
To appear inProc. of the Int. Conf. on Intelligent Robots and Systems (IROS)
St. Louis, Mo, USA, Oct. 11-15, 2009

Robot Task Switching under Diminishing Returns

Jens Wawerla† and Richard T. Vaughan‡

Abstract— We investigate the problem of a robot maximizing
its long-term average rate of return on work. We present a
means to obtain an estimate of the instantaneous rate of return
when work is rewarded in discrete atoms, and a method that
uses this to recursively maximize the long-term average return
when work is available in localized patches, each with locally
diminishing returns. We examine a puck-foraging scenario,and
test our method in simulation under a variety of conditions.
However, the analysis and approach applies to the general case.

I. INTRODUCTION

The purpose of a robot is to perform work [8] and thus
earn some reward that justifies its human owner’s investment.
Usually more work gives more reward, but the instantaneous
rate of reward may either be independent of the amount of
work done previously, e.g. I sell apples at $1 each, no matter
how long my shop has been open; or it may be dependent,
e.g. picking the last few apples from a tree is more time-
consuming than the first few apples. This latter ‘diminishing
returns’ is characteristic of many robot foraging tasks, such
as mining, de-mining, and collecting fungus or trash.

In a previous paper [19] we investigated optimal task
switching between heterogeneous tasks with constant reward
gain rate. In this paper we analyze robot behaviour for
homogeneous tasks that exhibit diminishing returns. We use
foraging as an example task, but our analysis and approach
applies to any tasks subject to local diminishing returns.

Foraging is well-studied in behavioural ecology [13], [12]
and robotics. Liu [7] and Ulam [15] examine dynamic
allocation of the optimal number of workers to a given
foraging task. Østergaard [10], Shell [11] and Lein [6]
explore methods to reduce interference between foraging
robots by separating them in space in order to improve the
system’s performance.

Almost all the previous work examines role allocation and
interference reduction in collaborative multi-robot systems.
It examinescentral place foraging[12], where foraged items
are delivered to a single privileged location, e.g. a nest.
Very little work has been done on high-performance solitary
foraging in robots, though this is well-studied in animals.

An exception, and the most similar previous work, is by
Andrews et al. [1] which explores the use the Marginal-
Value Theorem (see Section I-A) for task switching. The
experiments in this paper are grounded in a complete low-
level robot controller in a sensorimotor simulation ratherthan

Simon Fraser University, School of Computing Science
Burnaby, BC, V5K 1S6, Canada
†jwawerla@sfu.ca
‡vaughan@sfu.ca
This work was supported by NSERC and DRDC in Canada.

Should I stay
or should I go?

Fig. 1. The robot must maximize global collection rate in an environment
of multiple work sites, each with locally diminishing returns.

the mathematical models of [1]. Another important technical
difference is mentioned below.

In this paper we consider a single robot foraging for
atomic units of resources that are consumed (and reward
obtained) as they are encountered, instead of delivered
centrally. This models self-feeding, for example. Crucially,
units of resource are not distributed uniformly, but exist
in regions of locally high density known in the biology
literature aspatches. Danchin [4] defines a patch as “an
homogeneous resource containing area (or part of habitat)
separated from others by areas containing little or no re-
sources”. The advantage of patches is two-fold: (1) patches
give the foragera priori information about the likelihood
of finding resources. For example we expect to find valuable
apples only on apple trees, and not on the ground; (2) patches
reduce the complexity of the decision process: instead of
making decisions about each apple, it is sufficient to only
make decisions about each patch. As the number of patches
is usually significantly smaller than the number of resource
units, we can expect reduced complexity of decision-making.

However, considering patches instead of atomic units of
resource introduces the issue of the reward rate per patch,
usually calledpatch quality. This may not be knowna priori,
and may require the forager to forage in the patch for some
time to determine a good estimate of the patch quality. This
sampling cost inevitably harms overall performance.

The task illustrated in Fig. 1 has the properties of interest.
A robot collects apples in an orchard, and is rewarded as it
collects each apple. As a tree (patch) is depleted of apples,
the marginal cost of picking the next apple increases. How
does the robot decide to abandon the current tree and move
to the next, such that the overall rate of apple collection is
maximized?

