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Abstract— We present a simple probabilistic framework for
multimodal sensor fusion that allows a mobile robot to reliably
locate and approach the most promising interaction partner
among a group of people, in an uncontrolled environment.
Our demonstration integrates three complementary sensor
modalities, each of which detects features of nearby people.
The output is an occupancy grid approximation of a probability
density function over the locations of people that are actively
seeking interaction with the robot. We show empirically that
simply driving towards the peak of this distribution is sufficient
to allow the robot to correctly engage an interested user in a
crowd of bystanders.

I. INTRODUCTION

One long-term aim of autonomous robot research is to
have robots work with and around people in their every-
day environments, taking instructions via simple, intuitive
human-robot interfaces. All else being equal, we would
prefer that these interfaces require no special instrumentation
of the humans and little or no training. In this paper, we
demonstrate such a system, shown in Figure 1 and Figure 2,
whereby a self-contained autonomous robot can reliably
detect and approach the person in a crowd that most wants
to interact with it.

A prerequisite for a successful natural human-robot inter-
action is for each party to find an interested counterpart. In
scenarios with multiple people, the robot must decide which
human (if any) to interact with. We want the robot to be
able to automatically recognize potentially interested humans
present in its workspace and then evaluate the posture,
gesture or other salient features of each person to determine
their intent to interact.

While studies on attention control typically focus on
close range human-robot distances (<2m separation) [1]–[3],
mostly on stationary robots, our work looks at controlling a
mobile robot’s attention in distant (>2m separation) multi-
human robot interaction.

This is a challenging task. In addition to ordinary sensor
noise, other people may be moving around the environment
and occlude the subject; people walking by or performing
other tasks will change their appearance to the robot’s
sensors; the robot’s ego-motion changes the sensor readings
at every sample; sensor false-positives may mislead the robot.
We suggest that there is not a single sensor that can reliably
serve.

We achieve robustness by employing an array of multi-
modal human detectors and probabilistically fusing their out-
puts. As a working example, but without loss of generality,
we use a laser range finder to detect legs, an RGB camera

Fig. 1: A live demonstration at HRI’15. The mobile robot is able
to robustly track people and approach the most engaging person,
despite the noisy and crowded environment.

Fig. 2: Real-world campus setting for experiment IV-C with five
uninstrumented users at arbitrary poses. One person, chosen at
random, tries to get the robot’s attention, and the robot reliably
approaches him.

to detect human torsos, and a microphone array to detect
the direction of sound sources. All of these detectors have
very different fields of view, detection ranges, and accuracies,
while their different modalities allow them to cover each
other’s weaknesses. The laser, for example, gives us very
precise range and bearing measurements, while the micro-
phone array only provides rough directional information. Our
fusion method is not limited to these three modalities, but
can easily incorporate additional detectors.

To choose sensors and the features they detect, we use
our knowledge of simple regularities in human behaviour.
For example, among a group of bystanders, a person who
is standing facing the robot and calling it will have the
highest probability of being a potential interaction partner.
We have observed this behaviour combination is generated
spontaneously in untrained human subjects [4]. We fuse
two independent sources of body pose information with
directional audio, placing greater weight on the audio as an
actively-generated signal. No single modality is necessary,
but we require two modes to agree in order to suppress false



positives. This differs from previous work in active-speaker
detection [5]–[7].

The contributions of this paper are: (i) designing a straight-
forward but effective method for sensor fusion of human
detectors that selects the most engaging person to approach
for further one-on-one interaction. (ii) demonstrating this
method as part of an interaction system for controlling a
robot’s attention in distant multi-human robot interaction
through a series of outdoor experiments. (iii) evaluating
this interaction system’s performance in a user study with
non-expert users. (iv) a ROS-based implementation, freely
available online1, using widely-available sensors.

II. BACKGROUND

To increase the robustness of real-time human detection
and tracking, many approaches integrate more than one
source of sensory information such as visual and audio cues
[5], [8], [9], visual cues and range data [10]–[12] or vision-
based and radio-frequency identification (RFID) data [13].

