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Abstract— We present a probabilistic framework for multi-
modal information fusion to address the detection of the most
promising interaction partner among a group of people, in
an uncontrolled environment. To achieve robust operation, the
system integrates three multi-modal percepts of humans and
regulates robot’ behaviour to approach the location with the
highest probability of an engaged human. A series of real-world
experiments demonstrates the robustness and practicality of the
proposed system for controlling robot’s attention.

I. INTRODUCTION

One long-term aim of autonomous robot research is to
have robots work with and around people in their every-
day environments, taking instructions via simple, intuitive
human-robot interfaces. All else being equal, we prefer that
these interfaces require no special instrumentation of the hu-
mans and little or no training. In this paper, we demonstrate
such a system, shown in Fig. 1 and Fig. 2, whereby a self-
contained autonomous robot can reliably detect and approach
the person in a crowd that most wants to interact with it.

A prerequisite of a successful natural human-robot inter-
action is for each party to find a counterpart for interaction.
In scenarios with multiple people, the robot must decide
which human (if any) to interact with. Here, we want the
robot to be able to automatically recognize the potentially
interested humans present in its workspace and then evaluate
the posture, gesture or other salient features of each person
to determine their intent to interact.

While studies on attention control typically focus on
close range human-robot distances (<2m) [1]–[3], mostly
on stationary robots, our work looks at controlling a mobile
robot’s attention in distant multi-human robot interaction.

This is a challenging task. In addition to ordinary sensor
noise, other people may be moving around the environment
and occlude the target; people walking by or performing
other tasks will change their appearance to the robot’s sen-
sors; the robot’s ego-motion changes the sensor readings at
every sample; sensor false-positives may mislead the robot:
e.g. a picture of a human on the wall may attract the robot’s
attention but should not cause it to wait for an interaction
indefinitely. We suggest that there is not a single sensor that
can reliably serve.

We achieve robustness by employing an array of multi-
modal human detectors and probabilistically fusing their out-
puts. As a working example, but without loss of generality,
we use a laser range finder to detect legs, a RGB camera
to detect human torsos and a microphone array to detect the
direction of sound sources. All of these detectors have very

Fig. 1: The mobile robot is able to robustly track people and attend
the most engaging person to deliver its service, despite the noisy
and crowded environment. (live demonstration at HRI’14 )

different fields of view, detection ranges and accuracies. The
laser, for example, gives us a very precise range and angle
measurements, while the microphone array only provides
rough directional information. Our fusion method is not
limited to these three modalities, but can easily incorporate
additional detectors.

To address the problem of approaching the potential in-
teraction partner, among a group of people, we incorporated
auditory cues, as an active stimulus, with different modality
cues of human presence. We assume if a person is standing
facing the robot, and calling it, among a group of people,
he or she is probably the most interested person in having
an interaction. This particularly differs from talking person
detection, since even if the human doesn’t call the robot, it
can still navigate to the location of detected people, one at
the time. However, in order to draw the robot’s attention,
the user should send more information through an active
communication signal.

The contributions of this paper are: (i) designing an inter-
action system for controlling the robot’s attention in distant
multi-human robot interaction. (ii) demonstration of a simple
but effective method for sensor fusion of human detectors
that selects the most engaging person to approach for further
one-on-one interaction; (iii) a ROS-based implementation,
freely available online, using widely-available sensors. We
demonstrate its effectiveness in real-world outdoor robot
experiments.

II. BACKGROUND

To increase the robustness of real-time human detection
and tracking, many approaches integrate more than one
source of sensory information such as visual and audio cues



Fig. 2: Real-world setting (university campus) for experiment IV-
A with five uninstrumented users at arbitrary poses. One person,
chosen at random, tries to get the robot’s attention, and the robot
reliably approaches him.

[4]–[6], visual cues and range data [7]–[9] or vision-based
and Radio-frequency identification (RFID) data [10].

