary, whereand the previous two gain function values. This approach
it chooses a new heading that brings it back into thenay work for continuous gain function, but fails in situatso
patch, at random. When pucks are detected, the robehere the gain function is non-continuous and stochastic
servos towards the closest puck and collects it. such as in unit-based foraging in uniform random patches.
2) Under thesystematic foraging policythe robot em- So we resort to an alternative representation. We use the
ploys a regular square-wave-like search pattern fromxpected value of a beta distribution over time-steps irctvhi
one side of the patch to the other side. The distandbe robot found a puck and those in which it did not.
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4 p(0) = @
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7 repeat

8 t=t+1

9 randomly forage for one time-step
10 if puck foundthen

11 pt)=pt—1)+1

12 else

13 qt)=q(t—-1)+1

14 (?nd
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16 /\fut() Asirt (1= 1) + Ko (A (t) — Agire (t = 1))
<

17 until /\mt()
18 return (t,p)

Algorithm 1: Forage in the current patch until a
proxy for the instantaneous rat€t) drops below the
threshold6

directly is the long-term average gain rate it experiences:
a value which depends on the robot's past behaviour. The
experienced average gain raté9) for foraging inn patches
is given by ]

2i-18i(6)

H(e) Yita(ti+1) @)
whereg;(6) is the gain function that gives the total number
of pucks collected in patchwhen the patch is abandoned
according to Algorithm 1} is the time spent in the i-th
patch, andr; is the patch switching duration. The objective
of the forager is to maximizg by selecting®.

6" = argmaxp(0)) 3)

Unfortunatelygi(08) is unknown and difficult to obtain.
The function depends precisely on the robot's sensorimotor
interaction with the environment, the patch quality and the
distribution of pucks in the patch. Hence a closed—form
solution of eq. 3 is not obtainable. Fig. 3 shows the longater
average gain rates over a range of value$ dor different
environmental conditions. From these graphs we can see that
the observed average gain rate varies widely under differen
circumstances. The variance in average gain rate obsesved i

Equation 1 gives this expected value of the beta_ distributid1igh, but error bars are omitted for clarity.

which we use as a proxy for the instantaneous r\a(ce

R (3]
A= S0 +am

1)

Since we only have an approximation of the instantaneous
gain rate, we cannot, as the MVT requires, leave a patch once
this rate drops to the long-term average. Instead we resort t
maximizing the long-term gain rate by recursively imprayin

Wherei refers to the i-th patcht is the amount of time the leave threshol@ based on previous experience.
spent in a patchp(t) is the number of time-steps in which  In practise we found that the observations have such
the robot collected a puck argi(t) is the number of time- high variance (evident in the errorbars of Fig. 2), that loca
steps during which the robot did not collect any pucks. Thigradients are not very useful and thus simple gradient désce
method has an interesting problem: until the first puck igethods resulted in poor performance. A more sophisticated
found, the number of time-steps in which the robot collectefieuristic approach is required in our scenario.
pucks is zero ffi = 0), and thus our estimate of the rate is Action-Value methods have been shown to be effective
zero @i = 0). Hence the robot will immediately leave thefor n-armed bandit problems; maximizing the return of a
patch. We avoid this by initializingp(0) and g;(0) with  discrete set of unknown process. Sutton and Barto [14] give
a prior @, and @, respectively. These priors represent thé overview of various action-value methods and Vermorel
robot’s expectation of the initial gain rate of a patch. Thegt al. [17] give an empirical comparison. We can adapt
can either be set to an environmental constant (if known) dhis framework to our continuous action-space by finding a
they can be determined at run time by experience from tHiscrete set of values df that approximate the input-output
previous patch. The ratio of the priors represents the ¢ggec mapping of the true gain function. We continuously refine
initial gain rate, the magnitude of each is an indicatiorthis set by exploringd space, while frequently using the
of the forager's confidence in these priors. The higher theurrent best estimate @ to obtain good performance as
magnitude the more experience is required to modify.e. ~We go.
change the robot's belief about the prevailing rate. Since no generally optimal method is known, we use here

Because puck encounter is a random and infrequeﬂtcombinaﬂon okoftmaxand e-first adapted for continuous
process, the value oh;(t) is very variable in practise, action-spaces. A comparative analysis of the various plessi
particularly for small values ofj(t) and g(t). We apply algorithms is beyond the scope of this paper. The complete
a low-pass filter to smooth this slightly. These steps ar@ethod is shown as Algorithm box 2. The paramet@s
combined into Algorithm 1. and Bnhax are the minimum and maximum patch leaving

