
To appear in IEEE Transactions on Robotics and Automation 1

LOST: Localization-Space Trails for Robot Teams
Richard T. Vaughan, Kasper Støy, Gaurav S. Sukhatme, Maja J. Matarić

Abstract—
We describe Localization-Space Trails (LOST), a method that

enables a team of robots to navigate between places of interest in
an initially unknown environment using a trail of landmarks. The
landmarks are not physical; they are waypoint coordinates gen-
erated on-line by each robot and shared with team-mates. Way-
points are specified in each robot’s local coordinate system, and
contain references to features in the world that are relevant to the
team’s task and common to all robots. Using these task-level ref-
erences, robots can share waypoints without maintaining a global
coordinate system.

The method is tested in a series of real-world multi-robot ex-
periments. The results demonstrate that the method (i) copes with
accumulating odometry error; (ii) is robust to the failure of indi-
vidual robots; (iii) converges to the best route discovered by any
robot in the team. In one experiment, a team of four autonomous
mobile robots performs a resource transportation task in our unin-
strumented office building. Despite significant divergence of their
local coordinate systems, the robots are able to share waypoints,
forming and following a common trail between two predetermined
locations for more than 3 hours, traveling a total of 8.2km (5.1
miles) before running out of power.

Designed to scale to large populations, LOST is fully dis-
tributed, with low cost in processing, memory and bandwidth. It
combines metric data about the position of features in the world
with instructions on how to get from one place to another; produc-
ing something between a map and a plan.

I. INTRODUCTION

Ants form supply columns to relocate valuable items through
complex, dynamic environments. Their remarkable effective-
ness is due to a highly robust strategy of local interactions
among a large number of autonomous agents. The chemical
trails formed by ants along their supply routes are robust with
respect to changes in the environment and to the ‘failure’ of
many individual ants [1], [2], [3]. Self-organized in this way,
the ants are more effective and efficient than they would be as
individuals; an ant trail is ‘more than the sum of its parts’.

These properties are attractive to agent designers in general
and in particular to robot builders who can see immediate appli-
cations for robot supply columns in hazardous or tedious envi-
ronments. We aim to use ant-inspired trail following as a means
to perform cooperative path-finding in general, and resource
transportation in particular.

In this paper we describe a method for generating and us-
ing trails of landmarks to navigate between places of interest.
The landmarks are not physical; they are waypoint coordinates
generated on-line by each robot and shared with team-mates
over a radio network. Waypoints are specified with reference
to features in the world that are relevant to the team’s task and
common to all robots. Using such task-level features as land-
marks avoids the need for recognizing and naming an external
set of objects that are otherwise irrelevant to the task. Using
these common landmarks, each robot can transform waypoint

coordinates into its local reference frame, avoiding the cost of
maintaining a fixed global coordinate system. Trails converge
on ‘good’ routes, where ‘good’ is specified by a distance metric
which can be defined to suit the application.

We present simple data structures that combine landmarks
into useful trails, and algorithms for generating, sharing and us-
ing the trails. We call the method ‘Localization-Space Trails’,
abbreviated to ‘LOST’. The means for generating and using
trails are loosely analogous to ant trail following. Instead of
directly modifying their physical environment like ants [1] or
performing an information-transmitting dance [4] about learned
landmarks [5] like bees, our robots communicate landmark in-
formation over a wireless network. This communication re-
quires very little bandwidth and is well within the capabilities
of current networks.

The method is applied to an example ‘resource transporta-
tion’ task, in which multiple autonomous robots find and re-
peatedly traverse a path in an unknown environment between a
known ‘home’ and a supply of resource at an initially unknown
position. This is not a toy or contrived system; our experiments
are performed with teams of three and four real robots in an
unaltered, uninstrumented office environment. The robots use
standard sensors, onboard computation and have no prior in-
formation about the world. Running the final version of LOST
described below, the robots shuttle between home and goal for
hours without human intervention.

A. Task

A team of robots works to transport resource in an unknown
environment. Robots start from a home position and search for
a supply of resources. On reaching the source, they receive a
unit of resource and must return home with it, then return to
fetch more resource repeatedly for the length of a trial.

Achieving this task reliably with robots would meet a real-
world need. For example a factory may require a supply of
widgets manufactured at position A to be transferred by robot
to position B. In a Flexible Manufacturing System, the layout
of the factory floor is expected to change over time. There will
also be occasional robot breakdowns, perhaps blocking the sup-
ply route. There may be considerable benefit from a team of
robots that can automatically find a new route without an up-to-
date map, or exploit several routes in parallel. There is also a
military need for supplies (medicine, food, ammunition) to be
transported over hazardous and uncertain terrain. The start lo-
cation and the existence of one or more goal locations may be
the only known features, and these may be a few meters or sev-
eral kilometers apart. Perhaps a future colony on Mars might
want to to retrieve resources from a distant autonomous mining
robot. A single future nano-robot could move only a tiny pay-
load on its own; like ants, large populations of robots will be

2

required to move a significant amount of resource in a reason-
able time.

In general, establishing a reliable robot supply column robust
with respect to loss of individual robots could be very valuable.
We chose this task as an ideal example of the application of
mutiple mobile robots.

B. Contributions

This paper describes Localization-Space trails for robot
teams. The main contributions of this work are:

1) We show that a team of robots can reliably create, share
and follow virtual trails, specified as lists of waypoints
in localization-space coordinates, between two locations
in the real world. The method generalizes to N loca-
tions, and provides an alternative to mapping and plan-
ning strategies.

2) Waypoints in unrelated coordinate systems can be shared
between robots by reference to mutually recognizable
task-level features. The robots require no external frame
of reference other than the events that characterize their
task. By sharing and manipulating a common, minimal
model of the world, anchored by task features, we exploit
feedback through the model in a kind of simulated stig-
mergy that produces coherent group behavior.

3) This work is an example of our methodology of Construc-
tive Robot Ethology; we take a functional view of an an-
imal solution to a hard general problem, and engineer a
related robot solution.

4) Long-duration experiments with teams of real au-
tonomous teams provide a case study of a realized, ro-
bust, cooperative multi-robot system.

C. Structure of this paper

After reviewing related work, we describe our previous ex-
periments in cooperative trail following (Section II). The cen-
tral part of the paper describes a generalized trail-following
strategy (Section III). We then describe a real robot team that
implements the trail following algorithm to perform the trans-
portation task (Section IV). We demonstrate in a series of ex-
periments that (i) the method copes with unbounded accumula-
tion of localization errors (Section IV-F), (ii) uses the shortest
discovered path (Section IV-G). A subtle problem with the orig-
inal controller is discussed and a solution is provided in Section
IV-G.2. Section IV-H shows that a suitably modified system
works robustly for long periods. The findings and implications
of the work are then discussed in Section V.

II. PREVIOUS AND RELATED WORK

A. Ant algorithms

The effectiveness of ant foraging has inspired solutions to
a variety of optimization problems expressible as path-finding,
for example load balancing and routing in communications net-
works [6], [7]. Ant algorithms are totally distibuted, with no
centralized controller. The outcome of the system is thus an
emergent property of the interaction of the agents with the
world. Such algorithms converge on the goal state by means

of feedback loops mediated either by direct communication be-
tween agents, or by indirect interaction by repeated sensing and
modification of the environment, known as stigmergy[8]. Stig-
mergy is the central idea in the “ant algorithms”, including co-
operative transport described by Bonabeau et al. [9]. Holland
et al. exploit stigmergy in a foraging task with real robots [10].
A robot is used to model non-trail ant navigation in [11]. Ant
algorithms have previously been suggested for a version of the
transportation task [12].

Chemical trail laying and following has been demonstrated
in robots [13], [14]. However it is often impractical and some-
times undesirable for robots to physically mark their environ-
ment. Trail following in localization space is not true stig-
mergy because the external world is not modified. We aim to
reproduce stigmergy-like advantages by maintaining a minimal
world model which is jointly manipulated; this simulates stig-
mergy. Mindful of the advice of [15], we seek to maintain as
little state as possible in the world model, and sense the world
directly for the most part.

B. Cooperative group robotics

A useful review of cooperative multi-robot systems is given
in [16]. Cooperative robot systems are typically behavior-based
[17], [18], for example [19] demonstrate control of formations
of lab robots and outdoor vehicles using reactive behaviors. A
variety of group behaviors were constructed from a common set
of basis behaviors in [20]. Formations without global localiza-
tion have been demonstrated by [21].

Communication is expected to enhance the capabilities of
multi-robot systems. Communication on various levels in
multi-robot system was studied by [22], who found that sim-
ple, low-cost communication was almost as effective as their
more complex strategies. A distinction was made in [23] be-
tween two types of knowledge shared in robot teams; Type 1
is global goals where the agents are informed of a global goal
that each must work to achieve; Type 2 is global knowledge;
data that are shared about the common environment to help an
individual achieve its goals. LOST shares only Type 2 global
data.

Our communication strategy is informed by the work of [24],
[25], who examined the emergence of coherent group behavior
by means of minimal signalling and listening strategies.

C. Localization and mapping

The dual problems of localization and mapping have been
extensively studied in robotics. They are duals because solv-
ing one greatly simplifies the solution to the other. Given a
map, a robot can localize itself. Given accurate localization es-
timates, a robot can build a map. Most approaches to mapping
and localization (whether tackling one or both simultaneously)
have focused on the generation of accurate maps of the environ-
ment with metric support. In particular, metric localization has
been studied in two variants: as the tracking problem (where
the initial pose of the robot is known) [26], [27], and as the kid-
napped robot problem (where the intial pose of the robot is un-
known) [28], [29]. Metric mapping with imprecise localization
has been studied as the simultaneous localization and mapping

3

problem [30], [31], [32]. Metric approaches to localization and
mapping while accurate are computationally intensive. On the
contrary, topological approaches [33], [34], [35], [36] to map-
ping are less computationally intensive and scale to multiple
robots [37] rather more easily. However, the resulting maps
(and location estimates derived from them) are coarse.