Associating multi-modal information with detected hu-
mans allows the robot to selectively initiate the interaction
with the person with higher interest. Lang et al. [11] pro-
posed a method for a mobile robot to estimate the position
of the interaction partner based on 2D laser scanner (leg
detection), camera (face detection) and microphone data
(sound source location). However, in this system, people have
to stand near the robot (< 2m) to be considered as a potential
communication partner. Also the user should keep talking to
maintain the robot’s attention.

Several authors have worked on enabling a robot to direct
its attention to a specific person and/or estimating a user’s
level of interest in interaction with a robot. Some approaches
use distance and spatial relationships as a basis for evaluating
engagement. Michalowski et al. [2] and Nabe et al. [3] pro-
posed an approach based on the spatial relationship between
a robot and a person to classify the level of engagement.
Finke et al. [12] used sonar range data to detect a target
person at closer than one meter, based on motion. Muller et
al. [13] and Bruce et al. [14] used trajectory information to
classify people in the surrounding of the robot as interested
in interaction or not. However in some situations having
humans approach the robot is infeasible or undesirable, and
it is robot’s responsibility to arrive at the target person for
one-on-one interaction.

Some work has explored different methods to detect and
track multiple speakers [15]. However, our experiment sug-
gests that sound alone does not provide reliable performance
in dynamic environments with ambient noise. People can
speak, shout or clap to get robot’s attention, but by using
sound only the robot can get attracted to irrelevant sound
sources. Okuno et al. [16] developed an auditory and visual
multiple-speaker tracking for an upper-torso humanoid robot.

In most of these studies, the robot’s attention is oriented
to the target person by head turning, body turning or eye
movements. Also the person of interest can loose the robot
attention when stop talking. In this paper, we consider a more
general situation, where the robot and people are outdoors,
mobile, surrounded by distracting people and sound sources
and are in arbitrary locations and poses. In these situations,
it is hard to find the correct interaction partner among the
crowds of people. Therefore, we propose a system in which

Fig. 3: An overview of the system showing how different compo-
nents are connected. (OccGrid = Occupancy Grid), (KF = Kalman
Filter)

Fig. 4: Evidence grids use to fuse detections for each sensor
modality separately (top three grids). Grids are then fused by
weighted averaging into an integrated grid (bottom grid).

the robot is able to adaptively change its focus, approach
and initiate a close interaction with the person with currently
highest apparent interest.

Our goal is to design an interaction system that is robust,
reliable and can be deployed in public settings. A series
of real-world experiments in outdoor, uncontrolled environ-
ments (university campus), with up to 8 human participants,
and a live demonstration at HRI ’15 in a crowd of hundreds
of people, demonstrates the practicality of our approach.

III. SYSTEM DESIGN

A. Multi-modal human feature detection

We use a simple probabilistic sensor fusion approach that
is easy to understand and implement. An overview of the
system is shown in Fig. 3. The approach of fusing multiple
occupancy grids is not novel [17] : this paper serves as a
case study and demonstrates the sufficiency of this approach
for this task. Our implementation can easily be adapted and



extended for similar problems and different sensors and robot
hardware.

Here we use three sensors: (i) laser range finder to detect
legs; (ii) camera to detect torsos and (iii) a microphone array
to detect sound with direction. These sensors have different
trade-offs in field of view, range and accuracy. They also
measure different properties of the user, each with different
information about the intent to interact. For example, the leg
detector gives accurate location data but is ambiguous about
whether the person is facing toward or away from the robot.
Sound, a thing the user actively emits, on the other hand, is
a strong signal of attention-getting, as when calling a dog.
As we will explain below, we make explicit use of these
differences.

1) Leg Detector: Finding legs in laser range data is a well-
used method for detecting humans. We employed Inscribe
Angle Variance (IAV), proposed by Xavier and Pacheco
[18] to find legs by analyzing their geometric characteristics.
A leg detection directly provides a human location in the
robot’s coordinate frame. This detector runs at 50Hz and
provides highly accurate location information with a wide
field of view of 270 degrees. The downside of the leg detector
is a high false positive rate. The detector essentially looks
for discontinuities with the right geometric properties in the
laser scan. Unfortunately a lot of objects cause similar sensor
readings, e.g. furniture, trees, bushes, trash cans, etc.