Associating multimodal information with detected humans
allows the robot to selectively initiate the interaction with
the person with higher interest. Lang et al. [14] proposed
a method for a mobile robot to estimate the position of the
interaction partner based on 2D laser scanner (leg detection),
camera (face detection) and microphone data (sound source
location). However, in this system, people have to stand
near the robot (< 2m) to be considered as a potential
communication partner. Also the user must keep talking
to maintain the robot’s attention. Our system relates these
constraints.

Several authors have worked on enabling a robot to direct
its attention to a specific person and/or estimating a user’s
level of interest in interaction with a robot. Some approaches
use distance and spatial relationships as a basis for evaluating
engagement. Michalowski et al. [2] and Nabe et al. [3] pro-
posed an approach based on the spatial relationship between
a robot and a person to classify the level of engagement.
Finke et al. [15] used sonar range data to detect a target
person at closer than one meter, based on motion. Muller
et al. [16] and Bruce et al. [17] used trajectory information
to classify people in the surrounding of the robot as interested
in interaction or not. However in some situations having
humans approach the robot is infeasible or undesirable, and
it is the robot’s responsibility to arrive at the target person
for one-on-one interaction.

Some work has explored different methods to detect and
track multiple speakers [6]. However, our experiments sug-
gest that sound alone does not provide reliable performance
in dynamic environments with lots of ambient noise. People
can speak, shout or clap to get robot’s attention, but by
using sound only the robot can get attracted to irrelevant
sound sources such as bystanders talking. Okuno et al. [7]
developed an auditory and visual multiple-speaker tracking
for an upper-torso humanoid robot.

1https://github.com/AutonomyLab/autonomy_hri.git
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Fig. 3: An overview of the system. Raw sensor data are filtered
separately, then projected into evidence grids. Grids are then fused
by weighted averaging into a single integrated grid. Grids show
real-world data.

In most of these studies, the robot’s attention is oriented
to the target person by head turning, body turning or eye
movements. The person of interest can also lose the robot
attention when they stop talking. In this paper we consider a
more general situation, where the robot and people are out-
doors, mobile, surrounded by distracting people and sound
sources, and are in arbitrary locations and poses.

III. SYSTEM DESIGN

A. Multimodal human feature detection

We use a simple probabilistic sensor fusion approach that
is easy to understand and implement (Figure 3). The idea
of fusing multiple occupancy grids is not novel: Elfes’ [18]
introduction of the approach showed multi-sensor fusion. Our
paper describes the efficacy of this approach for our HRI-
partner-finding task. Here, “occupancy” is an estimate of the
spatial probability density of finding a partner.

We use three sensors: (i) 2D laser range finder to detect
legs, (ii) RGB camera to detect torsos, and (iii) microphone
array to detect sound direction. These sensors have different
trade-offs in field of view, range and accuracy. They also
measure different properties of the user. For example, the
leg detector gives accurate location data but is ambiguous
about whether the person is facing toward or away from
the robot. Sound, on the other hand, is something the user
actively emits and is a strong signal for attention-getting,
as when calling a dog. As we will explain below, we make
explicit use of these differences.

1) Leg Detector: Finding legs in laser range data is a
well-explored method for detecting humans. We employed
Inscribe Angle Variance (IAV), proposed by Xavier and

https://github.com/AutonomyLab/autonomy_hri.git


Pacheco [19] to find legs by analyzing their geometric char-
acteristics, essentially looking for discontinuities with certain
properties in the laser scan. This leg detector runs at 50Hz
and provides highly accurate human location information in
the robot’s coordinate frame with a wide field of view of
270 degrees. A weakness of the leg detector is its high false
positive rate. Unfortunately a lot of objects cause similar
sensor readings, e.g. furniture, trees, bushes, trash cans.

2) Torso Detector: To detect torsos, we use a camera
mounted facing forward at the front of the robot. Grayscale
images from the camera are processed to obtain Histograms
of Oriented Gradients (HOG) [20] features. These features
are robustly classified using linear SVMs trained to detect
human torsos. In our system, we use the OpenCV implemen-
tation [21] which provides fast multi-scale detections using
an image pyramid, and runs at 5Hz on CPU of our mobile-
class onboard computer.