) thresholds. These are determined by the environment and the

B. Patch-Leaving Threshold robot specification, e.g. the maximum travel spé¢denotes

Recall that the MVT predicts that a forager should leavéhe number of bins into which the action-space is discrdtize
a patch oncel drops to the environment’s global averageMore bins potentially allow a better approximation, at the
In the general case it is impossible for the robot to knovexpense of longer start-up time. Constdat is used to
this true global average rate. All the robot can measurgmooth the weight updat&; is thetemperaturefor softmax



1 Algorithm: adaptive() of each bin. Since the.weight is.an estimate of the.expected
2 it BrinBnae N, ke, o, ks yield rate, it explores higher paying areas of the actioaesp
' e more frequently then lower paying areas. The discretinatio

30= w step might choose bin centres that are suboptimal; to over
4 for i=1 to « do come this problem we perform a local random walk of the
5 if i <N then bin centres. Over time this will move the bin centres towards
6 a=i better values.
7 6=i-0
8 else 1. EXPERIMENTS

draw a with probability O _erate To investigate the effectiveness of our approach, we con-
9 SN, e/ Y _ : _ pproach,
10 draw 6 uniform randomly erom ducted a series of S|mulat|pn experiments consisting of tvvp

(©(a) — ksd,©(a) + ksd] phases (1) generate foraging data and (2) test our adaptive
" end task (patch) switching policy on the generated data.
12 (t,p) = foragep) To generate the foraging data we used the method de-
13 U= t% scribed in Section Il. For each of the three puck qualities
14 if i <N then (10, 30, 50 pucks per patch) we generated 100 samples
15 6(a) ) and recorded for each time-step whether the robot collected
16 w(a) = u a puck or not. Note that in this phase no patch-leaving
17 else decisions are made, we just recorded data while the robot

o(a) = w(a)-0(a)+u-8 simply collected pucks until each patch was exhausted.
18 w(a)+u(a) In the second phase we ran our adaptive patch switching
19 w(a) = w(a) +ku(k —w(a)) policy on the recorded data and compared it against the
20 end best solution obtained by exhaustive search over the same
21 end data set. Decoupling the data generation from the analysis

Algorithm 2 Adaptive leave rate selection of the control policy allowed us to cancel any noise in the
rformance analysis caused by the random generation of the
tches. It also made brute-force search for approximately
optimal solutions feasible.

action selection anlz determines how much we are willing pe
to modify the leave rate threshold between adjacent patch

To initialize our discrete approximation of the gain func- To obtain a benchmark with which to compare our online

tion we must fill theN bins. They can be initialized with . . )
. . . . adaptive method, we choose a finite discrete set of rate
prior expected values if available, but here we obtain ther

empirically with a start-up phase. For the fifst patches thresholds over a range &f between our preset maximum

visited we use the discretized leave rate threshold (linés 5?"‘”0' minimum. For each threshold we had the robot forage

in e-first). Here 1< a< N denotes the bin numbe®(a) in each patch until the instantaneous rate dr_opped to that
. : . , selected leave rate threshold (Alg. 1). On leaving the patch
describes the centre of bim and w(a) its weight. For the T ;
o . . ' the robot takes some time in which no pucks are collected
remaining patches we select a bin usgugtmax(line 9). The

X . before arriving at the next patch: the patch—switching.cost
leave rate threshol@ is uniform randomly chosen from an __~. e
. . This way we found the leave rate that maximizes the long-
interval centred around the centre of the bin (line 10).

. term average gain rate for the recorded data. Fig. 3 shows the
The robot now forages with the new leave rate threshol@ ge 9 9