2) Torso Detector: To detect torsos, we use the Microsoft
Kinect RGB camera mounted looking forward at the front
of the robot. The camera has a horizontal field of view of 57
degrees. Grayscale images from the camera are processed
to obtain Histograms of Oriented Gradients (HOG) [19]
features. These features are robustly classified using linear
SVMs trained to detect human torsos. In our system, we use
the OpenCV implementation [20] which provides fast multi-
scale detections using an image pyramid, and runs at 5Hz
on CPU on our mobile-class onboard computer.

To estimate the location of humans, we first compute a
bounding box around each torso detection. Given an expected
human body size we use the size and image location of the
bounding box to estimate the position of a human in the
robot coordinate frame. This detector outputs at 5Hz and
works well at subject distances of up to 10m. The directional
accuracy is good, but the range accuracy is poor in the cases
of partial occlusions and large deviations of subject height
from our median prior.

3) Directional Sound Detector: To detect directional
sound we use the microphone array of the Kinect. Audio
signals are processed using Multiple Signal Classification
(MUSIC) [21] to detect the direction of a sound in the ground
plane of the robot frame. We use an implementation of
MUSIC from Kyoto University (HARK) [22]. In contrast to
the other detectors, the sound detector only provides direction
and no range information. In principle, it would be possible
to move the robot to a different vantage point (i.e. drive
perpendicular to the sound direction) and then triangulate
the location of the sound source. But this would be time-
consuming and cause the robot to exhibit an unusual search

behaviour. Since our goal is the rendezvous, we can simply
use the direction information and rely on the sensor fusion
(see below) to obtain position estimates.

Calling the robot by voice, whistle or clap, is a simple
and intuitive interface, that needs little or no instruction.
The weakness of sound as an interaction cue is frequent false
positives caused by ambient sounds. Our system encountered
passing buses, talking passers-by and noisy construction
equipment. Loud ambient sounds also cause false negatives
as the loud signal overwhelms the sensor’s ability to detect
human voices. We found that users tend to call the robot
occasionally rather than continuously. To reduce the sparsity
of sound signals over time, we latch the most-recently-
detected sound for 2 seconds (informally, we observed that
this trick was very important for getting good responses to
sparse audio).

B. Multiple Target Tracking

Each of the detectors independently detects one or more
human features and estimates their position relative to the
robot frame of reference. For robustness, we accumulate
evidence of each detection over time while taking the robot’s
motion into account. It is, therefore, important that we
accurately track each detection before fusing the different
modalities into a unified detection.

For each modality, we independently track each human
feature using a bank of Kalman Filters (KFs). We empirically
tuned the measurement model of each sensor to reflect their
particular behaviour including uncertainty. The motion of the
robot is estimated using wheel odometry and is used in the
process model of the Kalman filter. The motion of individual
people, however, is not explicitly modelled.

To associate a detection with a track, we use the nearest
neighbour. A new track is spawned if the distance to the
closest neighbour exceeds a threshold. If a track did not
receive a measurement update, i.e. no associated detection
was made, only the prediction step of the KF is performed.
Consequently, the tracks are retained but the uncertainty
increases. Once the uncertainty exceeds a threshold the track
is removed. By choosing separate thresholds for each sensor
modality, we can tune the system’s respond to specific sensor
characteristics.

This provides two benefits, (i) it enables the system to
handle intermittent sensor data, for example due to temporary
occlusions and false negatives; and (ii) the user need not
provide continuous stimuli. The latter is important for the
system to feel natural, for example calling the robot once,
then wait for a reaction and possibly call again is a more
natural and less strenuous interaction compared to non-stop
calling.

C. Multi-Sensor Data Fusion

In the previous step, we obtained a set of Kalman filters
tracking detections independently for each modality. Next we
have to fuse these into a unified estimate of human attention
seeking so we can control the behaviour of the robot.