A. Marginal-Value Theorem

Charnov [2], [3] proposed the Marginal-Value Theorem
(MVT) to model the decision faced by an animal foraging

in a patchy environment. The MVT says a rate-maximizing
forager should leave the current patch once the marginal
gain rate equals the long-term average rate of the habitat.
Charnov’s mathematical derivation gives two results: (1) the
marginal rate of leaving must be the same for all patches in
a habitat; and (2) as the cost to switch patches increases the
forager should exploit each patch longer.

The simplicity of the rule makes it very appealing, but
the theorem and its validity has also been widely and
controversially discussed, for example by [5], [9], [13]. It
has been argued that the rule is circular in that the long-
term average needs to be known in order to select the best
leaving threshold. But the choice of the leaving threshold
influences the long-term average. We think the rule is clearly
circular, in fact we will exploit this circular dependency
between leaving threshold and long-term average gain rate in
our robot controller. Another important issue often pointed
out is that the MVT uses the instantaneous gain rate. But
how does the forager measure the instantaneous rate when
resources are found in discrete lumps? We will show one
possible solution below.

The MVT is not the only patch-leaving rule proposed
by behavioural ecologists. A number of similar rules have
been discussed by [18], differing in the parameter used to
make the patch-leaving decision. Candidates are (1) the total
patch residence time; (2) the time since the last item was
encountered; and (3) the number of collected items. We
favour the instantaneous gain rate because it has some impor-
tant practical advantages over the other proposed parameters.
For example, if the forager encounters an exceptionally low
quality (e.g. empty) patch, a patch-leaving policy based on
instantaneous gain rate would leave the patch quickly (the
desired behaviour), where a constant time policy would stay
for the whole length of the residence interval and a policy
based on the number of collected items would cause the
forager to never leave the patch.

Below we present the robot control policy and demonstrate
its effectiveness in series of simulation experiments.

II. ROBOT CONTROLLER

We use a generic mobile robot model in the well known
simulator Stage[16]. It is equipped with a short-range colour
blob tracker to sense pucks, our unit of resource. The
robot knows (or equivalently can detect) the boundaries of
puck patches. Patches are 620 times the size of the robot,
and contain 10, 30 or 50 uniform randomly placed pucks.
A minimum distance between pucks is enforced to avoid
overlap. To exploit a patch, the foraging robot can use one
of two foraging policies:

1) Under therandom foraging policy the robot drives
straight until it comes to the patch boundary, where
it chooses a new heading that brings it back into the
patch, at random. When pucks are detected, the robot
servos towards the closest puck and collects it.

2) Under thesystematic foraging policy the robot em-
ploys a regular square-wave-like search pattern from
one side of the patch to the other side. The distance

Fig. 2. Time required to collect all 50 pucks in a patch using random
search and systematic search.

between legs in the pattern is small enough to guaran-
tee that the whole patch is searched.

These policies exhibit different reward dynamics. To il-
lustrate this we tested each policy on 100 patches of 50
uniform random placed pucks each. Fig. 2 shows the average
time required to collect a certain number of pucks under
the two policies. The random foraging policy suffers from
diminishing returns, since over time it is increasingly more
likely to re-visit previously cleared, now unproductive, parts
of the patch. The systematic forager has an approximately
constant collection rate. While we might prefer the system-
atic forager because of this property, it may be much more
costly to implement than the random forager. Real-world
low-cost robots like the iRobot Roomba use a randomized
method that suffers from diminishing returns.

The point here is not to choose the best policy, but to
illustrate that low-level robot control policy can fundamen-
tally influence the nature of the overall optimization task,
and to show that single-robot random foraging is subject to
diminishing returns and thus provides a suitable model for
all tasks of this domain.

Given this randomized foraging policy, the robot needs to
determine when to abandon the current patch and move on.
As suggested by Charnov’s MVT [2], our robot abandons
a patch once the instantaneous gain rate drops below a
threshold. To do this we must (1) determine the instantaneous
gain rate of atomic items (pucks) encountered at every time-
step and (2) select a leaving threshold that maximizes the
long-term average gain rate.