6 using Algorithm 1. Thi its | tch id ng-term average gain rate over the leave rate threshold fo
’ UsIng Algoriinm L. ThiS TESUTLS In Some palch residencly o of different quality and different switching co3tse
timet and in p pucks collected. Therefore we can calculat

th 1 rate for th tas th ber of K rediction of the MVT that the patch residence time should
e average gain rate for the pagas the number of pucks iér}crease with increasing switching cost is clearly visiflbe

collected divided by the sum of patch residence time an . . .
Lo , . raphs also give an idea of the search space for the adaptive
patch switching tima (line 13). Next we update the weights algorithm. Especially low switching costs (fig. 3(a)) exhib

f"‘”d. thel c?r?tre of the b'n'. For th(?rl;:mtpatf[:hesft?ﬁ V\ﬁ'ght a sharp performance peak which is difficult to adapt to, in
Iti S||mpy f ?;]/erarg]jeldgam (;all?" i;ig r?:o the "N IS this situation it is desirable to stay on the side with the
€ leave rate threshold used (lines 15-16). For € remauni g aller slope. Patch quality is one factor that determihes t

patches the_ centre of the weight is the moving average_of ﬂ%?‘nvironmental gain rate. The other is the average switching
average gain rate and the centre of the bin is the weight |gne between patches. To investigate the influence of the

sum of the previous centre and the just explored leave r %/itching timeT we analyzed the system with 4 different
threshold (lines 18-19), where the previous centre is weidh F(yvitching times,T — {10,100,500, 1000} seconds:

by the weight of the bin and the latest leave rate thresho . .

) . . ) The performance of the adaptive method is presented as

is weighted with the average gain rate that resulted from the o : :
mean and standard deviation of observed gain of 20 trials

use of thls-threshold. . , of 100 patches each, compared to the estimated optimum
Summarizing the action of Algorithm Zoftmaxselects

the best bil‘_\ in a greEdy f&}§hi0ﬂ Wh”? it keeps eXp|9ring 1The graph for switching cost 1000 sec. in Fig. 3 was omitted tiu
the other bins with probability proportional to the weightspace constraints, but it is qualitatively similar to thathacost 500
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(a) Average gain rate with patch switching time 10 sec.
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(b) Average gain rate with patch switching time 100 sec.
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(c) Average gain rate with patch switching time 500 sec.

Fig. 3. Long-term average gain rate observed versus legaé¢mashold for
different patch switching cost and patch qualities (eraosbin y-axis omitted

to improve readability). The sharp drop-off at= 0.006 occurs because the

leave threshold is too high for the robot-environment itéon, the robot
leaves a patch before it encounters the first puck

TABLE |
ADAPTIVE PATCH SWITCHING AND RANDOM FORAGING

T [s]
10 100 500 1000
pucks | u%| | o | u% | o | p% | o |u% | o
10 | 602 | 3.72 | 846 | 268 | 76.7 | 3.40 | 66.6 | 3.8
30 | 62.0 | 0.76 | 79.9 | 220 | 82.8 | 2.75 | 814 | 2.03
50 | 683 | 0.64| 793 | 1.11 | 854 | 1.60 | 86.3 | 1.38

obtained by exhaustive search. All algorithm parameters re
quired were set manually and kept constant without attempt-
ing to optimize them, except in one case. The confidence
of the priors for the instantaneous gain rate were lowered
for patches with 10 initial pucks, so that the estimate of the
gain rate would change faster. The original values gave poor
performance in this challenging scenario.

Table | shows the results of the first experiment in which
we analyzed the adaptive patch switching policy for 3 differ
ent patch qualities and 4 different switching costs. Thaltes
are given in percentage of the bruteforce long-term gam rat
The small standard deviation of about 2.5% indicates thet th
system performs fairly consistently despite the high noise
levels in the data. Compared to the brute-force method we
expect a lower performance since the system, like any
greedy method, has to trade off between exploration and
exploitation. Our method performs a fixed numbér £
10) of initial exploration trials and subsequently perferm
continuous exploration with a small probability. Espélgial
during the initial exploration we expect some trials with
very poor performance because the whole action-space is
sampled. This does harm the overall performance.

The actual performance appears quite good: between 75
and 85% of the brute-force benchmark solution as long as
the patch switching cost is not too small. The performance
drops with the very small patch switching cost of 10 seconds.
As Fig. 3(a) indicates, this is a challenging situation sinc
the gain rate function has a very sharp peak. Another reason
why this is a difficult situation is that the small switching
cost requires the forager to leave the patch very early. For
example the best threshold found by brute-force causes the
robot to stay for only an average of 35 seconds in the 10 puck
patch. Any error the adaptive method makes is relatively
large compared to the small switching cost.

Nevertheless as Fig. 3 shows, the mean of the leaving
threshold selected by the adaptive system is usually near th
optimal threshold and always on the side of caution by being
on the side of the smaller slope.

