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Abstract— As part of a program to find methods of reducing
spatial interference in multi-robot systems, we propose the
Interaction Grid (IG), a generalization of the Occupancy Grid
that models the spatial distribution of interactions between
robots. We describe alternative methods for building Interaction
Grids, first by recording instances of actual robot-robot inter-
action, and then by a much faster approximation method. The
resulting maps of interaction likelihood can subsequently be
used to modify the robot’s behaviour to avoid interference. For
example, we show how to automatically generate an aggression
map for input to the aggressive display behaviour we have
previously shown to be effective in interference reduction.

I. MOTIVATION: REDUCING SPATIAL INTERFERENCE IN
MULTI-ROBOT SYSTEMS

Interference in general can be characterized as competition
for resources, for example, access to a charging station or use
of a shared tool or sensor. Most commonly, robots simply
get in each other’s way during normal navigation about the
environment. An acute version of this problem is getting
two Pioneer—sized (0.5m) robots through a standard (0.8m)
doorway from opposite directions; some symmetry—breaking
mechanism is required to decide who goes first. This is
a real-world problem for robot applications such as mail
delivery, factory and warehouse AGVs, and assisted—operator
wheelchairs. Another common scenario is shown in Figure
1, where two robots are driving in opposite directions down
a narrow corridor, blocking each other’s progress.

Previously in [1], [9]-[11] we have shown that a stereotyp-
ical aggressive display behaviour can be effective in reducing
interference in robot teams, thus improving their overall
performance. The goal was to maximize the total work done
by a team of robots in a canonical transportation task in an
environment in which robots frequently interfere with each
other, as occurs in a standard office building. Because the
robots had to work in the same space territorial methods
[3] were not appropriate. In our method, when robots come
into competition for floor space, each selects an aggression
level and the competition is resolved in favour of the more
aggressive robot. Choosing an aggression level for each
robot at random is effective in breaking symmetry [9], but
performance can be further improved using a systematic,
rational approach.

Global-Investment (GI) maps the aggression of a robot to
the “effort”, measured by time, it has put into reaching a
goal. The more effort invested the most aggressive the robot
will be. This method was shown to have a small advantage

Fig. 1.

Spatial-Interference: two robots block each others’ way in a narrow
corridor [11].

over random aggression in environments where the measured
effort was well correlated to the cost of losing an aggressive
interaction, i.e.an environment containing many long, narrow
corridoors. [1]

Local-Investment (LI) was designed to solve the problems
with GI. In this method, aggression is proportional to local
task investment only, i.e. aggression is proportional to the
amount of time spent navigating a narrow corridor, but in
more open areas aggression is set at random. This method,
though more complex than GI, should be useful in a wider
variety of environments, so we focus on LI hereafter [11].

Though LI could be used in many different situations and
has the benefit of being scalable and not requiring the use of
communication, it has a key parameter that must be tuned
to the particular environment for maximum effectiveness.
Ideally, the rate that aggression accumulates while traversing
narrow corridors needs to be adjusted so that robots reach
their maximum agressiveness at the end of the corridor and
not before. In practice this means we need to identify all
corridors and their traversal time in advance.

Clearly we would prefer to relax this constraint, and allow
the robots to identify the location and extent of areas of high
interference probability in an unsupervised way. To do so, we
introduce the concept of the Interaction Grid, a generalization
of the Occupancy Grid.



II. INTERACTION GRIDS

We define the Interaction Grid (IG) as a metric grid of
cells of equal size, each corresponding to a place in the
world, whereby the cell contents are updated by interaction
events at that location.

We intend “interaction” to be interpreted broadly. A grid
accumulating events triggered by the interaction of the
robot’s body or sensors with a static obstcale is the classical
Occupancy Grid [7]. A grid mapping the visibility of a robot
to an observer is the Observability Map [2], [8]).

The interaction of interest in our application is one robot
detecting of the presence of other robot along its desired
path. The IG is therefore a matrix in which the value of
each element is a function of the probability of an interaction
event occuring at the corresponding small area of the world,
and so the overall grid is an approximation of the probability
distribution of robot interactions over space.

In the following sections we describe different methods
for building IGs. Then we show how IGs can be used for
building an unsupervised aggression strategy that increases
the performance of a robot team in a transportation task.

III. BUILDING INTERACTION-GRIDS

“All models are wrong, some models are use-
ful”, George Box [5]

We all know that forecasting of city traffic conditions can
only be done to a certain degree. There are many different
variables that have an impact on it: time, day of the week,
weather, etc. Not all variables are known, not all can be
measured. Still some of them can be approximated, for
instance we use rush-hour as a good indicator of tough traffic
conditions, and though we also know that it is not perfectly
accurate we still use it to plan our decisions.

In the case of robots sharing the same environment know-
ing where interactions will take place presents a similar
problem. In the following sections we show different models
for this problem. Experimental data shows that using these
models we can improve the performance of a team of robots
in a transportation task, which we briefly describe here.