A. Instantaneous Gain Rate

Measuring the instantaneous rate of atomic events is
impossible. [1] suggest calculating the slope using the current
and the previous two gain function values. This approach
may work for continuous gain function, but fails in situations
where the gain function is non-continuous and stochastic
such as in unit-based foraging in uniform random patches.
So we resort to an alternative representation. We use the
expected value of a beta distribution over time-steps in which
the robot found a puck and those in which it did not.

Algorithm: forage(θ)1

init φp, φq2

t = 03

p(0) = φp4

q(0) = φq5

λ̂ f ilt (0) = p(0)
p(0)+q(0)6

repeat7

t = t +18

randomly forage for one time-step9

if puck foundthen10

p(t) = p(t −1)+111

else12

q(t) = q(t −1)+113

end14

λ̂(t) =
p(t)

p(t)+q(t)15

λ̂ f ilt (t) = λ̂ f ilt (t −1)+k1(λ̂ (t)− λ̂ f ilt (t −1))16

until λ̂ f ilt (t) < θ17

return (t, p)18

Algorithm 1 : Forage in the current patch until a
proxy for the instantaneous rateλ (t) drops below the
thresholdθ

Equation 1 gives this expected value of the beta distribution
which we use as a proxy for the instantaneous rateλ̂i(t).

λ̂i(t) =
pi(t)

pi(t)+qi(t)
(1)

Where i refers to the i-th patch,t is the amount of time
spent in a patch,pi(t) is the number of time-steps in which
the robot collected a puck andqi(t) is the number of time-
steps during which the robot did not collect any pucks. This
method has an interesting problem: until the first puck is
found, the number of time-steps in which the robot collected
pucks is zero (pi = 0), and thus our estimate of the rate is
zero (λi = 0). Hence the robot will immediately leave the
patch. We avoid this by initializingpi(0) and qi(0) with
a prior φp and φq respectively. These priors represent the
robot’s expectation of the initial gain rate of a patch. They
can either be set to an environmental constant (if known) or
they can be determined at run time by experience from the
previous patch. The ratio of the priors represents the expected
initial gain rate, the magnitude of each is an indication
of the forager’s confidence in these priors. The higher the
magnitude the more experience is required to modifyλ , i.e.
change the robot’s belief about the prevailing rate.

Because puck encounter is a random and infrequent
process, the value of̂λi(t) is very variable in practise,
particularly for small values ofpi(t) and qi(t). We apply
a low-pass filter to smooth this slightly. These steps are
combined into Algorithm 1.

B. Patch-Leaving Threshold

Recall that the MVT predicts that a forager should leave
a patch onceλ drops to the environment’s global average.
In the general case it is impossible for the robot to know
this true global average rate. All the robot can measure

directly is the long-term average gain rate it experiences:
a value which depends on the robot’s past behaviour. The
experienced average gain rateµ(θ) for foraging inn patches
is given by

µ(θ) =
∑n

i=1gi(θ)

∑n
i=1(ti + τi)

(2)

wheregi(θ) is the gain function that gives the total number
of pucks collected in patchi when the patch is abandoned
according to Algorithm 1,ti is the time spent in the i-th
patch, andτi is the patch switching duration. The objective
of the forager is to maximizeµ by selectingθ .

θ ∗ = argmax(µ(θ)) (3)

Unfortunatelygi(θ) is unknown and difficult to obtain.
The function depends precisely on the robot’s sensorimotor
interaction with the environment, the patch quality and the
distribution of pucks in the patch. Hence a closed–form
solution of eq. 3 is not obtainable. Fig. 3 shows the long-term
average gain rates over a range of values ofθ for different
environmental conditions. From these graphs we can see that
the observed average gain rate varies widely under different
circumstances. The variance in average gain rate observed is
high, but error bars are omitted for clarity.

Since we only have an approximation of the instantaneous
gain rate, we cannot, as the MVT requires, leave a patch once
this rate drops to the long-term average. Instead we resort to
maximizing the long-term gain rate by recursively improving
the leave thresholdθ based on previous experience.

