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Abstract—We present an extension to the Reciprocal Velocity
Obstacles (RVO) approach to multi-robot collision avoidance
with the aim of alleviating the problem of congestion caused
by symmetrical situations in dense conditions. We show that in
a resource transportation task RVO robots are unable to make
progress due to crowds of robots with opposing navigation goals
at source and sink. We introduce Biased Reciprocal Velocity
Obstacles (BRVO), which breaks the symmetry among robots
by giving priority to the robots leaving a task-related place of
interest. BRVO is compared to RVO in two experiments and
it is shown that BRVO is able to resolve the congestion much
more quickly than RVO.

Keywords-Collision Avoidance, Interference Reduction,
Multi-Robot Systems

I. INTRODUCTION

Interference between robots is a common problem in

multi-robot systems, particularly those with no centralized

control. Interference in general can be described as compe-

tition for resources, for example access to a loading zone

or a charging station. Usually robots simply get in each

other’s way during normal navigation in the environment.

An acute version of the problem is seen when robots have

opposing navigation goals, for example a robot leaving a

shared recharging station interferes with robots arriving at

that station. In these situations, some symmetry-breaking

mechanism is needed to decide which robot has the pri-

ority and should go first. Such mechanisms have proved to

increase the effectiveness of the multi-robot system [1].

Collision Avoidance (CA) is also a crucial part of most

mobile robot systems. If robots fail to avoid obstacles

(either stationary or mobile obstacles) physical damage

might occur to them or to the environment and sometimes

the whole system may fail. Researchers have proposed

a number of approaches to collision avoidance in multi-

robot systems with no centralized control. van den Berg

et al. [2] introduced Reciprocal Velocity Obstacles method

which has been demonstrated to be very effective for safe

navigation in systems with multiple mobile robots. However,

in dense situations, robots interfere with each other and there

is no mechanism in RVO to break the symmetry among

them. Hence those robots will move with the flow of the

surrounding agents which might not be aligned with their

goal direction. For example, consider the transportation task

in which a group of autonomous robots should pick up items

from a source position and then deliver them to a sink (Fig.

1). With RVO as the collision avoidance method, a robot

that receives an item at source is stuck in the crowd of

robots that want to pick up an item and because of the

symmetrical situation, it can not continue its way to the

sink. This situation frequently occurs in this task.
In this paper we present a modification to RVO that breaks

the symmetry among robots in dense situations, thereby

improving performance by reducing spatial interference.

Figure 1: Stage simulation of transportation task. Robots

(red octagons) must visit a source (bottom/green square)

to collect a widget (yellow diamond) and deliver it to

a particular sink (red/top square). Congestion around the

sources has slowed task progress.

The rest of this paper is organized as follows. In section II,

we summarize some of the main work in collision avoidance

2012 Ninth Conference on Computer and Robot Vision

978-0-7695-4683-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CRV.2012.65

441



and spatial interference. Then we go over the reciprocal

velocity obstacle approach in section III. we discuss the

problem of RVO in dense situations and propose our solution

to it (section IV). The experiments and results are explained

in section V followed by a short discussion.

II. RELATED WORK

A. Collision Avoidance

Various autonomous local collision avoidance methods

have been described, differing in their approach to envi-

ronment modeling and control functions. Among the most

successful is the Nearness Diagram (ND), a reactive ap-

proach in which a motion heading is picked using a local

model of the environment which is generated in form of a

polar distance histogram [3]. By analyzing different possible

situations to select motion direction, ND reduces the chances

of deadlocks and oscillations, undesirable problems that

are commonly seen in reactive navigation approaches. Also

popular is the Dynamic Window (DW), a velocity-based

reactive collision avoidance method with two phases. First

it constructs the search space by only considering circular

trajectories represented by (υ, ω). A control command (υ, ω)

is discarded if the robot can not stop before it reaches

the closest obstacle on the resulting curvature. Then, the

velocities that can be achieved within a short time period are

maintained in the search space, given the limited accelera-

tions of the robot. In the second phase an objective function

is maximized which has components of heading alignment

with the preferred direction, distance to the closest obstacle

on the trajectory and the magnitude of the velocity of the

robot.