Mapping techniques could be applied to the transportation
task. Once a map is generated and the goal found by exploring
the environment, conventional path-planning could be used to
find the optimal (or, more tractably, a near- or pareto-optimal)
route through the environment. Subsequent planning can also
be used to generate trajectories for the robots.

Trail following schemes like ours are proposed as an alter-
native to conventional mapping and path planning for solving
path-finding problems under certain constraints. An impor-
tant advantage of trail following is that it scales well; indeed
it works better as the population size increases. We will return
to this in Section V below, comparing LOST to state of the art
metric mapping methods.

D. Trail following in a global but noisy localization space

We define localization space as any consistent spatial or topo-
logical representation of position. Such a space is shared if
there is some (probably imperfect) correlation between the rep-
resentations maintained by two or more individuals. A prime
example is the Global Positioning System (GPS). Two systems
equipped with GPS share a metric localization space in plane-
tary coordinates. Similarly two robots that start out with known
positions in the same coordinate system and maintain a posi-
tion estimate via odometry share a localization space. In both
examples each robot has only an estimate of its position in the
true space, but the true space is common to both. More abstract
localization spaces can be considered, such as the location of a
data byte in a hierarchical database or a URL on the Internet. In
these cases too, there can be some uncertainty in position; for
example if position is described by a fuzzy matching rule or an
ambiguous data query. Our intuition is that trail following may
be possible in such spaces. For now, we examine only metric
spaces.

A first version of our trail following strategy was described
in [38]. It was inspired loosely by the foraging mechanisms
of ants and bees [1], [4]. In our simulator ‘Arena’ (now re-
named ‘Stage’ [39]), a population of robots shuttled between
pre-specified ‘Home’ and ‘Goal’ regions of a large (60x60
robot-body-lengths) environment sparsely filled with obstacles.

Trail-following was found to compare favorably with an al-
gorithm that used global knowledge of the environment. Robots
were localized using a GPS-like global coordinate system with
a noise model imposed. The method was shown to be robust
with respect to significant localization error; indicating that it
should be suitable for use in the real world.

E. Trail following in global localization space using odometry

Following these encouraging results, the method was imple-
mented on real robots [40]. We performed experiments on a
team of robots which localized by integrating their odometry.

All robots are started from the same position so their coor-
dinate systems are initially aligned. The correlation between
the spaces was observed to deteriorate over time as the error
in each individual’s localization estimate increases. Figure 1
shows plots of the localization estimates of four robots as they
work in the hallways of our building, shuttling between ‘Home’
and ‘Goal’ positions (Points A and B in Figure 2.

By sharing waypoints specified in their local coordinate sys-
tems, the robots were able to successfully travel from home to
goal for 28 minutes, at which time the system broke down. Af-
ter this much time, the robot’s coordinate systems had diverged
so much that waypoints could not be meaningfully shared be-
tween them.

In spite of this, our original trail following algorithm has
some attractive properties: it finds good paths between loca-
tions, is reliable, is independent of the localization method em-
ployed by the robot, is adaptive to dynamic environments, and
requires modest computation and communication resources. It
is reasonbly robust to localization error, but it requires a global
localization space. Maintaining an accurate global position es-
timate is often complex and always costly [28], [41].

F. Abandoning global localization space

The most readily available sensors for localization are
rate-measuring devices (odometry, accelerometers, gyroscopes,
etc.) which have no fixed frame of reference. The rates must be
integrated over time to obtain position estimates. The magnetic
compass and Global Positioning System (GPS) are counter-
examples with fixed reference frames, but these are restricted
to certain (magnetically neutral, satellite line-of-sight) envi-
ronments, so we do not consider them here. Rate-integrating
methods suffer unbounded drift and are therefore nonstation-
ary; this means that a population of robots which start from
known global positions and update their position estimates by
integration will have their coordinate systems diverge over time.

Our thesis is that many tasks, including cooperative resource
transportation can be achieved without computing full, map-
like representations of the environment, thus saving the time
and power required for the computation.

For reasons of generality, simplicity, efficiency and robust-
ness we aim to design robot systems that can work in novel
environments using self-referenced, nonstationary coordinate
systems [constraint 1]. In multi-robot systems with symbolic
communication this becomes a problem of referring to places
in the world without maintaining a common coordinate system.

Our previous work assumed that there were two places of
interest in the environment (referred to as ‘Home’ and ‘Goal’)
connected by a single crumb trail. The trail was followed for-
wards towards the ‘goal’ and backwards towards ‘home’. We
have since generalized the method to handle N places by record-
ing N trails (though we will only present results here for an N=2
experiment).

III. GENERALIZED LOCALIZATION-SPACE TRAIL

FOLLOWING

This section presents the details of our generalized trail-
following method, including data structures and algorithms for

4

Punky Bee AntTanis

Fig. 1. The trails announced by each robot over the 30 minutes trial, illustrating the accumulating odometry errors and the large variation between robots.

Fig. 2. Diagram of the experimental environment; part of our office building; robots are drawn approximately to scale (left). Photograph of the environment
(right).

their manipulation. We then describe an implementation on a
team of robots and show how the trail-following method can be
straightforwardly integrated with a low-level navigation con-
troller that is specific to a particular robot and environment.

A. Events

We define an Event as a task-relevant occurence that is per-
ceived by a robot. The ‘Event’ concept is deliberately general.
It is intended to capture some detectable regularity in the task at
hand. For example, in a transportation task that requires acorns
to be collected from a source pile and delivered to a bucket, the
relevant Events would be ‘pick-up-acorn-from-pile’ and ‘drop-
acorn-in-bucket’. A robot must be able to recognize these
events in order to switch between acorn-seeking behavior to
bucket-seeking behavior. Typically, Events are goals within the
system; a robot transporting acorns would seek to experience
Event ‘pick-up-acorn-from-pile’, followed by ‘drop-acorn-in-
bucket’, and so on. It is a requirement of a goal-directed system
that it is able to recognize goals in this way.

An important constraint of our method is that the localiza-
tion error is relatively small on a single traverse between Events
[constraint 2]. Bias error (drift) must accumulate slowly relative
to the frequency of experiencing events. The absolute localiza-
tion accuracy required to meet this constraint is determined by
the size and complexity of the environment, and not by LOST
itself, which requires only that the localization is sufficiently
good to allow the robot to reliably travel from one Event to
another. LOST compensates for arbitrary drift over indefinite
periods, but it can only make adjustments when Events occur.

LOST requires that such Events be recognized and given
common names by multiple robots in the population; for infor-
mation to be shared between two individuals, they must recog-
nize at least two Events in common [constraint 3]. In a team of
homogeneous robots engaged in a single group task, we expect
that all robots would recognize the same set of named Events.

A more diverse population might have robots that recognize dif-
ferent subsets of all the possible Events.

For now we assume that all Events of the same type always
happen at the same place [constraint 4] (though this constraint
will be relaxed in future work as we exploit more of the dy-
namic properties of LOST).

When a robot detects an Event, it records its current loca-
tion estimate and associates it with that Event. A robot can
then express information about the world relative to location of
Events. Other robots that have position estimates for the same
Events can interpret the coordinates in their own local frame of
reference.

LOST uses Events to exploit the regularity of the popula-
tion’s shared task(s), allowing individuals to share references to
places in the world. The rest of this section describes the ma-
chinery required to maintain the necessary estimates, perform
the required calculations, and interface with the robots’ control
system.

B. Trails, Places and Crumbs

The purpose of the Trail-following method is to guide the
robot to an Event of interest, somewhere in the environment.
It provides two useful pieces of information; (i) the heading-
hint

���
is the direction in which to travel to reach the current

goal; (ii) the distance-hint � � is the estimated time required to
reach the goal. The rest of this section descibes how trails are
created, manipulated and used to generate the Heading-hint and
Time-hint.

The method’s representation consists of Crumbs (the way-
points) and Places (the task-level common landmarks) col-
lected into a Trail. Information is shared by combining Trails
according to certain rules. Each of these elements is described
below.

1) Places: global task-level landmarks: The main aim of
this work is to remove the requirement that a group of robots

5

maintain a conventional global coordinate system or map in or-
der to communicate information about places of mutual inter-
est. The method is based on the commonality of Events.

In our transportation task illustrated by Figure 2, the source
(labelled �) and sink (labelled �) of resources are common
to all robots. At the source the robot finds a unit of resource
(Event �); at the sink it its relieved of the unit (Event �). The
coordinate at which this happens is different for each robot as
each has an independent frame of reference; it even changes
over time as the local coordinate frame drifts. References to
another Event � can be made relative to the current location
estimates for � and � . Any member of the population that
maintains estimates for � and � can interpret a reference to
� in local coordinates in terms of � and � . The accuracy of
the transformation is determined by the accuracy of estimates
� and � held by both parties.

Places are represented as tuples containing the name � of the
event (e.g. � , �), and a position � in localization space. The
localization space can have any number of dimensions; � must
fully specify a single point in this space. We will consider only
a two dimensional localization space, so here �����
	����� .
Place -> [E, L] #in general
Place -> [E, (x,y)] #for points on the plane

2) Crumbs: local waypoints: Named for the trails of Hansel
and Gretel [42], our trail waypoints are called Crumbs. Our
Crumbs are data structures that describe the distance (in time) to
a Place from a particular location in the local coordinate system.