A. Robot system

For convenience our experiments are performed using
the well-known Stage multi-robot simulator [6], though we
have previously validated the aggressive behaviour strategy
in real robots [11]. Figure 2 shows the environment for
these experiments and those described above. There are
two rooms, containing the source and goal destinations
respectively, and five mobile robots equipped with sonar and
laser range sensors. The world measures 11 by 12 meters.
All robot models are the standard models shipped with Stage,
and approximate the ActivRobot Pioneer 3-DX and SICK
LMS200 rangefinder.

All robots use the same controller which follows the
architecture first described in [9] (Figure 3). Three behaviors
are defined: Navigate is essentially a left-wall follower that
for certain areas of the world can follow a heading instead,
this is how the robots get into the rooms. Fight is a behavior
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Fig. 3. Control Architecture

triggered when robots compete for the right of way (i.e. in
narrow sections of the world). Panic is oriented to take robots
out of deadlock situations, for example when they are stalled
or have been fighting for too long. A detailed description of
this behaviour-based control architecture is given in [1].

B. Method 1: Accumulating Interactions

When the experiment is started all robots start in the
configuration shown in Figure 2. The robots task is a type of
transportation task in which they are asked to pick resources
at a source location and take them to a “goal” location. In
the experiments the robots do not actually transport anything,
they just navigate between “source” and ‘“goal”. After 10
minutes we stop the simulation.

For the IG we have chosen a cell size of 50 cms, for our
environment (11x12m) this gives us a grid of 22x24 cells.

All robots share the same IG. At the beginning of the
experiment we initialize all cells of the IG to zero.

The interaction event we record is the transition from the



Navigate state to the Fight state in the robot controller. This
indicates that the robot can no longer navigate and make
progress on its task; i.e. it has suffered from interference.

After the robots start moving through the world, all fight-
starting events are simply accumulated in the corresponding
grid cell (note that this assumes the robots are globally
localized).

C. Results

Figure 4 (top row) shows a plot of the values stored in the
IG at 30,60,120,240 and 480 seconds. White pixels are zero,
darker pixels indicates higher values. Comparing the plots
with the map of the environment (Figure 2), we observe that
interference encounters between robots have been recorded
only in the narrow corridor on the right. The IG provides
evidence that this is an area of the world in which the robots
often interfere with each other.

Note that the controller used by the robots in simulation
could also be used by real robots without any modification.
There are only two additional requirements: communication
and localization. For communication it is possible to use a
wireless network. Even if this is not feasible our method can
still be used though every robot would have its own personal
IG. For localization standard AMCL can be used, this has
been proven to work well on many real situations. [4]. Also
consider that the IG generating method does not require any
knowledge of the details of the robot’s navigation system.

This simple accumulation method can be seen to produce
potentially useful maps of the world indicating areas of likely
interference. But where interference events are relatively rare
- a desirable condition - the maps take a long time to produce.
However, these maps are absolutely correct in the sense that
interference is known to occur at the non-zero grid cells.

IV. METHOD 2: THE BREAD-CRUMBS APPROXIMATION
METHOD

We seek to speed up the aquistion of interaction grids,
so we propose the following aapproximation method. The
basis of the approximation is that spatial interference can
only occur when two or more robots are co-located, so we
record locations where that could occur.

Definitions:

K Number of Robots
N Number of Cells
P(Cij ) Probability of cell i being occupied by robot j
P(C;) Probability of cell ¢ being occupied by any robot
Bj Bread-crumbs in cell ¢ left by robot j
B; Bread-crumbs in cell ¢
S2G Robot’s path from Source to Goal
G2S  Robot’s path from Goal to Source

The values we store in the IG correspond to the probabili-
ties that a cell may be occupied by any of the robots (P(C; =
1)). Our simplifying assumption is that the probability of
interference is a function of the probability of co-location.

We can write P(C;) in terms of P(CY):

K

P(C;)=>_ P(CY) )

j=1

Because all robots follow the same path the P(C’f ) values
are the same for all robots. This we simplify Equation 1 to:

P(C;) = K x P(C}) )

P(C}) is the probability that cell i is occupied by robot
1.

Conditioning C} over the route followed by the robot we
obtain:

P(C}) = P(C}|S2G)P(S2G) + P(C}|G2S)P(G2S) (3)

P(G2S) and P(S2G) are roughly the same because it
takes approximately the same time to go from source to goal
than from goal to source. And also after the experiment has
run for some time the number of trips between goals is very
similar (at most one more trip from S2G). We can further
simplify to:

P(C}) = 0.5 (P(C}S2G) + P(C}G2S))  (4)

P(C}|S2G) and P(C}|G2S) are quantities that are not
the same. They are defined by the trails the robots leave
when going in one direction or the other.

We assume the probability for a robot to be in any
cell along its path to be uniform. If we allow a single
robot to leave a trail of bread-crumbs while moving in
the environment, the number of bread-crumbs left on every
cell of the path would be the same. As a result P(C}) is
proportional to the number of bread-crumbs that robot ¢
leaves at cell . If we accumulate bread-crumbs for all robots
we can simplify Equation 2 to:

P(C;) = K x P(C}) = aB; 6)

Where « is a proportionality constant.
And so the probability of occupancy of a cell is propor-
tional to the number of bread-crumbs found inside the cell.