Both ND and DW consider moving entities as stationary

obstacles and do not take into account their future behavior.

In contrast, the recently developed Velocity Obstacle (VO)
approach, explicitly considers the velocity of the moving

objects in its model which makes this approach more suited

for multi-robot collision avoidance [4]. VO operates in

velocity space in which every object introduces a set of

forbidden velocities whose shape is that of a cone. The

robot chooses a velocity that is outside of these velocity

obstacles to avoid collision. van den Berg et al. introduced

Reciprocal Velocity Obstacles (RVO) which improves on VO

by reducing an undesirable oscillation problem that occurs

in multi-robot VO [2]. Recently, they proposed an optimal

method of RVO for systems with multiple mobile robots [5].

We will describe the latter in more detail in Section III.

B. Reducing Spatial Interference

In a mathematical model of robot foraging, Lerman et
al. show that adding more robots to the system improved

the group performance while decreasing individual robot

performance [6]. Interference between robots reduces the

marginal benefit of adding additional robots. Based on that

model, an optimal group size was found that maximizes the

group performance. Schneider-Fontan et al. [7] proposed

territorial division to keep robots away from each other’s

work site and thus reduce interference. Stegaard et al. [8]

suggested bucket brigading in multi-robot foraging, in which

each forager restricts itself to a specific area and relies on

other workers to deliver the resource to the destination.

Vaughan et al. studied explicit anti-interference strategies

both in simulations [1] and real [9] robots to increase

performance in the transportation task. Aggressive display

behaviors were used as a mechanism to resolve conflicts in

constrained parts of the environment. Based on the amount

of work they had invested up to that point, robots selected

an aggression level and the difference in aggression levels

between interfering robots was used to break the symmetry.

Scheidler et al. [10] proposed and studied several methods

to reduce and control the emergent congestion in a dense

ant like moving agent system. The asymmetries that resolve

conflicts are introduced by modifying either the environment

or the robot controllers. In addition to reducing congestion

(and therefore improving the performace), the fairness of the

proposed method is shown to be no lower than before. Also,

in [11] the effect of restricting waypoint detection in the

sensor’s field of view is studied in an ant-like trail-following

system. It is shown that a narrower field of view will result

in multiple trails formed between places and interest and

therefore the interference in each trail is reduced.

III. RECIPROCAL VELOCITY OBSTACLES

In this section we briefly describe the Reciprocal Velocity

Obstacles method introduced in [5].

Let D(p, r) = {q |‖ q − p ‖≤ r} in which p and q are

2D vectors and r is a scalar value. Then for robots A and

B, the velocity obstacle V Oτ
A|B is defined as:

V Oτ
A|B = {v | ∃t ∈ [0, τ ] :: tv ∈ D(pB − pA, rA + rB)}

(pA and pB denote the positions and vA and vB denote the

velocity of the robots A and B). The velocity obstacle for

robot A induced by B, V Oτ
A|B , is the set of all velocities

relative to robot B that will lead to collision of A and B

at a time before time τ (see figure 2b). Now let X ⊕ Y =
{x + y | x ∈ X, y ∈ Y } (Minkowski sum), then the set of

collision-avoiding velocities for robot A given that B selects

its velocity from VB is defined as:

CAτ
A|B(VB) = {v | v /∈ V Oτ

A|B ⊕ VB}
VA and VB are called reciprocally collision-avoiding when

VA ⊆ CAτ
A|B(VB) and VB ⊆ CAτ

B|A(VA) and they are

called reciprocally maximal when VA = CAτ
A|B(VB) and

VB = CAτ
B|A(VA). Here, the goal of the algorithm is to

find sets of permitted velocities VA and VB such that they

are reciprocally collision-avoiding and maximal and thus

guarantee that A and B are collision-free for at least τ time.