A Crumb is composed of the name of the Place � to which it
refers, a localization space position � , an estimate � of the dis-
tance from � to � , and the time � when the Crumb was created:

Crumb -> [P, L, d, t]

The distance � does not have to be in any particular dimen-
sion, as long as all robots agree. For our experiment, we used
time as the distance value. Our robots moved at an approx-
imately constant speed of ������������� � , and a crumb was gen-
erated every 2 seconds, so a distance value of 1 (in seconds)
corresponds to a physical distance of approximately 0.5m.

3) Trails: shared local data: A Trail is a set containing any
number of Crumbs and Places. Each robot starts with an empty
trail which is built up over time according to the trail-laying
algorithm. A very simple trail might look like this:

[A, (0,0)] #Place
[B, (10 5)] #Place
[A, (3,4), 20, 201] #Crumb

This could be expressed in English as: in the coordinate sys-
tem in which Place � is at (0,0) and Place � is at (10,5), � was
20 distance units away from (3,4) at t=201 seconds.

4) Putting Places into Trails: An event �"! occuring at Lo-
cation �#! will cause a new Place $ �%!����&!(' to be added to the
Trail. Any existing Place that locates the same Event is deleted.
Thus the trail always contains the most up-to-date record of the
position of �%! . Formally:

) �+*,�-��$ �.���/'1032 465��7!%�8�:9
2 4<; � �+*=2 4?>) 96@A*B$ �7!����#!C'D9

(Let
)

be the set of all Places in the current Trail 2�4 that locate
Event �7! . The trail at the next timestep 214<; � is equal to the
current Trail with � deleted and new Place $ �"!E�F�&!C' added).

It follows that a Trail can contain only one Place per Event.
For example in a resource transportation task with a single
source and a single sink, there are two Places; one for the
receive-resource Event, and one for the drop-resource Event .

5) Combining trails: Two Trails can be combined if they
have two Places in common. If Trail G contains Places at loca-
tions �"G and �HG and Trail I contains places �%I and �HI , there
is a unique transformation J that maps the vector from �LK to
�MK onto the vector from �7N to �%N :

JO� P�7IQ�HIQ�&� P�%GO�HG

where J is a simple linear coordinate transform consisting of a
translation, scaling and rotation.

Once determined, J can be applied to map the coordinates of
any location � , whether in a Crumb or a Place, from one Trail
to the other. To combine the current Trail 2 4 with a new Trail
2 , we do:

2 4R; � �S2 4 @A*,TO�VUW�X5,UY0Z2L9
i.e., The trail at the next timestep equals the current trail plus
all the members of the incoming trail transformed through T ,
where T is a function that transforms the location element of
the vector U , whether a Crumb or a Place, though J .

The resulting trail 2 4<; � contains all of 2 ’s Crumbs and
Places, transformed into 214 ’s coordinate system.

If two trails do not have two Places in common, two differ-
ent actions can be taken depending on an adopted policy. If we
adopt a pessimistic policy, the coordinate systems are assumed
to be different and the trails can not be combined by the al-
gorithm above. If we adopt an optmistic policy the coordinate
systems are assumed to be the same and the trails are combined
as-is, by simply copying Crumbs and Places from one Trail to
the other. If the Trails have one Place in common and the op-
timistic policy holds, orientation and scale are assumed to be
similar to both Trails, and the Crumbs and Places can be trans-
formed by translation alone into the local coordinate system.

If two trails have more than two Places in common, we can
either pick two Places with which to do the standard transfor-
mation, or do a more sophisticated combination such as finding
the transformation which produces least error between all valid
pairs. We suggest that choosing any matching pair at random
would be a simple, unbiased approach that will average out er-
rors as the process is repeated with each Trail received. We
note here that the coordinate transform may perform poorly in
the case where Events are very close together relative to the
error in localization.

C. Trail decay

The trail is continually scanned and any Crumbs with times-
tamp older than the age threshold [(we used [=4 minutes) are
destroyed. This allows for dynamic update of the trail, as out-
of-date information is deleted. The dynamic response of the
trail to changing environments is a function of [.

6

D. Trail-laying algorithm

To implement LOST, each robot maintains an individual
Trail. The trail is initially empty. A robot will add members
to its Trail for two different reasons:

1) The robot experiences an Event � . If this happens the
robot updates the Trail by adding a Place $ � ���6' where �
is the robot’s current location estimate. The Place is in-
corporated into the Trail according to the rules in Section
III-B.4. This is how a robot gathers information about the
locations of task-relevant events for itself as it explores.

2) If a robot receives a trail on the network, the received trail
is combined with the local Trail according to the rules in
Section III-B.5 above. In this way Crumbs and Places
generated by individual robots are incorporated into the
Trails of all robots on the network.
In our robot implementation, the received trail is trans-
formed into the local coordinate system. Another pos-
sibility is to transform the contents of the local Trail to
match the received trail; this will cause all the Trails to
converge to a common coordinate system. However, as
the incoming trails are very small, and the local trails are
relatively large, this is computationally expensive. As we
do not seek a global representation, we choose to do the
least expensive transformation.

Trails appear on the network because they are periodically
generated and broadcast by robots. If a robot is moving, it cre-
ates a temporary Trail 2 ������� every

�
seconds (we used

� �
).
The temporary trail consists of copies of all the Places in the
robot’s main Trail 2 4 , plus a single Crumb filled in with the
current location, the name of the last Event � , the distance �
from the Event (we used elapsed time as a distance metric), and
the current time � , i.e.

2 ������� �+*,� 032 4 9#@A* $ � �F�7� � � � ' 9
where P denotes a Place. [Alternatively, a Crumb can be gener-
ated for each Event in the Trail rather than just the most recent
Event; we will examine this option in future work].

This temporary trail is broadcast on the network, then
deleted. In this way, as they explore the environment, expe-
riencing Events, periodically broadcasting single-Crumb trails
(‘dropping Crumbs’), and (more frequently) receiving Trails
on the network, each robot builds a Trail structure containing
Places and Crumbs that describe how to get to Events.

E. Trail-using algorithm

Suppose a robot has a certain Event �� as its goal, such as
�� = ‘drop-acorn-in-bucket’. The robot interrogates the Trail to
discover which way to move to decrease its distance from the
goal Event.

Given the robot’s current location � ! and goal Event � , the
Trail can recommend a heading

� �
and provide an estimate of

the distance to the goal � � . These are generated by finding
the set of Crumbs � in the Trail whose Event � 4 equals ��
and whose location � 4 lies within the a fixed radius � of the
robot’s current location � ! . The distance-hint � � is equal to the
smallest distance-to-goal estimate in � . The heading-hint

� �
is

the angle from �#! to the location � � of the Crumb containing

Obstacle

4

GOAL EVENT

1

3

2

5789101112

Crumbs

Robot

radius r
Obstacle

Fig. 3. The Trail-reading algorithm; a robot moves towards the Crumb (rep-
resented by numbers) within its sense radius � that has the lowest estimate of
distance-to-goal

� � . This is illustrated in Figure 3, and can be stated formally
as:

� � *B$ � 4 �F� 4 � � 4 � � 4 '�0 2 5
�D�74Q�8� ��

�
�#4V�&!����E�C9

$ � � �F� � � � � � � � ' � $ �����F����� ����� ��� 'Q0�� 5,� �"!6� �#�=�� � � $ �&! � �

If � is empty, then � � �&%(' , indicating that the Trail has no
information about Event � within � meters of � ! . Otherwise
� � is positive.

The algorithm causes the robot to move towards it’s goal
Event by following a trail of Crumbs with decreasing distance
estimates. In Figure 3 the lowest distance-to-goal estimate of
the Crumbs within the robot’s sense radius � is 7; the robot
steers towards the Crumb, and therefore towards the goal. The
robot will take the shortest route so far discovered from that
location. By following the Crumbs dropped by the whole pop-
ulation, each robot benefits from the others’ exploration; robots
will find a reasonable route much more quickly than they would
alone. The larger the population size, the greater the probability
of finding an efficient route and the more quickly a good route
is found.

If the crumb sensing radius � is larger than the distance be-
tween dropped crumbs (the dropping frequency T multiplied by
the robot’s translation speed �), as in Figure 3, then the robot
can follow a continuous trail of crumbs to the goal.

IV. EXPERIMENTS

The following experiments were performed to test the effec-
tiveness of LOST in a simple version of the resource transporta-
tion task. We describe three experiments that demonstrate dif-
ferent aspects of the approach.

A. Environment

The system was tested in our unmodified office building. The
floors are smooth and hard, offering good conditions for odom-
etry. The corridors are just wide enough to allow two robots
to pass each other. The experiments were performed in the
evening but the corridors were open to other building users,

7

Fig. 4. The Pioneer 2DX robots used in the experiments.

and people passed by the robots repeatedly during each trial.
The robot navigation controller was designed to avoid obstacles
such as trashcans and lockers, and to ignore passers-by (includ-
ing people and other robots) unless they directly impeded the
robot’s progress.

The floor layout is shown in Figure 2(left) and is the same as
used in [40]. Figure 2(right) shows the robots navigating in the
test environment. Home and Goal are separated by at least 31m
of corridor and two corners in every case.