In a first step, we compute a probabilistic evidence grid for
each sensor modality. These grids are similar to occupancy
grids [17] but instead of holding the probability of an obsta-
cle, we store the probability of a human seeking attention.
For this, we compute a location probability distribution for
each detection using a modality-specific sensor model. In our
implementation, leg detections are modelled with a normal
distribution. For torso detection, we use a multi-variant
normal distribution to reflect the fact that range estimates are
not very reliable. And sound detections are modelled using
a cone along the measured direction vector. The cone length
is limited to 10 meters. The probability distribution for each
modality is then discretized into a separate evidence grid.

To compute the integrated probability distribution, a fourth
evidence grid is calculated as the weighted average of
corresponding grid cells in all modality-specific evidence
grids. Example grids are shown in Fig. 4.

The integration weights are assigned to each modality
based on sensor characteristics and uncertainties. We have
some a priori reasoning for choosing the relative weights:
since sound is actively generated it may be more likely
to indicate interest while legs and torsos are apparent in
interested and uninterested people alike. Hence, we assigned
the highest weight to the (S)ound evidence grid. In our
experience, the (T)orso detector exhibits fewer false positives
than the (L)eg detector, so we assigned a higher weight to
the torso grid than the leg grid. This results in an implicit
ordering of TLS, TS, LS, TL. This means for example that if
two people are calling out, and both have their legs detected,
but only one has a visible torso, we prefer the person with
visible torso since that person is probably facing the robot
and is thus directing her attention to it.

D. Attention Control and Behaviour Design

The integrated evidence grid can now be use to generate
behaviour and create a natural, easy to use and reliable
interaction between the user and the robot. For this, we
find the highest probability in the evidence grid and servo
the robot towards that location. As the robot moves the
evidence grid is continuously updated and the robot corrects
the approach vector. This enables the user to move and be
followed by the robot and it gives the robot an opportunity
to recover from false sensor readings. Once the robot has
approached the human to within 2 meters the robot stops.
To give the impression that it is ready for a close range
interaction it plays a happy sound. If the person does not
respond, the robot gives up, plays a sad sound and turns
away looking for another person.

If all values in the evidence grid are below a given
threshold the robot observed no human or only unreliable de-
tections. In this case, the robot randomly turns and searches
for humans until it finds one. We define detections made by
only one sensor modality as unreliable, e.g. leg detections
without a torso detection are often caused by furniture and
not by people.

The user and the robot form a tight interaction loop that
appears similar to that between a dog and its owner. By

observing the robot, the user can easily deduce if the robot
is paying attention to her (approaching) or not. If the robot
is not paying attention the user can simply provide more
stimuli, e.g. call louder or orient more towards the robot.
Informally, we observed that this interface feels very natural.

IV. EXPERIMENTAL RESULTS

We performed three different experiments in an outdoor
uncontrolled environment (university campus). We imple-
mented the designed system on a typical mobile robot, Husky
by Clearpath Robotics. The robot is equipped with a Kinect
providing the RGB Camera and a 4 channel microphone
array, and a 2D SICK laser scanner. All these sensors have
different but overlapping fields of view. Legs can be detected
in a 270 degree arc up to a distance of 10 meters. The camera
has a 60 degree horizontal FOV and is capable of detecting
human torsos at distances up to 8 meters. The microphone
array has a detection zone of 180 degrees in front of the
robot but only reports bearing and not range.

In all following experiments, the robot is co-located with
a group of people including one who wants to initiate an
interaction. This person will stand facing the robot and
occasionally call for it verbally.

A. Experiment A: Playing tag with five people

In the first experiment, we examined the robustness and
responsiveness of the system in a dynamic environment. We
instructed 5 people to stand in arbitrary positions surrounding
the robot (see Figure 2). One person was selected “at
random” to be the person who seeks the robot’s attention
(the interactor). The interactor stands still and calls the robot
in a normal voice. The robot approaches the strongest fused
detector response. When the robot stops directly in front of
its chosen person it plays a “happy sound” to indicate its
readiness to engage in the one-on-one interaction. If this
person is the interactor, she moves away and chooses a
new interactor at random. If the chosen person is not the
interactor, she ignores the robot, which times-out and returns
to scanning for new interactors. This process continued for
8 minutes. A section of this experiment is shown in the
accompanying video.