In practise we found that the observations have such
high variance (evident in the errorbars of Fig. 2), that local
gradients are not very useful and thus simple gradient descent
methods resulted in poor performance. A more sophisticated
heuristic approach is required in our scenario.

Action-Value methods have been shown to be effective
for n-armed bandit problems; maximizing the return of a
discrete set of unknown process. Sutton and Barto [14] give
a overview of various action-value methods and Vermorel
et al. [17] give an empirical comparison. We can adapt
this framework to our continuous action-space by finding a
discrete set of values ofθ that approximate the input-output
mapping of the true gain function. We continuously refine
this set by exploringθ space, while frequently using the
current best estimate ofθ ∗ to obtain good performance as
we go.

Since no generally optimal method is known, we use here
a combination ofsoftmaxandε-first adapted for continuous
action-spaces. A comparative analysis of the various possible
algorithms is beyond the scope of this paper. The complete
method is shown as Algorithm box 2. The parametersθmin

and θmax are the minimum and maximum patch leaving
thresholds. These are determined by the environment and the
robot specification, e.g. the maximum travel speed.N denotes
the number of bins into which the action-space is discretized.
More bins potentially allow a better approximation, at the
expense of longer start-up time. Constantk1 is used to
smooth the weight update,k2 is the temperaturefor softmax

Algorithm: adaptive()1

init θmin,θmax, N, k1, k2, k32

δ = θmax−θmin
N3

for i=1 to ∞ do4

if i ≤ N then5

a = i6

θ = i ·δ7

else8

draw a with probability ∝ ew(a)/k2

∑N
j=1 ew(j)/k29

draw θ uniform randomly from10

[Θ(a)−k3δ ,Θ(a)+k3δ]
end11

(t, p) = forage(θ)12

µ = p
t+τ13

if i ≤ N then14

Θ(a) = θ15

w(a) = µ16

else17

Θ(a) = w(a)·Θ(a)+µ·θ
w(a)+µ(a)18

w(a) = w(a)+k1(µ −w(a))19

end20

end21

Algorithm 2 : Adaptive leave rate selection

action selection andk3 determines how much we are willing
to modify the leave rate threshold between adjacent patches.

To initialize our discrete approximation of the gain func-
tion we must fill theN bins. They can be initialized with
prior expected values if available, but here we obtain them
empirically with a start-up phase. For the firstN patches
visited we use the discretized leave rate threshold (lines 5-7
in ε-first). Here 1≤ a ≤ N denotes the bin number.Θ(a)
describes the centre of bina and w(a) its weight. For the
remaining patches we select a bin usingsoftmax(line 9). The
leave rate thresholdθ is uniform randomly chosen from an
interval centred around the centre of the bin (line 10).

The robot now forages with the new leave rate threshold
θ using Algorithm 1. This results in some patch residence
time t and in p pucks collected. Therefore we can calculate
the average gain rate for the patchµ as the number of pucks
collected divided by the sum of patch residence time and
patch switching timeτ (line 13). Next we update the weights
and the centre of the bin. For the firstN patches the weight
is simply the average gain rateµ . The centre of the bin is
the leave rate threshold used (lines 15-16). For the remaining
patches the centre of the weight is the moving average of the
average gain rate and the centre of the bin is the weighted
sum of the previous centre and the just explored leave rate
threshold (lines 18-19), where the previous centre is weighted
by the weight of the bin and the latest leave rate threshold
is weighted with the average gain rate that resulted from the
use of this threshold.

Summarizing the action of Algorithm 2:Softmaxselects
the best bin in a greedy fashion while it keeps exploring
the other bins with probability proportional to the weight

of each bin. Since the weight is an estimate of the expected
yield rate, it explores higher paying areas of the action-space
more frequently then lower paying areas. The discretization
step might choose bin centres that are suboptimal; to over
come this problem we perform a local random walk of the
bin centres. Over time this will move the bin centres towards
better values.