As there are many pairs of sets VA and VB that satisfy

this requirement, the pair that maximizes the amount of
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(a) (b) (c)

Figure 2: Reciprocal Velocity Obstacles. (a) Robots are considered as disk-shaped holonomic agents with radius r and

position p. (b) The velocity obstacle for robot A induced by B is the set of all relative velocities for robot A with respect

to robot B that will result in a collision at some time before τ . (c) RVO computes the minimum change u to velocity of A
that will prevent a collision between A and B. Figure reproduced from (J. van den Berg, S. Guy, M. Lin, and D. Manocha,

Reciprocal n-body collision avoidance, Springer Tracts in Advanced Robotics, vol. 70, pp. 319, 2011.)

permitted velocities close to optimization velocities vopt
A for

A and vopt
B for B are selected. These sets are denoted by

ORCAτ
A|B for A and ORCAτ

B|A for B. In [5], vopt
A is set

to vA (i.e. the current velocity) for all robots A.

In order to construct ORCAτ
A|B and ORCAτ

B|A, suppose

that A and B are moving with velocities vopt
A and vopt

B

respectively and that vopt
A − vopt

B ∈ V Oτ
A|B (i.e. they

are on a collision course). Let u be the smallest change

that is required to the relative velocity of A and B to

prevent collision within τ time. Each robot take half the

responsibility ( 1
2u) to avoid collision. Then ORCAτ

A|B is

constructed as follows:

ORCAτ
A|B = {v | (v− (vopt

A + 1
2u)).n ≥ 0}

in which n is the outward normal of the boundary of V Oτ
A|B

at point (vopt
A − vopt

B ) + u. As it is shown in figure 2c,

ORCAτ
A|B is a half-plane in the velocity space.

For collision avoidance, each robot computes the half-

plane of permitted velocities with respect to each other robot

and the intersection of these sets is the permitted velocity

for the robot with respect to all other robots:

ORCAτ
A = D(0, vmax

A ) ∩⋂
B �=A ORCAτ

A|B
(the speed limit of the robot is also considered above). If the

robot A adopts any velocity from ORCAτ
A, it will prevent

collision with other robots for at least τ time. In order to

progress in the preferred direction, the robot selects a new

velocity V new
A that is closest to its preferred velocity vpref

A .

All robots repeat this cycle of sensing others’ speed and

position, computing permitted velocity set and finding the

best new velocity to avoid collision with other robots.

In dense situations, the intersection of the permitted half-

planes might be empty (i.e. ORCAτ
A = ∅), and thus there is

no possible velocity by which the robot can prevent collision.

For these situations van den Berg [5] proposes a way of

computing a new velocity that is the “safest possible” and

can gradually make a way out of the constraints imposed

by other robots. The new velocity is selected such that it

minimizes the maximum distance to any of the permitted

half-planes induced by the other robots. This new velocity

is not influenced by the preferred velocity and is dependent

on the behavior of the surrounding robots.

IV. BIASED RECIPROCAL VELOCITY OBSTACLES

Consider a task in which the robots should visit a service

station (e.g. charging station or the “sink” or the “source”

in a transportation task) for a very short time and then

leave it so that the other robots can do the same. With

a large population of robots the area at the station may

be packed by robots. Even with careful coordination, this

occurs frequently in practice. In this dense situation, the set

of permitted velocities ORCAτ
A will be empty and RVO will

choose the safest possible velocity which is independent of

vpref
A and thus the robots may not progress in the preferred

direction. In practice we observe that it sometimes takes

a long time for a robot to leave the crowd. This problem

becomes worse given the kinematic and dynamic constraints

of the non-holonomic robots (see Figure 1).

We simply extend Reciprocal Velocity Obstacles to deal

with the congestion problem by breaking the symmetry
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among the robots in such a way that the priority is given

to the robots that are leaving the place. Here, priority

can be viewed as how close the new velocity is to the

preferred velocity: if they are aligned, the robot is moving

towards its goal, if they are different, the robot is making

some space for others to pass. Therefore, when finding

the set of permitted velocities for the leaving robots only,

we compute the minimum change that should be applied

to the preferred velocity (rather than current velocity

as in [5]) so that the new velocity is out of the velocity

obstacle induced by other robot. However, there is no change

in the way that the entering robots compute their set of

permitted velocities. Consequently robots that seek to leave

the crowd will pick velocities that are close to their preferred

velocity and continue their path (out of the crowd) to the

goal, whereas other robots show more flexibility in their

movement direction to avoid collisions. We call this new

method Biased Reciprocal Velocity Obstacles (BRVO).