In eight minutes, the robot managed to correctly locate and
engage the interactor 24 times. The timeline of interactions
is shown in Figure 5, plotting the time when each of five
people (P1-P5) were in the interactor role, and time when
the robot was focused on them or on no-person (NP), and
the moment (dots) when the robot correctly announced it was
ready for a one-on-one.

In 19 cases, the robot successfully found the interactor
correctly first try and correctly announced this. The robot
also recovered from false positives and negatives in most
cases. However, we observed that in some cases, the robot
found the target for a short time, but got distracted by another
person (between 220 and 260 seconds). In addition, in one
case the robot approached the interactor correctly, but did not
announce its arrival. This happened at 460 seconds, where
the dot is missing.
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Fig. 5: Results from experiment IV-A: Diagram of the robot ’s responses to rapidly switching the interactive role between five people
(P1-P5) at random. The blue dashed line marks the time line of which subject is seeking attention, the red solid line shows which person
the robot is paying attention to and the red dots indicate when the robot entered close range interaction state.

B. Experiment B: Detection only

This experiment is designed to test that the sensor fusion
works correctly to select the most promising interaction in
an artificial setting. It is not our intended HRI setting. The
robot’s objective is to pick from a group of 8 people and
distractors 7m away only the person who seeks the robot’s
attention. Subjects are positioned in a semi-circle with 7
meter radius around the robot and approximately 2 meters
apart from each other (see Figure 6.).

We systematically setup distractions by positioning people
in a way that each shows a different subset of the attractive
features. For example we ask some to cover their legs, some
to stay quiet, and some to stand outside the camera/torso-
detector field of view. Only the interactor presents legs, torso
and occasional sound to the robot.

The robot is given 10 second time window to determine
the location of the interactor. The approach phase is omitted
here because we hereby want to investigate the reliability of
the attention system only.

We call a selection successful if the robot “favours” the
interactor during this period. We define favour to mean that
the highest probability of the integrated evidence grid should
be closest to the true position of the interactor for a longer
time than any other stimulus.

The human subjects take turns taking the role of interactor
and varying their appearance to the robot according to a
predefined script ensuring all permutations were tested. The
robot correctly identified the right person on 21 out of 24
trials (%87.5) with %99 confidence compared to randomly
selecting one person among all detected people. Failures
occurred when ambient sound was coming from the same
direction as a distractor person, whose legs and torso were
detected (our test location had construction noise in the
background). Also, if the robot did not pick the right person
immediately we labelled the trial a failure.

C. Experiment C: Testing discrimination at range

In the third scenario, we placed two people at 7 meters
distance in front of the robot and varied the distance between
the people. We measured the success rate and time required
for the robot to reach the correct target. If the robot stopped
facing the correct person we labeled the trial a success.

Fig. 6: Setup of experiment IV-B: Eight human participants are
positioned in a semi-circle with radius 7 meter around the robot.
Individuals create specific sensor stimuli by shouting, covering their
legs or standing outside the field of view of a particular sensor.

Results of 65 trials (5 repeats for each distance) are presented
in Fig. 8.

In the trials where the people are standing very close
to each other (1 meter and 1.5 meters), the system has
difficulties distinguishing the individual humans. This is
mainly due to the relatively large uncertainty in the sound
source direction detection.

In this case, the robot approached the centre between
the 2 people. For strictness, we declared these outcomes as
failures, but for most practical purposes the correct person
is now within close interaction range. In some cases the
robot was sometimes distracted by the other person but
recovered when the interested person keep calling the robot.
This wavering increased the time to arrive at the interactor
when the distance between the people was high. We observed
that when the distance is more than 8 meters, the right person
always gets robot’s attention but the approach is simply
longer due to the symmetry and it takes more time.

When the distance were larger than 12 meters, the two
people were at the extreme range of any of our sensors, so
the robot could not immediately detect people and pick the
right target. In this case, it had to wander around looking
for people which explained the lower success rate and more
travel time.