III. EXPERIMENTS

To investigate the effectiveness of our approach, we con-
ducted a series of simulation experiments consisting of two
phases (1) generate foraging data and (2) test our adaptive
task (patch) switching policy on the generated data.

To generate the foraging data we used the method de-
scribed in Section II. For each of the three puck qualities
(10, 30, 50 pucks per patch) we generated 100 samples
and recorded for each time-step whether the robot collected
a puck or not. Note that in this phase no patch-leaving
decisions are made, we just recorded data while the robot
simply collected pucks until each patch was exhausted.

In the second phase we ran our adaptive patch switching
policy on the recorded data and compared it against the
best solution obtained by exhaustive search over the same
data set. Decoupling the data generation from the analysis
of the control policy allowed us to cancel any noise in the
performance analysis caused by the random generation of the
patches. It also made brute-force search for approximately
optimal solutions feasible.

To obtain a benchmark with which to compare our online
adaptive method, we choose a finite discrete set of rate
thresholds over a range ofθ between our preset maximum
and minimum. For each threshold we had the robot forage
in each patch until the instantaneous rate dropped to that
selected leave rate threshold (Alg. 1). On leaving the patch,
the robot takes some time in which no pucks are collected
before arriving at the next patch: the patch–switching cost.
This way we found the leave rate that maximizes the long-
term average gain rate for the recorded data. Fig. 3 shows the
long-term average gain rate over the leave rate threshold for
patches of different quality and different switching costs. The
prediction of the MVT that the patch residence time should
increase with increasing switching cost is clearly visible. The
graphs also give an idea of the search space for the adaptive
algorithm. Especially low switching costs (fig. 3(a)) exhibit
a sharp performance peak which is difficult to adapt to, in
this situation it is desirable to stay on the side with the
smaller slope. Patch quality is one factor that determines the
environmental gain rate. The other is the average switching
time between patches. To investigate the influence of the
switching timeτ we analyzed the system with 4 different
switching times,τ = {10,100,500,1000} seconds.1.

The performance of the adaptive method is presented as
mean and standard deviation of observed gain of 20 trials
of 100 patches each, compared to the estimated optimum

1The graph for switching cost 1000 sec. in Fig. 3 was omitted due to
space constraints, but it is qualitatively similar to that with cost 500

(a) Average gain rate with patch switching time 10 sec.

(b) Average gain rate with patch switching time 100 sec.

(c) Average gain rate with patch switching time 500 sec.

Fig. 3. Long-term average gain rate observed versus leave rate threshold for
different patch switching cost and patch qualities (errorbars in y-axis omitted
to improve readability). The sharp drop-off atτ = 0.006 occurs because the
leave threshold is too high for the robot-environment interaction, the robot
leaves a patch before it encounters the first puck

TABLE I

ADAPTIVE PATCH SWITCHING AND RANDOM FORAGING

τ [s]
10 100 500 1000

pucks µ [%] σ µ [%] σ µ [%] σ µ [%] σ
10 60.2 3.72 84.6 2.68 76.7 3.40 66.6 3.89
30 62.0 0.76 79.9 2.20 82.8 2.75 81.4 2.03
50 68.3 0.64 79.3 1.11 85.4 1.60 86.3 1.38

obtained by exhaustive search. All algorithm parameters re-
quired were set manually and kept constant without attempt-
ing to optimize them, except in one case. The confidence
of the priors for the instantaneous gain rate were lowered
for patches with 10 initial pucks, so that the estimate of the
gain rate would change faster. The original values gave poor
performance in this challenging scenario.

Table I shows the results of the first experiment in which
we analyzed the adaptive patch switching policy for 3 differ-
ent patch qualities and 4 different switching costs. The results
are given in percentage of the bruteforce long-term gain rate.
The small standard deviation of about 2.5% indicates that the
system performs fairly consistently despite the high noise
levels in the data. Compared to the brute-force method we
expect a lower performance since the system, like anyε-
greedy method, has to trade off between exploration and
exploitation. Our method performs a fixed number (N =
10) of initial exploration trials and subsequently performs
continuous exploration with a small probability. Especially
during the initial exploration we expect some trials with
very poor performance because the whole action-space is
sampled. This does harm the overall performance.