Asymmetry is achieved by defining a safety distance d ≥
0 such that if the served robots are within the radius d of

the service station, they use their preferred velocity as the

optimization velocity and otherwise act the same as standard

RVO:

vopt
d (k) =

{
vpref if k ≤ d
vcurrent else

In the above function, k is the distance of the robot from

the last service station and d is the safety distance of that

station. In this paper, the safety distance is the same for all

stations in each experiment.

V. EXPERIMENTS AND RESULTS

We performed two experiments to examine the effective-

ness of BRVO. The first one is a modifed version of the

original RVO demonstration contrived to produce extreme

congestion; the second examines performance in a more

realistic task with emergent congestion.

A. Experiment 1: Antiopodal with center visit

Experiments are perfomed using the freely available Antix

simulator1. Disk-shaped, holonomic and homogenous mo-

bile robots of radius 0.5m are arranged on the circumference

of a circle, evenly spaced, and must move to their respective

antipodal positions with the condition that each robot has to

visit within radius 2.5m of the center of the circle at least

once (Figure 4). The test is run with population sizes of

100, 200 and 300 robots, and repeated for RVO and BRVO

controllers. This is a challenging task since the first robots

that arrive at the center point are completely surrounded

by incoming robots. We measured the time that each robot

arrives at its goal. Figure 3 shows the result. It indicates that

the robots can reach the final destination more quickly using

BRVO than RVO.

1Antix is a simple kinematic simulator that supports large populations,
see http://github.com/rtv/Antix

Figure 3: The time of arrival at the antipodal point. The

experiment is performed with population sizes of 100, 200

and 300 with RVO and BRVO separately. The figure clearly

indicates that the agents get to their goal quicker with BRVO

compared to RVO.

When the robots are using RVO, those that have visited

the center can not leave the area easily. This situation goes

on until a ‘bubble’ of robots can escape out of the crowd and

reach their goals. This phenomenon can be seen in the results

graph: the curves for RVO have changes in gradient. The

BRVO controller produces a more constant stream of robots

out of the center (given the appropriate d parameter), which

leads to the more linear curves for BRVO. The results also

demonstrate that the population size has very little influence

on the congestion-resolving property of BRVO, i.e. the rate

of the robots reaching their goal remains approximately

constant when adding more robots.

Figure 5 shows the distance to goal over time for 300

agents. This figure indicates that with RVO robots spend

more time at the circle center compared to BRVO. Addi-

tionally, the white spaces are the result of discontinuities in

the stream of robots reaching their goal. This figure also

shows a peculiarity in the behavior of BRVO (which is also

evident in figure 3): an agent is sometimes backed off by two

or more aggressive robots and becomes further away from

its goal. This happens only occasionally, but it increases the

task completion time for the last few robots (see the near-

vertical lines near task completion for BRVO in Figure 3).

B. Experiment 2

In a second experiment, we ran Stage [12] simulations

with the task environment shown in Figure 1. The robots
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initial configuration time step 1000 time step 2000

(a) RVO

initial configuration time step 1000 time step 2000

(b) BRVO

Figure 4: Experiment 1. Antix simulation screenshots. Starting with a circle formation, the robots visit the small center circle

and then navigate to their respective antipodal positions. The top row shows the results using an RVO controller; the bottom

row uses a BRVO controller. In the second row, the bigger circle in the middle shows the ‘safety zone’: after reaching the

center, robots modify their velocity optimization function until they leave this zone.

(Stage’s Pioneer 3DX models) should pick up a unit of

resource at a source location and deliver it to a sink. Each

unit is addressed to one of three sinks. The bottom (green)

squares are the sources; top (red) squares are sinks. In the

screenshots, robots (red octagons) are shown with yellow

diamonds to indicate they are carrying a unit of resource.

The robots start each trial at positions chosen from a random

uniform distribution, but the sequence of sources and sinks

that each robot visits is random but remains the same in

all trials. Each trial runs for 30 simulated minutes, and the

total number of resources delivered at the end of the trial

is our performance metric. 10 trials are performed for each

population size p.