A. Results

Figure 4 (bottom row) shows plots of the IG at 60,120,240
and 480 seconds measured using this method. We can see
that the accumulation of bread-crumbs on the environment
makes the narrow corridor emerge as an area of the world in
which robot are more likely to be co-located and thus more
interactions between robots are expected.

Comparing the IGs produced by the two methods, we see
they are not identical, yet they both highlight the narrow
long corridor section. Simple thresholding would render the
results almost identical. But the bread-crumb co-location
method produces information much more quickly than the
direct event-recording method.
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Fig. 4. Models of interaction likelihood

V. €-SUPERVISED AGGRESSION ESTIMATION USING IGS

In this section we demonstrate that IGs can be used
to automatically generate aggression strategies that do not
require many parameters to tune and therefore reduce the
need for a priori tuning.

Here we will use the IG to generate a Aggression Grid
(AG), a similar array in which the cell values indicate the
aggression level. A robot entering a fight would take the
aggression value indicated by the cell corresponding to its
current location.

A. From IG to AG
AGs are generated in the following way:

1) Clean IG: We are only interested in areas where
interaction is likely, any cell of the IG which value
is above a threshold we fix to the threshold value. We
have set the threshold to be the mean of the IG before
cleaning.

2) Log IG values along robot’s path: We send a robot
from Source-to-Goal-to-Source. Every d;ne time we
record the robot’s position and IG value.

3) Smooth and find Edges: We do edge detection with
thresholding and Gaussian smoothing. We fix the
threshold to 0.2 and sigma o to 3. The edges found
delimit the areas of the world where aggression should
be minimum or maximum.

4) Use the sign of the gradient at the edges found to deter-
mine if aggression should be minimum or maximum.

5) Move the min aggression markers to the left, and max
aggression markers to the right a dpq¢p,. This has the
overall effect of making the aggression function min-
imum a little before getting into the high-interaction
area, and maximum a little after passing it.

6) Interpolate: We interpolate the aggression values be-
tween the min and max cells along the robot’s path.

Figure 5 shows the plots for the logged cleaned IG values,
the min and max aggression points and the interpolated
aggression values along the robot’s path.

All we have at this point is a one-dimensional aggression
function. We still need to build a two-dimensional grid. The
steps we show next provide a simple way of doing it.

1) Initialize AG: First we initialize/label all cells of the
AG to a constant value of UNKNOWN.

2) Set Robot’s Path: Next we set all cells along the
robot’s path with an UNDEFINED label. We make
this distinction to later enable the use of heuristics for
different areas of the world.

3) Finally set the values of the cells between min and
max points to the values found in the one-dimensional
aggression function.

Figure 6 shows the results of executing the previous steps
on the previous IG data. The first column shows the IG we
use for input. The second column shows the cell’s in the
robot’s path. Darker cells are cells where the robot was long
ago while Lighter cells are recent visited cells. This way we
can infer the direction in which the robot moves (Source to
Goal or Goal to Source). The third column displays the cells
that mark the edges in the IG, they define the beginning and
end of high-interaction areas of the environment along the
robot’s path. Finally, the fourth column shows the computed
AG. White cells are UNKNOWN areas, light-gray cells are
UNDEFINED areas and the light to dark gradient areas
indicate aggression values along the high-interaction areas,
which in our case is along the narrow corridor on the right
of the figure.

B. Why is this a good strategy?

We believe the AG found with the previous method
to describe a good rational strategy to cope with spacial
interference.
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In a random strategy when two robots meet they both
chose their aggression at random and the fight is solved in
favor of the robot with the highest aggression. In [9] Vaughan
et. al. introduced this technique and also found that many
other strategies produced results that were not statistically
different from the random case (e.g. hierarchies, amount-of-
front-empty-space, etc).

Later in [11] we presented the LI strategy. LI is an strategy

in which aggression is set based on local-effort. For example
measuring how much effort has been put in passing along

a narrow corridor. This strategy was shown to improve over
previous strategies and specially over a random-only strategy.

With the method we propose in this paper if we choose
to use random aggression for UNKNOWN or UNDEFINED
areas of the world, and use the value from the AG in all other
areas we get a strategy very much like the local-investment
strategy. Figure 7 shows grids with the aggression values for
both the old-LI method and the one we propose in this paper.
The Aggression values inside the narrow corridor areas are
similar. And so the strategy generated by the new method is
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also better than a random strategy.

VI. CONCLUSION

In this paper we have described a generalization of the
Occupancy Grid we call the Interaction Grid. We have
demonstrated a direct and an approximation method for
building IGs, and shown how to use the resulting map as
input to an interference reducing behaviour.

We believe IGs are a potentially powerful device for
modeling interaction between robots, or between robots and
other agents, with many potential applications. To the best
of our knowledge, this simple model has been overlooked to
date. Indeed, when building traditional occupancy grid maps
using range sensors, care is taken to avoid adding detections
of robot teammates or other transitory objects to the static
map. We are exploiting the data that is usually thrown away.
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