The actual performance appears quite good: between 75
and 85% of the brute-force benchmark solution as long as
the patch switching cost is not too small. The performance
drops with the very small patch switching cost of 10 seconds.
As Fig. 3(a) indicates, this is a challenging situation since
the gain rate function has a very sharp peak. Another reason
why this is a difficult situation is that the small switching
cost requires the forager to leave the patch very early. For
example the best threshold found by brute-force causes the
robot to stay for only an average of 35 seconds in the 10 puck
patch. Any error the adaptive method makes is relatively
large compared to the small switching cost.

Nevertheless as Fig. 3 shows, the mean of the leaving
threshold selected by the adaptive system is usually near the
optimal threshold and always on the side of caution by being
on the side of the smaller slope.

In a second experiment we investigated the performance
of the system when the patch switching time varies from
one patch to the next. For this experiment we drew patch
switching times from a normal distribution with a mean
of 100 seconds and variance of 30, 50 and 80 seconds
respectively. As in the previous experiment we obtain a near-
optimal threshold by brute-force search as a benchmark and
compare it with the average of 20 instances of the adaptive
system. Table II shows the results. The performance is around
80% for all situations with low deviation, indicating that the

TABLE II

ADAPTIVE PATCH SWITCHING AND RANDOM FORAGING UNDER

VARYING PATCH SWITCHING TIMES WITH MEAN 100SEC

switching cost variance
0 30 50 80

pucks µ [%] σ µ [%] σ µ [%] σ µ [%] σ
10 84.6 2.68 82.6 3.30 79.5 4.79 80.0 2.97
30 79.9 2.20 80.0 1.48 79.5 2.55 80.8 3.01
50 79.3 1.11 79.5 1.16 79.9 0.90 80.9 1.18

TABLE III

ADAPTIVE PATCH SWITCHING FOR RANDOM FORAGING UNDER

CHANGING PATCH QUALITY AND SYSTEMATIC FORAGING

τ [s]
10 100 500 1000

pucks µ [%] σ µ [%] σ µ [%] σ µ [%] σ
30→50 82.0 2.87 92.8 3.02 90.9 2.92 90.8 1.67
50→30 80.0 2.44 90.7 2.44 91.3 1.50 89.3 1.50

10 55.2 4.54 81.2 6.32 84.4 6.50 83.4 7.03
30 80.7 3.46 80.5 3.76 79.1 3.89 79.2 2.05
50 76.5 1.80 80.1 1.49 84.9 2.64 83.7 2.79

system is not sensitive to variance in the switching cost.

To analyze the system under changing patch quality con-
ditions we set up two simulations in which patch quality
changes from 30 pucks per patch for the first 100 patches,
to 50 pucks per patch for another 100 patches and vice
versa. We ran these simulations with a patch switching
cost of 10, 100, 500 and 1000 seconds respectively. We
compare the performance of our method with that observed
when switching between the best fixed thresholds for 30 and
50 pucks obtained by brute force search. The results are
shown in the top two rows of table III. The data suggest
that the system handles the patch quality switching well.
The performance seems slightly better than in the stationary
situation in table I. This is probably due to a relatively
longer exploitation duration: the cost of the initial 10 patch
exploration is amortized over 190 patches rather than 90.
Despite that fact that the bruteforce method is given the
advantage of actually knowing when the patch quality switch
occurs, something our method has to detect and adapt to, the
system performs very well.

In a last experiment we investigated the adaptive method’s
performance in situation in which the forager searches each
patch systematically. Recall that under this foraging policy
the instantaneous gain rate is constant, that is until the patch
is empty and the gain rate drops to zero. In this situation
the robot has not to decide which leave rate maximizes the
overall reward but only to determine when the patch is empty.
To see how our system copes with this situation we compared
the brute-force and the adaptive method when robots forage
patches using the systematic foraging policy. As the last three
rows of table III shows the system can also handle situations
in with the instantaneous gain rate is given by a step-function.