B. Robots

These experiments were performed with teams of three and
four robots drawn from our pool of 9 identical ActivMedia
Pioneer 2DXs. We refer to the robots by their names (Bug,
Ant, Bee, Fly, Punky and Tanis) in the results below. These
are small (50x50x40cm) mobile robot bases with two indepen-
dently driven wheels and a rear castor. Ours are fitted with
PC104+ Pentium II computers running Linux. Each robot has
front and rear 8-sensor sonar rings and wheel encoders as its
basic sensors. A SICK LMS 200 scanning laser rangefinder
was fitted to the front of each robot, providing good quality
range readings over a 180 � field of view. In its default con-
figuration the SICK gives two samples per degree and a range
accuracy of a few millimeters to most surfaces. 802.11 wire-
less Ethernet connected the robots and our workstations with
an effective bandwidth of 1Mbit/sec (1.9Mbit/sec on sustained
large-file transfers).

Each robot was controlled by a single program running on
its internal computer, using an early version of our networked
robot interface Player [43]. The controllers are described be-
low. Performance logs were kept locally on each robot to min-
imize network load, then downloaded after each experiment.
Visualization and debugging software ran on a central worksta-
tion.

We chose to abstract away the handling of units of resource.
Rather than picking up and carrying real objects, the robots lis-
ten on the network for messages indicating they have reached a
Place. The messages are generated by the experimenters press-
ing a button on a GUI when the robot is within a preset distance
from the Place; Places are marked on the floor with tape. For
verification and as a visual aid, the experimenters also attached
sticky notes to each robot’s laser turret when reaching Place �
to indicate picking up resource, then removed it when reaching

place � . The sticky notes at � were counted after each trial to
verify the logs kept by each robot.

Simulating the handling of object in this way minimizes the
complexity of our robots without changing the nature of the
problem. We assume that the trail-following system can be in-
dependent of the sensing and handling mechanisms that would
be required to manipulate real objects.

Localization estimates are made by integrating odometry
from the wheel encoders alone. Our experience with the Pio-
neers has shown that the accuracy of an individual’s odometry
estimate varies from robot to robot and from trial to trial, so
we do not attempt to characterize its accuracy here. Rather, the
Pioneer is taken to be reprentative of a typical research robot.
Occasionally the Pioneers suffer dramatic odometry errors; the
position estimate will jump several meters or not change for
several seconds despite a constant actual translation. This short-
coming of the Pioneers increases the difficulty of our experi-
ments and severely tests the robustness of our algorithms.

We have previously demonstrated significant improvement
of the Pioneer’s localization estimate by combining its odomet-
ric position estimate with that of an inertial sensor package by
means of a Kalman filter [27]. To emphasize the usefulness of
the trail-following method, we chose to use only the most sim-
ple odometric localization scheme, available ‘out-of-the-box’
to most robot users.

C. Robot Behavior

All robots run an identical controller, designed in the
behavior-based paradigm [17]. Navigation and obstacle avoid-
ance are provided by three high-level ‘behaviors’: Navigate,
Stop and Panic.

Navigate drives the robot around the environment following
walls, turning down corridors and following crumb trails. Nav-
igate is described in detail below.

Stop monitors the laser sensor; if any obstacle is sensed
within a threshold distance of the robot, all the wheels are im-
mediately stopped. Stop has the highest priority; it subsumes
(disables the outputs of) all other behaviors.

Panic monitors the robot’s wheel speeds; if the robot has not
moved for a short time (we used 2 seconds), Panic subsumes the
Navigate behavior and turns the robot on the spot in a random
direction until it detects free space, then moves forward. After
a latch interval (we used 6 seconds) Panic times out, re-enables
Navigate and returns to monitoring the wheels.

Stop and Panic work together to handle situations that con-
found Navigate. They prevent collisions and effectively ‘un-
stick’ the robot from obstacles, dead ends and traffic jams. We
have found Randomized behaviors (like Panic’s choice of turn
direction) to be a powerful mechanism for avoiding deadlock
and cyclic behavior and are often a better solution than a more
‘thoughtful’ behavior.

D. The Navigate behavior

Navigate exploits the accuracy of the SICK laser scanner
to move through the environment, closely following walls and
turning into open corridors. Whenever a Trail-hint is available,
Navigate uses it to decide which way to turn.

8

Trash can Robot

Fig. 5. Principle of the sliding box algorithm. The free-space box is initially
placed to the left of the robot and is slid in the direction of the arrow until there
are no obstacles detected inside the box.

The Navigate behavior is more sophisticated than Stop and
Panic. It performs one of these discreet, mutually exclusive
actions:

1) Follow walls
2) Turn left
3) Turn right
4) Turn around
The action taken is determined by the following algorithm,

in which Booleans ��� ��� � and � !F4 �� � are true iff a corridor is de-
tected to the left and right, otherwise they are false. The ‘ � ’ op-
erator returns true if its arguments differ by less than � � radians.
From Section III-D, recall that � � is the estimated distance-to-
goal and

� �
is the heading to the Crumb containing � � . If no

information is available, � � � %(' and
���

is undefined. � is the
heading error, i.e. the difference between the current heading� ! and the Trail-suggested heading

� �
.

- MAIN LOOP:
- IF(� � � %(') EXPLORE
- ELSE FOLLOW TRAIL

- EXPLORE:
- IF(CL) turn left with probability 0.5
- ELSE IF(CR) turn right with probability 0.5
- ELSE follow walls

- FOLLOW TRAIL:
- E = (

� ! % ��� ���
	�� ���
- IF(E ��) turn around
- ELSE IF(��� ��� � AND E � � �) turn left
- ELSE IF(� !F4 �� � AND E � � ��) turn right
- ELSE follow walls

The actions do the following things:
1) Follow walls: Wall following is implemented using a

sliding box algorithm. A virtual box a little bigger than
the robot is placed to the left in the laser scan (see Figure
5). The box is moved left to right in front of the robot
until the laser scan shows no obstacles within the box.
The robot moves forwards at a constant speed, turning
towards the center of this box. If there are no obstacles,
the box slides along the wall as the robot moves forward.
If an obstacle appears, such as the trash can in Figure 5),
the box slides out into free space and the robot heads out
from the wall to avoid the object.
This approach is a simple way to provide some ‘look-
ahead’ and adjust the path to avoid approaching obsta-
cles. The width of the box is adjusted to determine the

distance kept to the wall; its length determines the dis-
tance at which obstacles influence the robot’s heading.
If there are no obstacles in the first box that is placed it is
assumed that the robot is in a big open space and there-
fore moves forward. If no open space is found the wall-
following system turns the robot in the opposite direction
to the nearest obstacle.

2) Turn left/right: While wall following the robot is contin-
ually processing the laser range data for large openings to
the left and right. A corridor is identified if the extreme
left or rightmost laser samples show a nearby obstacle
followed by a large discontinuity and an opening wide
enough to accommodate the robot.
The robot performs a sharp 90 � left turn into corridors on
the left, and wide 90 � right turns into corridoors on the
right. This minimizes the chance of interference with
other robots in the junction, and leaves the robot at ap-
proximately the correct following distance from the left-
hand wall.

3) Turn around: The robot turns 180 � , traveling a right-
handed semicircle of diameter a little narrower than the
corridor. This makes a smooth transition from following
the left-hand wall, to following the other wall in the op-
posite direction.

A turn is executed completely before another high-level con-
trol decision is made. Once a turn is completed, all turns are
disabled for a short time (4 seconds in our implementation).
This latching mechanism implements a strategy of ‘commit-
ment’ which avoids unwanted oscillation between behaviors.

This navigation controller was designed to make the most of
the limited space available in our environment. Navigate will
keep control of the robot unless the Stop behavior detects an
obstacle critically close to the front of the robot. These behav-
iors make it possible for the robots to perform their task in small
rooms and narrow corridors, passing within as little as 20cm to
the side and 40cm to the front of each other before interference
occurs.

When no Trail heading is available (for example at the be-
ginning of a trial), Navigate explores the environment, turning
into available corridors at random. When Trail headings are
available, Navigate causes the robot to follow the Trail.

E. Search strategy

A random exploration strategy was chosen because it is sim-
ple, requires no a priori knowledge of the environment and will
always find a path if one exists, given sufficient time. Thus if a
path to the resource exists, a robot will eventually reach it. The
first robot to reach the resource must have used the most time ef-
ficient path yet discovered and, by the trail broadcasting mech-
anism, all robots now have a list of waypoints describing this
path. Random search finds a path more quickly with larger pop-
ulations, but we found that a population of 4 was large enough
to perform well in our relatively constrained environment.

F. Experiment 1: Transforming local coordinate frames

This experiment was performed to verify that the Trail-
following method will allow real robots to share Trails between

9

Home (A)

Goal (B)

robot start

40m

18m

3

Fig. 6. Diagram of experiment 1; three robots start at A facing to the left and must find a route to B.

Punky Fly Ant Total
Trips 14 19 19 52
Distance (m) 483 553 568 1605
Lifetime (min) 32 40 41 113

TABLE I
EXPERIMENT 1: TRANSFORMING COORDINATES - SUMMARY OF RESULTS

diverging reference frames. Combined with the low-level robot
controller described above, the system performs the resource
transportation task. Three robots were used with the controller
described in the previous section. Figure 6 shows the environ-
mental set-up for this experiment.

1) Procedure and data gathered: The robots are started one
at a time from the same spot at the home position � , with the
same orientation. This position is taken as the the origin of their
odometric localization space. On start-up each robot is told it is
at Home/ � , so it creates a Place with name � at the origin. The
robots’ local coordinate systems are therefore initially aligned,
so we adopt the optimistic strategy for receiving trails as de-
scribed above. This allows a robot to use received trails before
it has visited both Places � and � . This speeds up the con-
vergence to a common trail, but makes the system vulnerable
to failure if coordinate systems diverge very quickly. The opti-
mistic strategy was found to be acceptable in practice with our
implementation.