Fig. 7: Experiment IV-C: Two people stand 7 meters in front of the
robot with varying distance between each other. One person seeks
robot’s attention.
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Fig. 8: Experiment IV-C: Success rate and approach time in relation
to distance between subjects.

V. DISCUSSION AND FUTURE WORK

The users who participated in evaluation experiments and
in the live demonstration at the HRI‘14 conference are part
of the author’s research group. In this section, we briefly
reflect our observations and experiences during these trials.
In the future, we plan to evaluate the system usability, user
experience and social acceptance in a detailed user study
with the general public, in an extreme uncontrolled social
setting.

We informally claim that this designed system uses simple
and robust methods for deploying robots in crowded environ-
ments. People can use natural and intuitive communication
signals to interact with the robot and attain its attention whilst
easily understand its behaviour. This is specifically important
for robots deployed in public settings, as untrained and non-
technical users can engage in an interaction or call the robot’s
attention, with no special instrumentation of the humans and
little or no instruction.

Despite the intuitive interaction system, the shape and
appearance of our mobile robot was not tailored for indoor
social environments (e.g. conference hall or cocktail parties).
However, its platform is designed for outdoor applications,
e.g. ground search and rescue, where the proposed system
can be used in the task of finding and approaching the people

who need robot’s service. We believe, even in a case of two
robots with the same types of sensors and interaction system,
the form factor of a robot affects people’s social perception
of it.

In addition to people’s reactions to the form and structure
of the robot, the real world environment conditions influence
the human behaviour. As we observed, the intensity of
interaction increases with the intensity of the social setting.
In crowded places with lots of people talking to each other,
the level of ambient noise and false positives is very high.
In these situations the interactor has to make greater effort
in getting and maintaining the robot’s attention, which may
affect their patience and motivation.

Also, as one the objective of this work is regulating distant
multi-human-robot interaction (distances >3m), we noticed
that the way the interested person acts differ depending on
the distance from the robot. In future work, we plan to
evaluate and quantify the impact of environment properties
including crowd size and relative human-robot distance of
the people’s experience in interacting with the robot, using
the proposed interaction system, and subsequent system
performance.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated a system which integrates detected
human features from three modalities for a mobile robot
to choose the person who is more likely interested in
having close interaction in a robot-multi-human scenario.
We showed that combining passive and active stimuli can
be used to designate a particular person among a population
for subsequent one-on-one interactions. A series of real-
world experiments in outdoor uncontrolled environments
(university campus) with up to 8 human participants, and
a live demonstration at HRI ’15 in a crowd of hundreds of
people, demonstrates the practicality of our approach.
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[5] B. Kühn, B. Schauerte, K. Kroschel, and R. Stiefelhagen, “Multimodal
saliency-based attention: A lazy robot’s approach,” in Proc. 25th Int.
Conf. Intelligent Robots and Systems (IROS), Vilamoura, Algarve,
Portugal, October 7-12 2012.

[6] K. P. Tee, R. Yan, Y. Chua, Z. Huang, and S. Liemhetcharat, “Gesture-
based attention direction for a telepresence robot: Design and exper-
imental study,” in Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, Sept 2014, pp. 4090–4095.

http://doi.acm.org/10.1145/1121241.1121282
http://www.sciencedirect.com/science/article/pii/S0921889003000125


[7] P. Poschmann, S. Hellbach, and H.-J. Bhme, “Multi-modal people
tracking for an awareness behavior of an interactive tour-guide robot,”
in Intelligent Robotics and Applications, ser. Lecture Notes in Com-
puter Science, C.-Y. Su, S. Rakheja, and H. Liu, Eds., vol. 7507.
Springer Berlin Heidelberg, 2012, pp. 666–675.

[8] N. Bellotto and H. Hu, “Multi sensor-based human detection and
tracking for mobile service robots,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 39, no. 1, pp. 167–
181, Feb 2009.