IV. CONCLUSION

In this paper we investigated the problem of a robot
maximizing its long-term average rate of return on work. We
presented a means to obtain an estimate of the instantaneous
rate of return when work is rewarded in discrete atoms, and
suggested one way to use this to recursively maximize the
long-term average return when work is available in localized
patches, each with locally diminishing returns.

We examined a puck-foraging scenario, and tested our
method in simulation under a variety of conditions. However,
the analysis and approach applies to the general case.

The validity and applicability of the Marginal-Value The-
orem to animal behaviour is widely and controversially
discussed in the behavioural ecology literature. Here we have
provided evidence that the underlying idea of making task
switching decisions based on thresholding the instantaneous
gain rate is a valid approach, at least for artificial systems.
Whether biological systems make decisions on this principle
is an open question.

REFERENCES

[1] B. W. Andrews, K. M. Passino, and T. A. Waite. Foraging theory for
autonomous vehicle decision-making system design.J. of Intelligent
and Robotic Systems, 49:39–65, 2007.

[2] E. L. Charnov. Optimal foraging: Attack strategy of a mantid. The
American Naturalist, 110:141–151, 1976.

[3] E. L. Charnov. Optimal foraging, the marginal value theorem. J. of
Theo. Biology, 9(2):129–135, 1976.

[4] É. Danchin, L.-A. Giraldeau, and F. Cézilly, editors.Behavioural
Ecology. Oxford University Press, 2008.

[5] R. F. Green. Stopping rules for optimal foragers.The American
Naturalist, 123(1):30–43, January 1984.

[6] A. Lein and R. T. Vaughan. Adaptive multi-robot bucket brigade
foraging. InProc.of the 11th Int. Conf. on the Simulation and Synthesis
of Living Systems, 2008.

[7] W. Liu, A. F. T. Winfield, J. Sa, J. Chen, and L. Dou. Towardsenergy
optimization: Emergent task allocation in a swarm of foraging robots.
Adaptive Behavior, 15(3):289–305, 2007.

[8] D. J. McFarland and E. Spier. Basic cycles, utility and opportunism in
self-sufficient robots.Robotics and Autonomous Systems, 20:179–190,
1997.

[9] J. M. McNamara. Optimal patch use in a stochastic environment.
Theo. Population Biology, 21(2):269–288, 1982.

[10] E. Østergaard, G. S. Sukhatme, and M. J. Matarić. Emergent bucket
brigading - a simple mechanism for improving performance inmulti-
robot constrained-space foraging tasks. InProc. of the Int. Conf. on
Autonomous Agents, pages 29–30, 2001.

[11] D. A. Shell and M. J. Matarić. On foraging strategies for large-scale
multi-robot systems. InProc. of the Int. Conf. on Intelligent Robots
and Systems, pages 2717–2723, 2006.

[12] D. W. Stephens, J. S. Brown, and R. C. Ydenberg, editors.Foraging
- Behavior and Ecology. University of Chicago Press, 2007.

[13] D. W. Stephens and J. R. Krebs.Foraging Theory. Princeton
University Press, 1986.

[14] R. S. Sutton and A. G. Barto.Reinforcement learning: an introduction.
MIT Press, 1998.

[15] P. Ulam and T. Balch. Using optimal foraging models to evaluate
learned robotic foraging behavior.Adaptive Behavior, 12(3-4):213–
222, 2004.

[16] R. T. Vaughan. Massively multi-robot simulations in Stage. Swarm
Intelligence, 2(2-4):189–208, 2008.

[17] J. Vermorel and M. Mohri. Multi-armed bandit algorithms and
empirical evaluation. InProc. of the 16th European Conf. on Machine
Learning (ECML), pages 437–448, 2005.

[18] J. K. Waage. Foraging for patchily-distributed hosts by the parasitoid,
nemeritis canescens.Animal Ecology, 48(2):353–371, 1979.

[19] J. Wawerla and R. T. Vaughan. Optimal robot recharging strategies
for time discounted labour. InProc. of the 11th Int. Conf. on the
Simulation and Synthesis of Living Systems, 2008.