After initialization, the controller is run and the robot starts to
explore the environment. When a robot comes within 1m of the
home or resource position the experimenter ‘gives’ or ‘takes’ a
unit of resource by sending the robot a message via the network.
The robots are fully autonomous for the entire trial. The trial
was stopped when only one robot remained working.

Every time a robot completed an A-B or B-A trip the time
and the name of the robot is noted. A log is also kept of all
1-Crumb Trails broadcast by each robot.

2) Results: Table I summarizes the results of the experi-
ment, showing the number of trips, distance and lifetime of
each robot. They made a total of 52 trips of � 31m each over
41 minutes, traveling a total of 1.6km (0.99 miles) before the
experiment was stopped.

At 34 minutes, Punky started to circle around a point ap-
proximately 1m short of the goal zone, repeatedly following
the wall then turning around following the opposite wall. The

Fig. 7. Experiment 1: Transforming coordinates - Events

experimenters assumed a bug in the code (we had previously
ironed out several problems), disabled the robot’s wheel mo-
tors and pushed it out of the path of the other robots. Fly and
Punky continued for another 7 minutes, until Fly’s battery was
exhausted and the experiment was stopped.

Figure 7(top) shows the time that each robot reached Places
� and � , where a visit to Place � is represented by a point
plotted low, and Place � by a point plotted high. The regular
interval between points in each case shows that the robots were
consistently following the trail between the Places. The inter-
val between Places is similar for all robots, indicating similar
performance of each robot while running.

Figure 8(top) shows plots of the localization estimates of
the three robots over the length of the experiment. The 3-
dimensional plots 8(bottom) are of the localization estimate
(x,y) plotted against time (z) to show how the path evolves.

Punky’s failure can be seen as the tight circling at (16,2) and
34 minutes in Figure 8(right). As the Pioneer’s odometry esti-
mate degrades rapidly when turning, Punky’s orientation esti-
mate became poor during the cycling behavior. The single line
to the top right of the 2-D plot shows Punky’s position estimate
as we pushed it down the corridor.

It can be seen that Ant’s coordinate system Figure 8 (left) ro-
tated more quickly than that of Fly (middle) or Punky (right).
After 30 minutes, Ant’s coordinate system has rotated more
than 90 � relative to that of both Fly and Ant. Despite the rela-
tive rotation of their coordinate systems, Fly and Ant continued
to successfully follow the trail with zero turning errors until the

10

Ant

 0 5 10 15 20x (m) -10
-5

 0
 5

 10

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)
Fly

 0 5 10 15 20x (m) -10
-5

 0
 5

 10

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)
Punky

 0 5 10 15 20x (m) -10
-5

 0
 5

 10

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)

-10

-5

 0

 5

 10

 0 5 10 15 20

y
(m

)

x (m)

Odometric localization estimate

Fly

-10

-5

 0

 5

 10

 0 5 10 15 20

y
(m

)

x (m)

Odometric localization estimate

Punky

-10

-5

 0

 5

 10

 0 5 10 15 20
y

(m
)

x (m)

Odometric localization estimate

Ant

Fig. 8. Experiment 1: Transforming coordinates - Paths

Tanis Bug Fly Ant Total
Trips 18 16 17 16 67
Distance (m) 516 486 475 449 1926
Lifetime (min) 36 37 32 26 131

TABLE II
EXPERIMENT 2: SHORTEST PATH - SUMMARY OF RESULTS

end of the trial.
This demonstrates that the three robots were able to trans-

form Crumbs between their coordinate systems, despite the di-
vergence of their coordinate systems due to accumulating error
in their odometric localization estimates.

G. Experiment 2: Shortest path convergence

This experiment was performed to verify that the method
causes robots to converge to the shortest path discovered.

The experimental set up is shown in Figure 9. Four robots are
started at � . The robots use identical controllers to the previous
experiment. Two start facing left (Bug and Tanis) and two face
to the right (Ant and Fly). They are initially co-localized, i.e.
they are all started from approximately the same point, which
is the origin in their localization space and the two right-facing
robots have their initial orientation set to 180 � .

The robots are started and begin to explore the environment.
The same statistics are kept as for the previous experiment.
Again, the experiment ends when only one robot is left work-
ing.

1) Results: Table II summarizes the results of the trial. Fig-
ure 10 shows the times of arrival at Places � and � . From the
plot we see that Fly and Ant first arrive at around 2 minutes, re-
turn to � at around 4 minutes, then shuttle between the Places
at approximately 4 minutes per round trip . Tanis and Bug take
around 4.5 and 5 minutes respectively to reach � for the first
time, then settles into a similar 4 minute round trip time.

The localization plots in Figure 11 show that Bug and Tanis
initially headed away from the goal. Bug turned two corners
at random, as it travelled from (0,0) to approximately (19,-10)
then turned around and, by chance, took the same route back

 0 5 10 15 20 25 30 35 40

R
ob

ot

time (minutes)

Times that goals were reached by each robot

Tanis
Bug
Fly
Ant

Fig. 10. Experiment 2: shortest path - Events

towards the origin. When it nears the origin, it can calculate a
Trail heading from the data received from Fly and Ant. It takes
the route discovered by Fly and Ant and shuttles between � and
� for the rest of the trial.

From its furthest point from the origin, Tanis does not take
the same route back, but by chance follows the corridor along
to reach � from the opposite direction to Fly and Ant. Tanis’
Trail now contains Crumbs describing two routes between �
and � ; the one it took itself, and the shorter one discovered
by Fly and Ant. It takes the shorter route to � . The longer
route is never used. As the Crumbs that mark the longer route
reach their maximum age, they are deleted and the long route is
forgotten. This saves storage space and processing time as the
Trail is scanned.

The localization estimate plots again indicate that the robots’
coordiate sytems diverged over time. Tanis’ estimates drifted
by 100 � over 37 minutes; Ant’s drifted by 85 � . Bug’s odometry
shows drift in both directions, initially clockwise until around
15 minutes, then anti-clockwise. This illustrates the variability
of the Pioneer’s odometry.

Ant, Fly and Tanis all failed in the same way as Punky in
the previous experiment; they failed to reach Place � , circling
just short of it until they were switched off. Bug exhibited the
same behavior during the trial at 20 minutes and 24 minutes,
but recovered both times and continued to drive between the

11

Home (A)

robot start

Goal (B)

40m

18m

22

Fig. 9. Diagram of experiment 2; 4 robots start at A. 2 face left, two face right. They must find a route to B.

-15

-10

-5

 0

 5

 10

 15

 20

-15 -10 -5 0 5 10 15 20

y
(m

)

x (m)

Odometric localization estimate

Bug

-15

-10

-5

 0

 5

 10

 15

 20

-15 -10 -5 0 5 10 15 20
y

(m
)

x (m)

Odometric localization estimate

Fly

-15

-10

-5

 0

 5

 10

 15

 20

-15 -10 -5 0 5 10 15 20

y
(m

)

x (m)

Odometric localization estimate

Tanis

Ant

-15 -10 -5 0 5 10 15 20
x (m) -15-10-5

 0 5 10 15 20

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)
Bug

-15 -10 -5 0 5 10 15 20
x (m) -15-10-5

 0 5 10 15 20

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)
Fly

-15 -10 -5 0 5 10 15 20
x (m) -15-10-5

 0 5 10 15 20

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)
Tanis

-15 -10 -5 0 5 10 15 20
x (m) -15-10-5

 0 5 10 15 20

y (m)
 0
 5

 10
 15
 20
 25
 30
 35

time (minutes)

Fig. 11. Experiment 2: shortest path finding - Paths

Places.
This experiment demonstrates that the robot team will con-

verge to use the shortest known path. However, the system suf-
fered from a problem that made it unreliable and could not be
traced to software error.

2) Diagnosis and solution: Consideration of these results
leads to the conclusion that the problem lies in an accumulating
shortening of the trail.

The circling is inevitable if a robot reaches the end of the
Trail (i.e. the Crumb with the lowest time-to-goal estimate)
before reaching the Place. Recall that the controller makes the
robot follow walls in the direction of the lowest-valued Crumb.
Thus the robot follows the wall past the last Crumb until it is
behind the robot, Then it turns round and drives past it again,
and so on.

If the trail is too long, i.e. the last Crumb lies beyond the
Place, the robot detects the Place as it drives by it and adjusts
its estimate accordingly. If the trail is too short, the robot may
never reach the Place, never has its estimate reset, and cannot
recover.

By abstracting away the objects to be transported, with the
goal of demonstrating a less complex, more robust system, that
did not need to servo to a target at the end of a trail, we actually
made the trail following more fragile. However, this was useful
as it makes explicit an important constraint to the system; in
order to recover from errors in the Trail (inevitable due to lo-
calization error), a robot must search for the goal after reaching
the last Crumb [constraint 5].

If a physical object (such as a non-virtual unit of resource) is
present at the goal, the robot should sense the object and servo
towards it. The Trail becomes a device to get the robot close
enough to the goal object to recognize it with sensors.

As we have no physically sensible Places, we solve the prob-
lem by using random exploration. When the robot reaches
a Crumb with time-to-goal estimate less than or equal to the
Crumb dropping frequency (2 seconds in these experiments),
it stops using the Trail and instead explores at random until it
finds the Place. In practice the Trail always ends very near its
Place. In our environment, the robot drives past the last Crumb
and reaches the Place almost immediately.

We made this modification and tested the robots again.