[9] C. Martin, E. Schaffernicht, A. Scheidig, and H.-M. Gross, “Multi-
modal sensor fusion using a probabilistic aggregation scheme for
people detection and tracking,” Robotics and Autonomous Systems,
vol. 54, no. 9, pp. 721 – 728, 2006.

[10] T. Germa, F. Lerasle, N. Ouadah, V. Cadenat, and M. Devy, “Vision
and rfid-based person tracking in crowds from a mobile robot,” in
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-
tional Conference on, Oct 2009, pp. 5591–5596.

[11] S. Lang, M. Kleinehagenbrock, S. Hohenner, J. Fritsch, G. A. Fink,
and G. Sagerer, “Providing the basis for human-robot-interaction: A
multi-modal attention system for a mobile robot,” in in Proc. Int. Conf.
on Multimodal Interfaces. ACM, 2003, pp. 28–35.

[12] M. Finke, K. L. Koay, K. Dautenhahn, C. L. Nehaniv, M. L. Walters,
and J. Saunders, “Hey, I’m over here - How can a robot attract people’s
attention?” in IEEE International Symposium on Robot and Human
Interactive Communication, 2005.

[13] S. Muller, S. Hellbach, E. Schaffernicht, A. Ober, A. Scheidig, and H.-
M. Gross, “Whom to talk to? Estimating user interest from movement
trajectories,” in IEEE International Symposium on Robot and Human
Interactive Communication, 2008.

[14] J. Bruce, J. Wawerla, and R. Vaughan, “Human-robot rendezvous by
co-operative trajectory signals,” in Proc. 10th ACM/IEEE International
Conference on Human-Robot Interaction Workshop on Human-Robot

Conference on Human-Robot Interaction Workshop on Human-Robot
Teaming, 2015.

[15] M. Murase, S. Yamamoto, J.-M. Valin, K. Nakadai, K. Yamada,
K. Komatani, T. Ogata, and H. G. Okuno, “Multiple moving speaker
tracking by microphone array on mobile robot.” in INTERSPEECH.
ISCA, 2005, pp. 249–252.

[16] H. Okuno, K. Nakadai, K. Hidai, H. Mizoguchi, and H. Ki-
tano, “Human-robot interaction through real-time auditory and visual
multiple-talker tracking,” in Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on, vol. 3,
2001, pp. 1402–1409 vol.3.

[17] A. Elfes, “Occupancy grids: A stochastic spatial representation for
active robot perception,” in Autonomous Mobile Robots: Perception,
Mapping, and Navigation (Vol. 1), S. S. Iyengar and A. Elfes, Eds.
Los Alamitos, CA: IEEE Computer Society Press, 1991, pp. 60–70.

[18] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes, “Fast line,
arc/circle and leg detection from laser scan data in a player driver,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, April 2005, pp. 3930–3935.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Compp uter Society Conference on, vol. 1. IEEE, 2005,
pp. 886–893.

[20] G. Bradski, “OpenCV: the open source computer vision library,” Dr.
Dobb’s Journal of Software Tools, 2000.

[21] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” Antennas and Propagation, IEEE Transactions on,
vol. 34, no. 3, pp. 276–280, Mar. 1986. [Online]. Available:
http://dx.doi.org/10.1109/TAP.1986.1143830

[22] K. Nakadai, H. Okuno, H. Nakajima, Y. Hasegawa, and H. Tsujino,
“An open source software system for robot audition hark and its
evaluation,” in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-

RAS International Conference on, Dec 2008, pp. 561–566.

http://dx.doi.org/10.1109/TAP.1986.1143830

	INTRODUCTION
	BACKGROUND
	SYSTEM DESIGN
	Multi-modal human feature detection
	Leg Detector
	Torso Detector
	Directional Sound Detector

	Multiple Target Tracking
	Multi-Sensor Data Fusion
	Attention Control and Behaviour Design

	EXPERIMENTAL RESULTS
	Experiment A: Playing tag with five people
	Experiment B: Detection only
	Experiment C: Testing discrimination at range

	DISCUSSION AND FUTURE WORK
	CONCLUSIONS AND FUTURE WORK
	References