To estimate the location of humans, we first compute a
bounding box around each torso detection. Given an expected
human body size we use the size and image location of the
bounding box to estimate the position of a human in the
robot coordinate frame. This detector works well at subject
distances of up to 10m, however the accuracy is poor in cases
of partial occlusions and large deviations of subject height
from our median prior.

3) Directional Sound Detector: To detect directional
sound we use the Kinect’s microphone array. Audio signals
are processed using Multiple Signal Classification (MUSIC)
[22] to detect the direction of sound sources in the ground
plane of the robot frame. We use an implementation of
MUSIC from Kyoto University (HARK) [23]. In contrast
to the other modalities, the sound detector only provides
direction and no true range information for each sound
source (since source intensity is unknown). As our goal is
to rendezvous, we can use the direction information and rely
on the sensor fusion (see below) to obtain position estimates.

Calling the robot by voice, whistle or clap, is a simple and
intuitive interface that needs little or no instruction, so we
select the loudest detection found by HARK above a certain
threshold as an active attention signal. The weakness of
sound as an interaction cue is frequent false positives caused
by ambient sounds or even echoes. Our system encountered
passing buses, talking passers-by and noisy construction
equipment. Loud ambient sounds also cause false negatives
as the loud signal overwhelms the sensor’s ability to detect
human voices. We also found that untrained users tend
to call the robot occasionally rather than continuously. To
reduce the sparsity of sound signals over time, we latch the
most-recently-detected sound for two seconds (informally,
we observed that this trick was very important for getting
good responses to sparse audio).

B. Probabilistic Sensor Fusion Framework

Our proposed framework aims at “multiple-sensor
multiple-target” tracking, where human percepts detected
through various sensor modalities are all associated with the
correct targets. Each of the detectors we have introduced

independently tracks different human features and estimates
their position relative to the robot frame of reference. The
challenge is fusing this data in a way that captures the differ-
ent characteristics of each sensor, while also being flexible
enough to allow new sensors to be added or substituted.

We will address multiple-target tracking at the sensor level
through filtering detections into a set of tracks. Afterward,
we handle multiple-sensor fusion by converting each sensor’s
filtered output to a common probabilistic grid format and
merging these grids in a weighted average. This adaptive
approach allows us to add however many sensors and modal-
ities we want, while also incorporating the characteristics of
each sensor through calibrating properties of both the filters
and the fusion.

1) Multiple Target Tracking: For each modality, we inde-
pendently track detected humans using a bank of Kalman
Filters (KFs), allowing us to associate evidence collected
over time with a particular “track” feature. It also compen-
sates for the robot’s motion by incorporating wheel odometry
information, but does not model the movement of detected
people.

New tracks are spawned when a detection is made beyond
a certain threshold distance of any existing track. Otherwise,
detections are associated with the nearest neighbouring track.
Those tracks that do not receive a measurement update, i.e.
no associated detection was made, only have the prediction
step of the filter performed - retaining the track but increasing
uncertainty. Once a track’s uncertainty exceeds a threshold
it is removed.

This filtering process provides some robustness against
intermittent sensor readings. For example, occlusions, false
negatives, and even inconsistent user stimuli (e.g. if a person
temporarily stops sending active signals). As each sensor
modality has its own filter, it can also have its own thresholds
for track association distance and the uncertainty at which it
is removed, allowing new modalities to have filters adapted
to their particular sensor characteristics.

2) Probabilistic Grids: The middle-step that allows us to
fuse the results from different sensor modalities is converting
the output of the Kalman Filters into probabilistic evidence
grids. These grids are similar to occupancy grids [18] but
instead of holding the probability of an obstacle, we store
the probability that an attentive subject is at each location.

For this, we compute a location probability distribution
for each tracked human feature using a modality-specific
sensor model. In our implementation, leg detections are
modelled with a normal distribution. For torso detection, we
use a multi-variant normal distribution to reflect the fact that
range estimates are not very reliable. Sound detections are
modelled using a cone along the measured direction vector.
This is a simple model of the likely distribution of ranges of
a user who is calling the robot. The probability distribution
for each modality is then discretized into a separate evidence
grid.