H. Experiment 3: Trail-end Event searching

This experiment was performed to verify the solution to the
trail-shortening problem proposed in the previous section. The
experimental set up and procedure were identical to the previ-
ous experiment, except for the addition of a battery hotswap. As
the results below show, this trial ran for a long time. As each
robot’s batteries were drained, we disabled the wheel motors,
towed the robot into a side room and swapped its batteries. The
controller was still running, so the robot was able to maintain
localization estimates during the swap. Once the fresh batteries
were installed the robot was towed back into the corridor and
its wheel motors enabled. In this way we were able to prolong
the duration of the experiment past the battery life time of the

12

Home (A)

robot start

Goal (B)

battery swap

40m

18m

4

Fig. 12. Diagram of experiment 3; 4 robots start at A facing to the right and must find a route to B.

Tanis Bug Fly Ant Total
Trips 36 59 78 86 262
Distance (m) 1102 2102 2414 2592 8211
Lifetime (min) 81.3 138.1 176.6 188.4 583.6

TABLE III
EXPERIMENT 3: EVENT SEARCHING - SUMMARY OF RESULTS

 0 30 60 90 120 150 180

R
ob

ot

time (minutes)

Times that goals were reached by each robot

Tanis
Bug
Fly
Ant

Fig. 13. Experiment 3: Event searching - Events

robots. Mechanical handling of the robot was observed to add
error to the localization estimate, adding a further challenge.

1) Results: Table III summarizes the results of the exper-
iment, showing the number of trips, distance and lifetime of
each robot. They made a total of 262 trips of � 31m each over
3 hours, 8 minutes, traveling a total of 8.2km (5.1 miles) before
the experiment was stopped. Two of the three robots that failed
ran out of power as we ran out of batteries to swap in; the other
suffered catastrophic odometry failure - an occasional problem
with the Pioneer robot.

Figure 13(top) shows the time that each robot reached Places
� and � . The regular interval between points in each case
shows that the robots were consistently following the trail be-
tween the Places. Where there are larger gaps between Places
(Fly at 45min, Ant at 160min) the robot was paused to have its
battery hot-swapped. The long gap for Bug at 140min was a
symptom of its odometry failure - it made two more trips by
chance before it failed completely. The interval between Places
is similar for all robots, indicating similar performance of each
robot while running.

The average time between Places was ����� 	��E� 	��������������"�
��� '	��� . This gives an average speed of �������E�����1� . The Nav-
igate behavior drives the robots at �?� ���������1� when cruising
freely. This is the highest speed output by the controller, so
we conclude that the team was working at approximately 92%
of maximum efficiency, i.e. the robots were following walls in
free space in the right direction 92% of their operating time.

Figure 14 shows plots of the Crumbs generated by each
robot, both on the plane (top) and extended over time in three
dimensions (bottom). The large variation in the plots indicates
that their coordinate systems drifted independently. For ex-
ample, Bug’s coordinate system rotated clockwise; the other
robots’ systems drifted anti-clockwise. Tanis’ system rotated
only by around 0.35 � per minute, while Fly’s rotated at 2 � per
minute. Despite the divergence of the robots’ coordinate sys-
tems, they were able to share trails throughout the trial.

Figures 14(top left) shows all 34,743 Crumbs received by
Ant over 188 minutes. At any time during the run, each robot’s
actual Trail contained many fewer Crumbs, as Crumbs were
deleted 2 �8��	�� seconds after generation. As described above,
this prevents the robot using out-of-date data. Old Crumbs be-
come useless as the robot’s coordinate frame drifts over time,
and if the environment changes, and a new route must be dis-
covered (dynamic environments are discussed futher below).

Figure 15 shows plots of the Crums stored in Ant’s Trail at
various times during the experiment. The top plot shows the
Crumbs received by Ant during the last 2 seconds before they
are incorporated into Ant’s Trail. Early in the experiment the
Crumbs from all robots overlap, as their coordinate frames are
very similar. Over time the coordinate systems can be seen to
diverge; the Crumbs no longer overlap. The middle plot shows
Ant’s Trail; the Crumbs from all robots have been transformed
into Ant’s coordinate frame. At any time during the experiment
all Crumbs are combined into a coherent path from � to � .
As Ant’s reference frame drifts with respect to the real world,
the positions of � and � change. The bottom plot shows how
the Trail looks if the positions of � and � are held constant. In-
coming Crumbs are transformed into the fixed coordinate frame
and the Trail always shows a coherent path.

V. DICUSSION

This section discusses the reasons for some design and im-
plementation decisions, and suggests some alternatives.

13

Fig. 14. Experiment 3: Event searching - Paths

1:30

Fixed

Ant’s Trail

Received

Time(h:mm) 0:04 1:02 2:34

Fig. 15. Trail snapshots over time from three points of view: Unprocessed as received (top); as incorporated into Ant’s Trail (middle); as incorporated into a
fixed reference frame (bottom). [Scale is different on each row.]

A. Use of odometry

LOST is independent of the localization method employed;
it does not rely on odometry. LOST requires that some localiza-
tion method is available that is sufficient to guide the robot for
the (possibly short) intervals between task events. This is re-
stated later as constraints 1, 2 & 5 in Section V-H. The amount
of error we can handle is therefore precisely specified but can-
not be quantified without a full understanding of the particular
task and environment. The implementor chooses the localiza-
tion method appropriate for their hardware and task. LOST au-
tomatically takes care of issues of long term drift and multiple
independent coordinate systems.

Our implementation uses odometry for localization. This
was deliberately chosen as the most simple, readily available
scheme for our robots in their indoor environment. The au-
thors understand that odometry can be improved upon in many
ways. The Pioneer 2’s naive, native odometry was sufficient for

the robots to reach an event location after each traverse and is
therefore perfectly good for the task. Long term drift (of any
localization method) is entirely compensated for by LOST.

If task events were more sparse and traverses significantly
longer than in our experiments, the unenhanced Pioneer odom-
etry would not have been sufficient to drive the robot between
events. The same is true for more challenging environments,
say outdoors on rough terrain. GPS would be a good solu-
tion here. Where GPS is not available inertial integration can
provide very good localization, subject to drift over minutes
or hours. LOST is applicable in all these cases, but is particu-
larly useful for self-referenced methods like odometry and iner-
tial integration because robots’ coordinate frames are indepen-
dent and nonstationary and conventional mapping and planning
techniques are difficult to apply.

14

B. Parameters

Any implementation of LOST must set the values of vari-
ables � and � from the Trail reading and writing algorithms
respectively. These are the only variables intrinsic to LOST;
several more are required to tune the low-level navigation con-
troller, but these are specific to the robots and environment and
not essential for this discussion.

In setting the Crumb sense radius � , there is a trade-off be-
tween the amount of information available (the larger the value
of � , the greater the probability of a useful Crumb being avail-
able), and its relevance (the further away a Crumb is, the less
likely it is to give you locally useful information). For example,
consider a trail of Crumbs that follows around the perimeter
of an obstacle. If � is smaller than the size of the obstacle, the
robot cannot sense the Crumbs behind the obstacle, and follows
the trail around the perimeter. If � is larger than the obstacle,
the robot may attempt to drive directly towards a Crumb on the
other side and fail to follow the perimeter.

The size of � , combined with the robots’ (and hence the
Crumbs’) localization errors determines the resolution of infor-
mation read from the trail. We set �H� ' � , which proved to be
satisfactory for our experiments.

The Crum dropping rate � is determined by the speed of the
robots and sense-radius � . We want Crumbs to be close enough
together that at least one Crumb is visible at any time while a
robot is following a trail, i.e. the gap between Crumbs must
be � ��� . Our robots moved at �������E�3���1� and �Z� ' � , so we
set �L� 	 seconds, so that a Crumb would be dropped approxi-
mately every 1m.

C. Distance estimates

The Crumb’s distance estimate � is the mechanism that de-
cides what the trail optimizes. If � is spatial distance, the robot
follows the shortest known path. If � estimates time-to-goal, the
robot follows the quickest path. Alternative metrics for � could
be chosen to optimize paths for another property. For example
if � were energy-to-goal, flat routes would be favored over hilly
routes.

Non-distance values for � can be used, i.e. metrics that do not
provide a continuous gradient, such as an estmate of remaining
resources or safety, by adding a direction indicator to the Crumb
data structure. The trail-reading and writing algorithms are eas-
ily changed to use the heading instead of the location of the
Crumb. The early versions of LOST decribed in [38], [40] use
this technique.

D. Data structures

Our Trail implementation used a simple linked list of
Crumbs. Searching the list for matching Crumbs is a relatively
expensive operation. A more efficient Trail implementation
could use a content-addressable data structure to significantly
reduce overhead when searching the set of Crumbs.

Our Trail contained an arbitrary number of Crumbs. An-
other possible efficiency improvement would be to maintain a
queue of fixed length. A queue always contains the most re-
cent data; so this removes the need to scan for old Crumbs and
delete them. If the population size and Crumb dropping rate are

known, the length of the queue determines the maximum age of
a Crumb.

E. Scalability

LOST was designed to exploit the physical distribution of a
population of robots. The environment is searched in parallel;
once a good route is found, the system converges to that route.
While the real-robot experiments in this paper used a small pop-
ulation for logistical reasons, our earlier experiments in simula-
tion [38] successfully demonstrated larger populations.

For the following reasons, we believe that the LOST will
scale to large populations of real robots, and may even be more
efficient as population size increases:

� As the population size increases, the amount of the envi-
ronment searched in parallel increases. Thus the probabil-
ity of finding good routes increases and the initial search
time decreases.

� The number of Crumbs required to create effective trails in
the environment is a function of the size and complexity of
the environment; it is independent of the population size.
Thus the number of calculations required per robot need
not increase as the population grows.