In a second experiment we investigated the performance
of the system when the patch switching time varies from
one patch to the next. For this experiment we drew patch
switching times from a normal distribution with a mean
of 100 seconds and variance of 30, 50 and 80 seconds
respectively. As in the previous experiment we obtain a-near
optimal threshold by brute-force search as a benchmark and
compare it with the average of 20 instances of the adaptive
system. Table Il shows the results. The performance is @roun
80% for all situations with low deviation, indicating thduet



TABLE I
ADAPTIVE PATCH SWITCHING AND RANDOM FORAGING UNDER
VARYING PATCH SWITCHING TIMES WITH MEAN 100SEC

switching cost variance
0 30 50 80
pucks | %] | o [ pu@% | o | p% | o [p%| o
10 846 | 268 | 826 | 3.30| 795 | 479 ] 80.0 | 2.97
30 799 [ 220 80.0 | 1.48] 795 | 255] 80.8 | 3.01
50 793 [ 1.11| 795 ] 1.16| 79.9 | 0.90 | 80.9 | 1.18
TABLE IlI

ADAPTIVE PATCH SWITCHING FOR RANDOM FORAGING UNDER
CHANGING PATCH QUALITY AND SYSTEMATIC FORAGING

IV. CONCLUSION

In this paper we investigated the problem of a robot
maximizing its long-term average rate of return on work. We
presented a means to obtain an estimate of the instantaneous
rate of return when work is rewarded in discrete atoms, and
suggested one way to use this to recursively maximize the
long-term average return when work is available in locaize
patches, each with locally diminishing returns.

We examined a puck-foraging scenario, and tested our
method in simulation under a variety of conditions. However
the analysis and approach applies to the general case.

The validity and applicability of the Marginal-Value The-
orem to animal behaviour is widely and controversially
discussed in the behavioural ecology literature. Here we ha
provided evidence that the underlying idea of making task
switching decisions based on thresholding the instantaeo
gain rate is a valid approach, at least for artificial systems
Whether biological systems make decisions on this priecipl

T [s]
10 100 500 1000

pucks | u[%] | o | p% | o |p% | o | pu% | o
30-50 | 82.0 | 2.87 | 92.8 | 3.02| 90.9 | 292 | 90.8 | 1.67
50-30 | 80.0 | 244 | 90.7 | 244 | 91.3 | 1.50 | 89.3 | 1.50

10 552 | 454 | 81.2 | 6.32| 844 | 650 | 83.4 | 7.03

30 80.7 | 346 | 805 | 3.76 | 79.1 | 3.89 | 79.2 | 2.05

50 765 | 1.80 | 80.1 | 1.49 | 849 | 2.64 | 837 | 279 | W

(2]

[3]
To analyze the system under changing patch quality con[—4]
ditions we set up two simulations in which patch quality
changes from 30 pucks per patch for the first 100 patchegs]
to 50 pucks per patch for another 100 patches and vic
versa. We ran these simulations with a patch switching?
cost of 10, 100, 500 and 1000 seconds respectively. We
compare the performance of our method with that observef)
when switching between the best fixed thresholds for 30 and
50 pucks obtained by brute force search. The results arg]
shown in the top two rows of table Ill. The data suggest
that the system handles the patch quality switching wellyg
The performance seems slightly better than in the statjonar
situation in table 1. This is probably due to a relatively°l
longer exploitation duration: the cost of the initial 10 ¢fat
exploration is amortized over 190 patches rather than 90.
Despite that fact that the bruteforce method is given thill
advantage of actually knowing when the patch quality switch
occurs, something our method has to detect and adapt to, {he
system performs very well.

system is not sensitive to variance in the switching cost.

[13]
In a last experiment we investigated the adaptive methocis
performance in situation in which the forager searches ea %ﬁ‘]
patch systematically. Recall that under this foraging qyoli [15]
the instantaneous gain rate is constant, that is until thehpa

is empty and the gain rate drops to zero. In this situati0ﬁ6]
the robot has not to decide which leave rate maximizes the
overall reward but only to determine when the patch is empti£7]
To see how our system copes with this situation we compared
the brute-force and the adaptive method when robots forage)
patches using the systematic foraging policy. As the lasgth
rows of table 11l shows the system can also handle situatiorlllsgl
in with the instantaneous gain rate is given by a step-foncti

] A. Lein and R. T. Vaughan.

is an open question.
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