3) Sensor Fusion: To compute the integrated probability
distribution for all detected humans, a fused evidence grid
is calculated as the weighted average of corresponding grid



cells from all other grids. Each modality-specific grid is
centered over the robot, ensuring that detections from the
same human will overlap. Example grids are shown in
Figure 3. The integration weights for each modality are
assigned based on sensor characteristics and uncertainties.

We have some a priori reasoning in our implementation
for choosing the relative weights: since sound is actively
generated it may be more likely to indicate interest, while
legs and torsos are possessed by interested and uninterested
people alike. Hence, we assigned the highest weight to
the (S)ound evidence grid. In our experience, the (T)orso
detector exhibits fewer false positives than the (L)eg detector,
so we assigned a higher weight to the torso grid than the leg
grid. This results in an implicit ordering from most-reliable
combinations to least-reliable combinations of [TLS], [TS],
[LS], [TL]. This means for example that if two people were
calling out, and both had their legs detected, but only one
had a visible torso, we would prefer the person with a visible
torso since that person would probably be facing the robot
and would thus be directing her attention to it.

Detections made by only one sensor modality (e.g. [T],
[L], or [S]) are treated as inherently unreliable, to avoid
detection errors such as the legs of a chair or distant ambient
noise. For this reason, the cone modelling sound direction is
capped at 10m, as our other two modalities cannot reach
further out.

The advantages of fusing sensor data after tracking rather
than before include being more modular, allowing sensor
modalities to be added or subtracted from the system. It
allows our final evidence grid to represent all of the sensor-
specific tuning of the tracking filters, probability distributions
and weighting. It also handles correlating detections from
different locations across the body of the robot and with
different fields of view, so long as each sensor’s grid has
one transformation back to the center of the robot for the
fused result.

C. Attention Control and Behaviour Design

The integrated evidence grid can now be used to generate
the robot’s behaviour. Several methods could be considered,
but we chose a very simple and explicable approach to
demonstrate the efficacy of the sensor fusion: we simply
find the highest probability in the evidence grid and servo
the robot towards that location. As the robot moves the
evidence grid is continuously updated and the robot corrects
the approach vector. This enables the user to move and be
followed by the robot and it gives the robot an opportunity
to recover from false sensor readings. Once the robot has
approached the human to within 2 meters the robot stops.
To give the impression that it is ready for a close range
interaction it plays a happy sound. If the person does not
respond, the robot gives up, plays a sad sound and turns
away looking for another person.

If all probabilities in the evidence grid are below a
given threshold its detections are considered unreliable. In
this case, the robot turns to sweep its sensors over the
environment to find humans.

The user and the robot form a tight interaction loop that
appears similar to that between a dog and its owner. By
observing the robot, the user can deduce if the robot is
paying attention to her (approaching) or not. If the robot
is not paying attention the user can simply provide more
stimuli, e.g. call louder or orient more towards the robot.

IV. EXPERIMENTAL RESULTS

We implemented the designed system on a typical outdoor
mobile robot, Husky by Clearpath Robotics. The robot is
equipped with a Kinect providing the RGB camera and a
four microphones array, and a 2D SICK laser scanner. The
sensors have different but overlapping fields of view. Legs
can be detected in a 270 degree arc up to a distance of 10
meters. The camera has a 57 degree horizontal FOV and
is capable of detecting human torsos at distances up to 8
meters. The microphone array has a detection zone of 180
degrees in front of the robot but only reports bearing and not
range.

Three experiments were performed to validate our prob-
abilistic sensor fusion framework’s ability to select an in-
teraction partner. Afterward, an evaluative user study was
conducted with non-expert users to assess the system’s
performance in an HRI scenario. In all four experiments,
the robot is co-located with a group of people including one
who wants to initiate an interaction (the interactor). This
person will stand facing the robot and occasionally call for
it verbally.