� As the population size increases, robots are more likely to
be distributed over a wider area (unless extreme interfer-
ence causes traffic-jams). This means that the probabil-
ity that the last

�
crumbs received are distributed along

the length of the trail increases. Conversely, a smaller�
is required to encode the whole trail with high prob-

ability than for a smaller population. We suggest that in
larger populations, the total number of Crumbs required
in the system will be the same or actually �����=� than for
small populations, reducing the amount of computation
per robot. At the worst case, the number of Crumbs re-
quired is constant with population size, allowing the pop-
ulation to increase indefinitely without using more com-
munications bandwidth, memory or per-processor compu-
tation.
If we choose not to decrease the Crumb dropping fre-
quency, we can instead use a fixed-size queue of length�

to hold Crumbs in a Trail.

F. Comparison with mapping and planning

It is useful to compare LOST with the state of the art in on-
line metric mapping described by Thrun et.al [44]. Thrun’s
technique combines sensor scan-matching with probablistic lo-
calization to produce excellent human-readable maps. This is
not the aim of our system. Rather, LOST is an on-line navi-
gation system that is an alternative to mapping and planning;
robots navigate between goals without the need for or expense
of a map. We are not aware of published figures for com-
parison, but consideration of Thrun’s technique suggests that
it requires orders of magnitude more processing, memory and
communications bandwidth than LOST and that the required
resources would scale at least linearly with population size. To
afford scalability we must limit the communications bandwidth
required as the population grows, and the memory required to
store the map as runs increase in duration. Thrun does not make

15

-5
 0

 5
 10

 15
y(m) -5

 0
 5

 10
 15

x(m)
 0

 20
 40
 60
 80

 100
 120
 140

time to goal (s)

Fig. 16. Surface plot of Ant’s Place-B crum list at 900 seconds. For each
position, the lowest time-to-goal of the Crumbs within sense-radius is plotted.
Where no Crumb was found, 0 seconds is plotted. Notice the steady gradient
from A (the origin) to B, and the curved sides of the gradient ‘chute’.

any claims in this area. We have argued above that the resources
required LOST are constant with population size, varying in-
stead with environment size and complexity. We believe that
this is the appropriate constraint in highly scalable systems.

Indeed, Thrun does not claim that his method scales well to
large populations of robots, merely that it “extends to multi-
robot mapping” in that each robot “contributes to building a
single unified map”. This implies that the map is assembled
at a single point; the system is not fully distributed and can
suffer single-point failures. It is also explicitly assumed that
each robot can localize itself initially in the map of a special
“team leader” robot. LOST has no special role for any robot
and no centralized map; instead each robot has its own trail in
local coordinates. LOST was designed from the start to be fully
distributed and benefits from the associated robustness with re-
spect to point failures.

Figure 16 shows a visualization of a Trail stored by Ant
during Experiment 3. The plot shows the lowest value of the
distance-to-goal estimate � of the Crumbs within Ant’s sense
radius � (i.e. the distance-hint � �) for a grid of points in local-
ization space. The resulting surface can be interpreted as a map
- all points where ��� � are free space - or as a plan - move
downhill whenever possible. It resembles the work space of a
potential field path planner with no local minima [29], [45].

The Trail data structure is something between a dynamic map
and a plan. It combines metric data about the positions of ob-
jects in the world with instructions on how to get from one place
to another.

G. Automatic constraint satisfaction

As trails are continually updated, LOST provides an auto-
matic method for reducing interference. If the Crumb’s distance
metric is a time, trails are optimized for shortest time. A route
that is heavily congested with robots will take a long time to
traverse due to interference; a longer route may be more time
efficient. Similarly, a short-distance route that passes through
a small opening may be suitable for a small population, as the
chance that several robots will meet at the opening is small.
With a large population, the route is not optimal due to a traf-
fic jam at the opening. Robots will select the longer but faster

route. This effect can clearly be seen in the simulation exper-
iments in [38]. This interesting property will be investigated
further.

H. Summary of constraints

We have identified various constraints throughout the paper
which must be satisfied for LOST to work. These are:

1) Robots must maintain a localization estimate.
2) Localization must be good enough to enable the robot to

make a single traverse.
3) Robots can only share Trails about Places they mutally

recognize. This is usually reasonable, but might not be
true in heterogenous or learning systems.

4) Events occur in fixed places [this is a provisional con-
straint: we have not yet investigated the behavior of the
system with moving Events. Due to the next Constraint,
we suspect it will work if Events move slowly relative
to the time between occurences; this more relaxed con-
straint may replace this provisional one.]

5) Robots must have some search strategy when reaching
the end of the trail to recover from accumulated trail-
shortening.

6) Routes found are not guaranteed to be optimal. The prob-
ability of finding good paths increases with population
size.

In summary, LOST is applicable to a class of trail-finding
and following problems in which localization estimates can be
maintained, and optimality is not essential.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have presented the novel algorithm
Localization-Space Trails (LOST), for finding and traversing
routes through unknown environments with a team of robots.
We have demonstrated that trail-laying behaviors can be use-
fully implemented in a shared localization space, rather than
directly in the real world. Waypoints can be shared between
divergent localization spaces by specifying them with reference
to landmarks common to all robots. Unlike previous landmark-
based localization strategies, we use task level features that are
necessarily aleady known to and named by all robots.

A straightforward robot implementation was described and a
series of experiments demonstrated that:

(i) LOST can guide robots between places of interest in the
environment; (ii) Robots will take the best known path; (iii)
Path information can be shared between coordinate systems us-
ing task-relevant features as common reference points; (iv) The
system is robust to individual robot failure.

Our robot team performs a useful general task without super-
vision for long periods. Four robots operated autonomously in
an unmodified office building, with a total robot run time of 9
hours 45 minutes and a distance travelled of 8.2km before be-
ing defeated by hardware failure. In addition to coping with
highly-diverged frames of reference, the system was shown to
be robust to individual robot failure and battery hot-swaps. We
believe this technique will be of use in a variety of path-finding
scenarios, and its simplicity and low computational load make
it an attractive alternative to instrumented environments, map

16

building and other techniques that require an explicit global co-
ordinate system.

Having assessed the method applied to a simple task, it
should be tested with more complex tasks and environments.
It would be particularly useful to examine the system’s ability
to adapt to dynamically changing environments, particularly its
ability to cope with blocked and newly-available routes, and
to automatically reduce interference. The method allows for
tasks with

�
sources and � sinks; this should be demonstrated

in further experiments. Simulation studies could examine the
scaling effects and opportunities of large populations.

The system’s performance was degraded somewhat by near-
collisions between robots. The phenomenon of interference is
an important problem for multi-robot systems, particularly in
constrained spaces such as home and office environments. In
these experiments we deliberately worked only in the corridors,
where robots could always pass each other. We are extend-
ing our controllers to cope with co-localization conflicts, such
as two robots passing in opposite directions through a narrow
doorway. Results of our initial simulation work have been pub-
lished elsewhere [46] and a similar approach could be imple-
mented on the real robots.

We have not presented a framework or methodology; rather
we offer a solution to a realistic problem. The application we
have studied is ideally suitable for multiple robots, as is our so-
lution. The method is completely decentralized, highly scalable
and directly exploits the physcial distribution of the robots that
make up the population.

Like conventional path-planning and mapping solutions,
LOST is applicable to a class of problems and is independent
of the underlying robot controller. Unlike typical planning and
mapping, our system leverages its embodiment and distribution
so that it requires relatively modest computation for on-line,
any-time path finding in the real world.

We hope that the LOST method will be directly useful for
building robust path finding robot teams. We also hope that
this paper will be of value as a case study of a fully-realized
cooperative multi-robot system.

ACKNOWLEDGEMENTS

Thanks to Esben Østergård, Jakob Fredslund and Brian
Gerkey for assisting with the experiments, and to the Editor
and reviewers for their helpful suggestions.

This work is supported by DARPA grant DABT63-99-1-
0015, contract DAAE07-98-C-L028, and NSF grants ANI-
9979457 and ANI-0082498 .

REFERENCES

[1] B. Holldopler and E. Wilson, The Ants. Springer-Verlag, 1990.
[2] O. Richards, The Social Insects, p. 113. Harper Torchbook, 1970.
[3] D. M. Gordon, Ants at Work. New York: The Free Press, 1999.
[4] K. von Frisch, Bees. Their Vision, Chemical Senses, and Language. Ithaca

N.Y.: Cornell University Press, 1950.
[5] B. A. Cartwright and T. S. Collett, “Landmark learning in bees.,” Journal

of Comparative Physiology, no. 151, pp. 521–543, 1983.
[6] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization

by a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics-Part B, pp. 26(1):29–41, 1996.

[7] J. L. Deneubourg, G. Theraulaz, and R. Beckers, “Swarm-made archi-
tectures,” in Proc. European Conference on Artificial Life (F. Varela and
P. Bourgine, eds.), pp. 123–133, MIT Press, 1992.

[8] P. P. Grasse, “La reconstruction du nid et lescoordinations inter-
individuelles chez bellicoitermes natalenis et cubitermes sp. la theorie de
la stigmergie:essai d’interpretation des termites constructeurs,” Insect So-
cieties, vol. 6, pp. 41–83, 1959.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of
Complexity, New York, NY: Oxford University Press, 1999.

[10] C. Melhuish, O. Holland, and S. Hoddell, “Collective sorting and segre-
gation in robots with minimal sensing,” in Proc. 5th Int. Conf. Simulation
of Adaptive Behaviour, 1998.