The results of the simulation are summarized shown in

Figure 6. Hypothesis testing using a T-test shows that the

probability Pt−test that the results are not from significantly

different distributions for each population sizes of p =
10, 20, 30, 40 is 0.97, 0.022, 0.015 and 0.012 respectively.

All population sizes above 40 are from significantly different

distributions (Pt−test << 0.001). We conclude that in these

tests BRVO performs similarly to RVO in populations up to

40, and better in populations above 40 up to 200.

Consistent with previous work examining spatial interfer-

ence, we find that overall performance of the team increases

with population size initially, until it reaches a maximum,

after which the performance drops. Both RVO and BRVO

have the same performance with p ≤ 30. However, with

more robots, BRVO gives superior average performance to

RVO. The high variance observed with RVO is because

robots often create a congested area around the sinks or

sources which results in a degradation in performance. But,

sometimes they manage to distribute themselves in time and

space so that no large crowd of robots are present at the same

time near the sinks or sources and thus there is no drop in

performance. In case of BRVO, even if the source or the sink

is congested, the leaving robots can easily navigate through

the crowd and progress in the task and which results in the

low variance and high performance.
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Figure 5: The normalized distance to goal over time for 300 agents using RVO (top) and BRVO (bottom). Robots spend

more time at the center when using RVO.

Figure 6: The number of resources transported vs. the robot

population size. The figure indicates that with more robots

BRVO is more successful in dealing with congestion and

produces results with low variance whereas RVO is not able

to generate satisfactory behavior.

VI. DISCUSSION

The Biased Reciprocal Velocity Obstacle acts effectively

in densely packed situations where RVO is not able to gener-

ate satisfactory behavior. In RVO, those reciprocal collision

avoiding sets are considered that are close to optimization

velocities vopt
A and vopt

B , and both robots are optimizing for

the same optimization velocities, i.e. the current velocities.

But in BRVO, this is invalidated since the leaving robot

(A) uses its own preferred velocity (vpref
A ) as vopt

A (and still

vopt
B = vB), whereas the other robot (B) uses the current

velocities of A and B as the optimization velocities. This

introduces a bias towards the preferred velocity to the new

velocity of robot A and, acting as a symmetry-breaking

mechanism, it makes the robot more aggressive for getting

out of the dense situation.

In this paper we assumed that the radii of the safety areas

with high congestion of robots are provided a priori. This

will impose a limitation on our method so that it cannot be

used in situations that regions with potential high density

are not known in advance. The creation of a method to

dynamically estimate the size of such regions will be left

for future work. Also, neither RVO nor BRVO guarantee

safe navigation in dense conditions, so an emergency-stop

mechanism must also be used to guarantee collision-free

behaviour. Neither RVO or BRVO are deadlock-free, but we

observe them both being very good in practice with hundreds

of robots and with real-world system stochasticity enough

to make deadlocks unlikely.

VII. CONCLUSION AND FUTURE WORK

In this paper we studied the performance of RVO in

densely packed situations. We showed that in tasks that

have a strong conflict in robot goals, such as having a

shared service location which is consequently surrounded by

robots, RVO is not able to exhibit a satisfactory behavior, i.e.

the robots progress in their path very slowly. We proposed

BRVO, a small extension to RVO, to deal with this problem

by breaking the symmetry among robots so that those that

are leaving the place are more biased towards their goal and
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are effectively prioritized to leave the place. The effective-

ness of BRVO is shown with two different experiments in

simulation. The results demonstrate that BRVO is capable

of handling very dense situations. BRVO is a coordination

method that integrates collision avoidance and interference

reduction in a multi-robot system.

The reader may felt that the extensions to RVO we have

examined are modest. We agree absolutely. Our modest

contributions are: (i) we identified a problem with the

otherwise excellent RVO that makes it unsuitable in some

situations due to symmetry effects; and (ii) we propose the

BRVO extension that is as similar to RVO as we could
make it, while substantially breaking symmetry and thus

addressing the problem. Our method is identical to RVO

when robots are away from the problematic points, and we

have shown empirically that it has significant performance

benefits in two scenarios that are challenging for RVO.

In future we will show BRVO working on a real multi-

robot system. Also we will work on methods to estimate the

radius of safety zones dynamically.
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