A. Experiment A: Framework only

The first experiment is designed to test the reliability of
the sensor fusion by selecting the most promising person
seeking robot’s attention in an artificial setting. It is not
our intended HRI scenario, but rather an exhaustive test of
the system’s functionality by exposing it to a wide range of
possible detections at once. The robot’s objective is to pick
the interactor from a group of 8 research assistants 7m away.
Subjects are positioned outdoors in a semi-circle with a 7m
radius around the robot and approximately 2 meters apart
from each other.

We systematically set up distractions by positioning people
in a way that each shows a different subset of attractive
features. For example, we ask some to cover their legs, some
to stay quiet, and some to stand outside the camera/torso-
detector field of view. Only the preferred interactor presents
the full set of legs, torso and occasional sound to the robot.

The robot is given a 10 second time window to determine
the location of the interactor. Actually approaching the
selected human for interaction is omitted here in order to
focus on the reliability of the attention system.

We call a selection successful if the robot “favours” the
interactor during this period. We define favour to mean that
the detected interactor position is closest to the true position
of the interactor for longer than it is closer to any of the
distractors.

Users take turns taking the role of interactor and varying
their appearance to the robot according to a predefined script
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Fig. 4: Results from experiment IV-C: Diagram of the robot’s responses to rapidly switching the interactive role between five people
(P1-P5) at random. The blue dashed line marks the time line of which subject is seeking attention, the red solid line shows which person
the robot is paying attention to and the red dots indicate when the robot entered close range interaction state. The robot usually attends
to the correct person.

ensuring all permutations were tested. The robot correctly
identified the right person on 21 out of 24 trials (87.5%),
giving 99% confidence this approach improves on selecting
one detected person at random. Failures occurred when
ambient sound was coming from the same direction as a
distractor person, whose legs and torso were detected (our
test location had loud intermittent construction noise in the
background).

B. Experiment B: Testing discrimination at range

We placed two research assistants outdoors at a distance
of 7 meters in front of the robot and varied the distance
between the people in order to test how well the sensor
fusion system could discriminate between adjacent humans.
The robot was now allowed to approach a detected interactor
to also examine interference from motion and changing
distances. We measured the success rate and time required
for the robot to reach the correct target, where a trial was
successful if the robot was facing the correct person when
it stopped. Results of 65 trials (5 repeats for each distance)
are presented in Figure 6.

In trials where the people are standing very close to each
other (<1.5 meters), the system has difficulty distinguishing
the individual humans. This is mainly due to the relatively
large uncertainty in the sound source direction detection.
In these cases, the robot approached the centre between
the 2 people. For strictness, we declared these outcomes as
failures, but for most practical purposes the correct person
is now within close interaction range.

At each distance there were some cases where the robot
was distracted by the non-interactor participant but recovered
when the interactor kept calling the robot. The further apart
the two humans were, the more off-course this “wavering”
could pull the robot and thus the higher average arrival time
and variance. At 12 meters or more, the participants were
at the extreme range of our sensors, making initial detection
difficult and sometimes drawing the robot too far away to
recover.

C. Experiment C: Playing tag with five people

In the third experiment, we examined the robustness and
responsiveness of the system in a dynamic environment

Fig. 5: Experiment IV-B: Two people stand 7 meters in front of
the robot. One person seeks the robot’s attention. We empirically
determine the minimum distance d between the people at which the
robot can no longer distinguish the attentive user from the bystander.
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Fig. 6: Experiment IV-B: Success rate and approach time in relation
to distance between subjects.

where the role of interactor would switch over the course of
one continuous test. We instructed five research assistants to
stand in arbitrary positions surrounding the robot (see Figure
2).

One person was selected at random to be the first interac-
tor. The interactor stands still and calls the robot in a normal
voice, while the other research assistants walk around the
vicinity of the robot as bystanders. The robot approaches the
strongest fused detection, and when the robot stops directly
in front of its chosen person it plays a “happy sound” to



indicate its readiness to engage in a one-on-one interaction.
If this person is the interactor, she moves away and chooses a
new interactor at random. If she is not, she ignores the robot,
which times-out and returns to scanning for new interactors.
A section of this experiment is shown in the accompanying
video2.

The timeline of interactions is shown in Figure 4, plotting
the time when each of five people (P1-P5) were in the
interactor role, and the time when the robot was focused
on them or on no-person (NP), and the moment (dots) when
the robot correctly announced it was ready for a one-on-one.