[11] R. Moller, D. Lambrinos, R. Pfeifer, T. Labhart, and R. Wehner, “Model-
ing ant navigation with autonomous agents,” in Proc. 5th Int. Conf. Sim-
ulation of Adaptive Behavior, pp. 185–195, 1998.

[12] D. Stilwell and J. S. Bay, “Toward the development of a material trans-
port system using swarms of ant-like robots,” in Proc. 1993 IEEE Inter-
national Conference on Robotics and Automation, pp. 766–771, 1993.

[13] T. Sharpe and B. Webb, “Simulated and situated models of chemical trail
following in ants,” in Proc. 5th Int. Conf. Simulation of Adaptive Behav-
ior, pp. 195–204, 1998.

[14] R. Russell, “Ant trails - an example for robots to follow?,” in Proc. 1999
IEEE International Conference on Robotics and Automation, pp. 2698–
2703, 1999.

[15] R. A. Brooks, “New approaches to robotics,” Science, vol. 253, pp. 1227–
1232, 1991.

[16] Y. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng, “Cooperative mobile
robotics: Antecedents and directions,” in IEEE/RSJ Int. Conf. Intelligent
Robots and Systems (IROS’95), 1995.

[17] R. C. Arkin, Behavior-Based Robotics. The MIT Press, 1998.
[18] R. C. Arkin and T. Balch, “Cooperative multiagent robotic systems,” in

Artificial Intelligence and Mobile Robots (D. Kortenkamp, R. P. Bonasso,
and R. Murphy, eds.), Cambridge, MA: MIT/AAAI Press, 1998.

[19] T. Balch and R. C. Arkin, “Behavior-based formation control for multia-
gent robot teams,” 1998.

[20] M. J. Matarić, “Designing and understanding adaptive group behavior,”
Adaptive Behavior, vol. 4, pp. 50–81, December 1995.

[21] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar,
I. Lee, J. Ostrowski, G. Pappas, J. S. andJ. Spletzer, and C. Taylor, “A
framework and architecture for multirobot coordination,” in Proc. Seventh
International Symposium on Experimental Robotics, 2000.

[22] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic
systems,” Autonomous Robots, vol. 1, no. 1, pp. 27–52, 1994.

[23] L. Parker, “Designing control laws for cooperative agents,” 1993.
[24] O. Holland and C. Melhuish, “Chorusing and controlled clustering for

minimal mobile agents.,” in Proc. European Conference on Artificial Life,
(Brighton, UK), 1997.

[25] C. Melhuish, O. Holland, and S. Hoddell, “Using chorusing for the for-
mation of travelling groups of minimal agents,” in Proc. 5th Int. Conf.
Intelligent Autonomous Systems, 1998.

[26] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,” IEEE Transactions on Robotics and Au-
tomation, vol. 7, pp. 376–382, June 1991.

[27] S. Roumeliotis, G. Sukhatme, and G. Bekey, “Circumventing dynamic
modeling: Evaluation of the error-state kalman filter applied to mo-
bile robot localization,” in Proc. 1999 IEEE International Conference in
Robotics and Automation, May 1999.

[28] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile robots
in dynamic environments,” Journal of Artificial Intelligence Research,
vol. 11, 1999.

[29] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proc. IEEE Int. Conf. Robotics and Automation, pp. 500–505,
IEEE, March 1985.

[30] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and local-
isation for an autonomous robot,” in IEEE/RSJ Int. Workshop Intelligent
Robots and Systems, pp. 1442–1447, 1991.

[31] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to con-
current mapping and localization for mobile robots,” Machine Learning,
vol. 31, no. 1-3, pp. 29–53, 1998.

[32] M. Deans and M. Hebert, “Invariant filtering for simultaneous localiza-
tion and mapping,” in Proc. IEEE Int. Conf. Robotics and Automation,
pp. 1042–1047, 2000.

[33] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,” Robotics and
Autonomous Systems, vol. 8, pp. 47–63, 1991.

[34] M. J. Matarić, “Integration of representation into goal-driven behavior-
based robots,” IEEE Transactions on Robotics and Automation, vol. 8,
no. 3, pp. 304–312, 1992.

17

[35] H. Shatkay and L. P. Kaelbling, “Learning topological maps with weak
local odometric information,” in Proc. Int. Joint Conf. on Artificial Intel-
ligence, pp. 920–929, 1997.

[36] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Map validation and robot
selflocation in a graph-like world,” Robotics and Autonomous Systems,
vol. 22, no. 2, pp. 159–178, 1997.

[37] G. Dedeoglu and G. S. Sukhatme, “Landmark-based matching algorithm
for cooperative mapping by autonomous robots,” in Parker et al. [47],
pp. 111–120.

[38] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić, “Whistling in
the dark: cooperative trail following in uncertain localization space,” in
Proc. Fourth Int. Conf. Autonomous Agents, pp. 187–194, 2000.

[39] R. T. Vaughan, “Stage: a multiple robot simulator,” tech. rep., Institute for
Robotics and Intelligent Systems Technical Report IRIS-00-393, Univ. of
Southern California, 2000.

[40] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić, “Blazing a
trail: insect-inspired resource transportation by a robot team,” in Parker
et al. [47], pp. 111–120.

[41] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo local-
ization for mobile robots,” Artificial Intelligence, vol. 128, no. 1-2, 2001.

[42] J. L. C. Grimm and W. C. Grimm, Kinder- und Hausmärchen (Children’s
and Household Tales), vol. 1. 1812.

[43] B. P. Gerkey, R. T. Vaughan, K. Støy, A. Howard, G. S. Sukhatme, and
M. J. Matarić, “Most valuable player: A robot device server for dis-
tributed control,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Sys-
tems, 2001.

[44] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3d mapping,” in Proc.
IEEE Int. Conf. Robotics and Automation, pp. 321–328, IEEE, 2000.

[45] C. I. Connelly and R. A. Grupen, “On the applications of harmonic func-
tions to robotics,” Journal of Robotic Systems, vol. 10, pp. 931–946, Oc-
tober 1993.

[46] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić, “Go ahead,
make my day: Robot conflict resolution by aggressive competition,” in
Proc. 6th Int. Conf. Simulation of Adaptive Behaviour, pp. 491–500,
2000.

[47] L. E. Parker, G. Bekey, and J. Barhen, eds., Distributed Autonomous
Robot Sytems 4, Springer, 2000.

Richard T. Vaughan Richard Vaughan is a Member
of Technical Staff at HRL Laboratories, LLC. He re-
ceived a B.A. (Hons.) degree in Computing with Ar-
tificial Intelligence from the University of Sussex in
1993, and the D.Phil. degree in Computation from the
University of Oxford in 1999. He was a Research As-
sociate at the University of Southern California from
1998 to 2001, where the experiments in this paper
were carried out. Dr. Vaughan’s research concerns
the mechanisms of intelligent behaviour in popula-
tions of interacting machines. A member of IEEE

and AAAI, Dr. Vaughan has published over 20 technical papers.

Kasper Støy Kasper Støy is a PhD student at the
University of Southern Denmark, investigating the
importance of situated communication for intelligent
machines, including self-reconfigurable robots. Prior
to starting his PhD. research, Mr. Støy was a Re-
search Scientist at the University University of South-
ern California, where the experiments in this paper
were carried out. He has also been a visting student
at the USC Information Sciences Institute.

Gaurav S. Sukhatme Gaurav Sukhatme is an Assis-
tant Professor in the Computer Science Department at
the University of Southern California (USC) and the
associate director of the USC Robotics Research Lab-
oratory. He received his M.S. and Ph.D. in Computer
Science from USC. His research interests include em-
bedded systems, sensor networks, mobile robot co-
ordination and control, sensor fusion for robot fault
tolerance, and human-robot interfaces. Dr. Sukhatme
has served as PI or CoPI on several NSF, DARPA and
NASA grants and contracts. At USC, he directs the

Robotic Embedded Systems Lab, which performs research in two related areas:
1) The control and coordination of large numbers of distributed embedded sys-
tems, and 2) The control of systems with complex dynamics (hopping robots,
robotic helicopters and haptic interfaces). Dr. Sukhatme is a member of AAAI,
IEEE and the ACM and has served on several conference program commit-
tees. He has published over 50 technical papers, two book chapters and several
workshop papers.

Maja J. Matarić Maja Mataric is an associate pro-
fessor in the Computer Science Department and the
Neuroscience Program at the University of South-
ern California, the Director of the USC Robotics Re-
search Lab and the Interaction Lab, and an Associate
Director of IRIS (Institute for Robotics and Intelli-
gent Systems). She received her PhD in Computer
Science and Artificial Intelligence from MIT in 1994,
her MS in Computer Science from MIT in 1990, and
her BS in Computer Science from the University of
Kansas in 1987. She is a recipient of the NSF Career

Award, the IEEE Robotics and Automation Society Award Early Career Award,
the MIT TR100 Innovation Award, and the USC School of Engineering Junior
Research Award. She is on the editorial board of three journals: the IEEE Trans-
actions on Robotics and Automation, the International Journal of Autonomous
Agents and Multi-Agent Systems, and Adaptive Behavior, and on the AAAI
Executive Council. She has published over 30 journal articles, 13 book chap-
ters, 66 conference papers, and 20 workshop papers, and has two books in the
works with MIT Press. She has worked with NASA’s Jet Propulsion Lab, the
Free University of Brussels AI Lab, LEGO Cambridge Research Labs, GTE
Research Labs, the Swedish Institute of Computer Science, and ATR Human
Information Processing Labs. Her research is in the areas of control and learn-
ing in behavior-based multi-robot systems and humanoids, and skill learning
by imitation.