In seven and a half minutes, the robot engaged in 20
interactions. In 18 cases, the robot successfully found the
interactor and correctly announced its arrival. However, we
observed that in two cases between 220 and 260 seconds,
the robot would find the target for a short time, but become
distracted by another person and did not find the correct
interactor.

D. Experiment D: System Performance with Non-Expert
Users

We evaluated the effectiveness of the proposed system
in a detailed user study with a sample of the university
community in a semi-controlled indoor setting. The study
recruited 34 participants (23 females, 11 males), ranging in
age from 17 to 73, with the majority being 20 to 30 years old.
They were asked to call the robot over from across an 8 × 5m
room without leaving a fixed spot, with other humans nearby
as bystanders. The participant and three research assistants
stood at the far end of the room, with the participants and
one assistant facing the robot and two other assistants facing
each other and conversing (Figure 7).

The system was fully explained beforehand. This means
telling them the robot will look for human legs, body and
direction of sound to detect the potential interaction partner
and works best if they stand facing the robot and call it to
get its attention.

In %85 of trials the robot successfully distinguished the
participant as the interested person. Of the five failure cases,
all were related to audio detection and the behaviour of the
participant. Two participants clapped as their chosen audio
signal but did so too infrequently to be detected, so that
the robot was drawn to the two chatting bystanders instead.
In two more cases, the participants stopped trying to call the
robot once it was approaching them, allowing the robot to be
distracted by the chatting bystanders again. The last failure
case had the robot approach the silent bystander possibly as
a result of misidentified echo from the adjacent participant.

V. DISCUSSION AND FUTURE WORK

The experiments used to both validate and evaluate our
system focused on raw performance but do not address
improvements to the human-robot interaction experience.
In the user-study, fourth experiment, we recorded other
performance and user preference data that will be presented
elsewhere.

2https://youtu.be/KtAz_fJUGmo

Fig. 7: Experiment IV-D: Study Setup

But the data presented in this paper and [4] provide evi-
dence that inexperienced users humans were able to reliably
obtain the robot’s attention and call it over for interaction
using only their instinctive behaviour and without any instru-
mentation (i.e. they carried no special equipment or clothing).
This is specifically important for robots deployed in public
settings, as untrained users can engage in an interaction or
call the robot’s attention with little or no instruction. Failure
cases from each experiment also suggests some possible
improvements. Differentiating between human-sourced audio
like words and clapping versus environment noise might use-
fully improve the reliability of sound as a detection method.
Speech recognition might also be useful in distinguishing
between active encouragement and discouragement signals.

The Husky robot platform is adapted for outdoor use, and
proved somewhat unsuitable to indoor social environments
due to its size, appearance and movements. We showed that
the same system works indoors and out, but our indoor work
will use a telepresence robot form factor in future.

This work considers human-robot interaction over rela-
tively large distances compared to almost all the literature
(>2m separation). We noticed but have not yet exploited
the way people interact with the robot varies over the
course of an interaction as their mutual distance changes
(we omit evidence here for lack of space). We expect that
the robot’s behaviour and sensing should also change with
mutual distance.

Environmental factors can also modify human behaviour,
where the intensity of the interaction signals may increase
with the intensity of the social setting - a loud party might
cause users to call loudly, or to prefer gestures to calls in
a library setting. Adapting sensor fusion parameters to the
current setting could be a useful extension.

VI. CONCLUSIONS

We proposed a system which integrates detected human
features from multiple modalities for a mobile robot to
choose the most likely person interested in a close interaction
in a robot-multi-human scenario. Our probabilistic sensor
fusion framework combined passive and active stimuli to suc-
cessfully direct the robot’s attention. A series of real-world
experiments in outdoor uncontrolled environments, a user
study with dozens of non-expert participants, and a live demo

https://youtu.be/KtAz_fJUGmo


at HRI ’15 in a crowd of hundreds of people all demonstrate
the practicality of our approach. Our ROS implementation is
freely available online (goo.gl/TFV8y5).
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